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OUTLINE

I will present here brief introductions to projected dy-
namical systems and evolutionary variational inequalities
and highlight the way the two theories intertwine in a
new theocory of double-layered dynamics. This provides
us with novel ways of interpreting applied problems. 1
shall proceed as follows:

e Background and application contexts;

e Projected differential equations (PrDE) and projected
dynamical systems (PDS);

e Evolutionary variational inequalities (EVI);

e A unified framework for EVI constraint sets and how
the PDS and EVI mesh;

e QQualitative analysis including stability analysis;

e Answers to three critical questions regarding the double-
layered dynamics;

e Application of double-layered dynamics to traffic net-

WOrks.



BACKGROUND

Numerous problems in engineering, in operations re-
search and the management sciences, as well as in eco-
nomics and finance invoelve interactions among decision-
makers and the competition for resources.

In such problems, the concept of equilibrium plays a
central role and provides a valuable benchmark against
which an existing state of such complex systems can be
compared.

Examples, par excellence, of such equilibrium problems
include:

e Congested urban transportation networks,
e spatial price equilibrium problems,
e the Internet and supernetworks,

e financial equilibrium problems, and

e decentralized supply chain networks with various re-

lated applications.



Transportation science has historically been the disci-
pline that has pushed the frontiers in terms of method-
oclogical developments for such problems (which are of-
ten large-scale) beginning with the work of Beckmann,
McGuire, and Winsten (1956).

Dafermos (1980) later showed that the traffic network
equilibrium conditions as formulated by Smith (1979)
were a finite-dimensional variational ineguality and then
utilized the theory to establish both existence and unique-
ness results of the equilibrium traffic flow pattern as well
as to propose an algorithm with convergence results.

Finite-dimensional variational inequality theory has been
applied to-date to the wide range of equilibrium prob-
lems noted above, as well as to game theoretic prob-
lems, such as oligopolistic market equilibrium problems,
and to general economic equilibrium problems (see, e.qg.,
Nagurney (1993) and the references therein).



PROJECTED DYNAMICAL SYSTEMS and
FINITE-DIMENSIONAL VARIATIONAL
INEQUALITIES

As important as the study of the equilibrium state is
that of the study of the underlying dynamics or dis-
equilibrium behavior of such systems.

Since such problems typically involve more constraints
(such as, for example, budgetary, conservation of flow,
nonnegativity assumptions on the variables, among oth-
ers) classical dynamical systems theory is no longer suffi-
cient for the formulation and solution of such problems.

In 1993, Dupuis and Nagurney introduced a new class of
dynamical system with a discontinuous right-hand side
and provided the foundational theory for such projected
dynamical systems.

Moreover, they established, under suitable conditions,
that the set of stationary points of a projected dy-
namical system coincided with the set of solutions
of the associated finite-dimensional variational in-
equality (VI).



T his connection allowed for the investigation of the dis-
equilibrium behavior preceding the attainment of the
equilibrivum.

In 1995, Zhang and Nagurney (1995) developed the sta-
bility theory for finite-dimensional projected dynamical
Systems.

To-date, PDS thecory and finite-dimensional VI theory
has been used to formulate and solve a plethora of ap-
plications ranging from congested urban transportation
networks to supply chains (with and without electronic
commerce) and a variety of financial networks (with and
without intermediation) with the incorporation even of
financial transactions.
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PROJECTED DYNAMICAL SYSTEMS ON
INFINITE-DIMENSIONAL HILBERT SPACES

Isac and Cojocaru (2002, 2004) initiated the system-
atic study of projected dynamical systems on infinite-
dimensional Hilbert spaces with the fundamental issue
of existence of solutions to such problems answered by
Cojocaru (2002) in her thesis (see also Cojocaru and
Jonker (2004)).



EVOLUTIONARY VARIATIONAL
INEQUALITIES

Evolutionary variational inequalities, which are also in-
finite-dimensional, were originally introduced by Lions
and Stampacchia (1967) and by Brezis (1967) in order
to study problems arising principally from mechanics.
T hey provided a theory for the existence and unigueness
of the sclution of such problames.

Steinbach (1998) studied an obstacle problem with a
memaory term as a variational inequality problem and
established existence and uniqueness results under suit-
able assumptions on the time-dependent conductivity.

Daniele, Maugeri, and Oettli (1998, 1999), motivated

by dynamic traffic network problems, introduced evolu-
tionary (time-dependent) variational inequalities to this
application domain and to several others. See also Ran

and Boyce(1996).



As noted by Cojocaru, Daniele, and Nagurney (2004),
the theory and application of evolutionary variational in-
equalities was developing in parallel to that of projected

dynamical systems.



Cojocaru, Daniele, and Nagurney (2004) built the basis
for merging the theory of projected dynamical systems
(PDS) and that of evolutionary variational inequalities
(EVI), in order to further develop the theoretical analy-
sis and computation of solutions to applied problems in
which dynamics plays a central role.

T he intriguing feature of the merger is that it allows
for the modeling of problams that present two (theoret-
ically) distinct timeframes, most simply put, a big scale

time and a small scale time.

T he existing literature has focused on understanding hu-
man decision-making for a specific timescale rather than
viewing decision-making over multiple timescales. The
ability to capture multiple timescales can also further

support combined strategic and operational decision-
making and planning.



T here are new exciting questions, both theoretical and

computational, arising from this “multiple time struc-
ture.”

In the course of answering these questions, a new theory
is taking shape from the synthesis of PDS and EVI, and,

as such, it deserveas a name of its own; we call it double-
lavered dynamics.



PrDE and PDS -1

T he most general mathematical context to date in which
we can define a projected differential equation (PrDE)
and, consequently, a projected dynamical system (PDS),
is that of a Hilbert space X of arbitrary (finite or infinite)
dimension.

Suppose that we have k' € X, a nonempty, closed, con-
vex subset in a Hilbert space X. Let ' : K — X be &
Lipschitz continuous mapping. It is well-known that the
ODE:

dx(t)

5 —F(z(t)), =(0)eK

has solutions in a suitable class of functions; here that
class will be that of absclutely continuous functions
AC([0,0c), X).




Let us define a PrDE on an example, “with drawings:”

Suppose X = R?, K = PLEF, and suppose that the image
below represents a trajectory of the equation

da(t) o
e F(z(1)),

. . 2
starting in R+.

D




A PrDE describes the control problem:

~(2()) = ~F(a()), 2(0) €

such that =(t) € %r as shown in the figure below:

o

|
In other words, a trajectory of a projected differential

equation is always “trapped” in the constraint set Ak =

2

i and the velocity field along any such trajectory is
Not continuous.



PrDE and PDS - 11

To rigorously define the two notions, we recall the fol-
lowing:

1). the projection of X onto K by Py : X — K, with

F — = inf ||z — v X,
|Pic(a) =zl = Inf |z = all, Ve X,

2. the tangent cone Tk (z) = Upsor(K — ).




PrDE and PDsS - III

Let X, K ¢ X, and F: K — X as before. Then a PrDE
is defined by:

%(I(ﬁ)) = N (x(t), —F(x(t))). x(0) = xo,

where

Mg (2, —F(z)) = lim Pg(z —o0F(z)) —x

Jim - = Pr,()(—F(z)),
where Tx(x) is the tangent cone to the set K at = and

Ng(x) is the normal cone to K at the same point .
Fit)




The right-hand side of any PrDE is nonlinear and dis-
continuous.

An existence result for such equations was obtained by
Dupuis and Nagurney (1993) for X = R", and by Co-
jocaru (2002) for general Hilbert spaces.

T heorem 1

Let X be a Hilbert space of arbitrary dimension and let
K C X be a non-empty, closed, and convex subset. Let
F: K — X be a Lipschitz continuous vector field on K
with o € K. Then the initial value problem

T = M), —F (1)), 2(0) = g

has a unique solution in AC([0.o>c), k).

A projected dynamical system (PDS) is the dynamical

system given by the set of trajectories of a PrDE.



EQUILIBRIA of PDS and VARIATIONAL
INEQUALITIES

An important feature of any PDS is that it is intimately
related to a variational inequality problem (VI).

The starting point of VI theory: 1966 (Hartman and
Stampacchia); 1967 (Lions and Stampacchia); it is now
part of the calculus of variations; it has been used to
show existence of equilibrium in a plethora of equilibrium
problems and free boundary problems.

T he following relation between a PDS and a VI was
shown by Dupuis and Nagurney (1993) for X = R"
and by Cojocaru (2002) for any Hilbert space. Here
F: K — X.
Theorem 2

The equilibria of a PDS5:

%(r(t)} = Mg (z(t), —F(x(t))),
that is, x*€ K such that
N (z".—F(z")) =0
are solutions to the VI(F.K). find =* € K such that
(F(z*),z —z*} >0, VzeK,

and vice-versa, where (-,-) denotes the inner product on
X.



We are interested in studying an evolutionary variational
inequality in the form proposed by Daniele, Maugeri, and
Oettli (1998, 1999). They modeled and studied the
traffic network problem with feasible path flows which
have to satisfy time—dependent capacity constraints and
demands.

T hey proved that the equilibrium conditions (in the form
of generalized Wardrop (1952) conditions) can be ex-
pressed by means of an EVI, for which existence theo-
rems and computational procedures were given. The al-
gorithm proposed was based on the subgradient method.

In addition, the EWVI for spatial price equilibrium prob-
lems (see Daniele and Maugeri (2001) and Daniele (2004))
and for financial equilibria (2003) have been derived,



STANDARD EVI FORM (TIME-DEPENDENT)
VARIATIONAL INEQUALITIES

Recall that < ¢, u .= / {d(t), u(t))dt is the duality map-
ping on LP([0.T].R?), where o = (LP([0,T], R?))* and
uwe LP([0,T], RT). Let FF: K — (LP([0,T], R1))".

The standard form of the evolutionary wvariational in-
equality (EVI) that we work with is:

find w € K such that < F(u),v—u >»>0, Vv e K.
or, equivalently, find v € iK' such that

T



A UNIFIED FEASIBLE SET and EVI
FORMULATON (Cojocaru, Daniele, and
Nagurney (2004))

We consider a nonempty, convex, closed, bounded sub-
set of the reflexive Banach space LP([0,17], R?) given by:

K= |J {uel”(0,T],R) | (t) < u(t) < u(t) a.e. in [0,T7;
t= (0,1

q
Zf;}iu-«;(f-) = p;(t) a.e. in [0,7],&,:€ {0,1},i € {1,..,q},

i=1
je{l,..., l}}

Let A, € LP([0.T]. RY), p € LP([0,7T]. R") be convex func-
tions in the above definition. For chosen values of the
scalars §;;, of the dimensions ¢ and [, and of the bound-
aries A, u, we obtain each of the previous above-cited
model constraint set formulations as follows:

e Tor the traffic network problem (see Daniele, Maugeri,
and Oettli (1998, 1999)) we let &; € {0,1}, @ €
{1,...q9}, 7e{1,..., [}, and A(t) = 0 for all t € [0,T7;

e for the quantity formulation of spatial price eqguilib-
rivm (see Daniele (2004)) we let g = n 4+ m 4+ nm,
l=n+m, & € {0,1}, i € {1,...,q}, 7 € {1.....1};
p(t) large and A(t) = 0, for any t € [0.7];



e for the price formulation of spatial price equilibrium
(see Daniele (2003)) weletg=n+m+mn, [ =1,
§:=0, i€ {1,..,q}, j €{1,....1}, and A(t) = O for
all t € [0.77;

e for the financial equilibrium problem (cf. Daniele
(2003)) we let g =2mn—+n, | =2m, &; = {0,1} for
i e {l,...,n}, j€{1,....1}; p(t) large and A(t) = 0,
for any t € [0,T]].



SOME PRELIMINARIES AND DEFINITIONS

In the general theory of variational inequalities, of which
EVI are a part, as well as in Nonlinear Analysis and
Optimization, the concept of monotone mappings and
its extensions have been extensively used in existence /
uniqueness-type results.

From among the extensions of monotonicity, we recall
here definitions of pseudomonotonicity, which are used
throughout the analysis.

Definition

et £ be a reflexive Banach space with dual E*, < -, 5
the duality map between E* and E, K a non-empty
closed, convex subset of ' and F . K — E*. Then:

(1) A map F is called pseudo-monotone on K if, for
every pair of points z.y € K, we have

(F(z),y —x) 20— (F(y),y —z) = 0.

(2) A map F is strictly pseudo-monotone on K if, for
every pair of distinct points x.,y, we have

(F(x),y—x) 20— (F(y),y —z) > 0.

(3) A map F is strongly pseudo-monotone on K |if,
Lthere exists n = 0 such that, for every pair of distinct
points x.,y, we have

(F(z),y —a) 2 0 = (F(y),y — ) = nlly — al >



Daniele, Maugeri, and Oettli (1998) gave an existence
result for an EVI as above:

T heorem 3

IT F satisfies either of the following conditions:

1. F s hemicontinuous with respect to the strong
topology on K, and there exist A C K nonempty,
compact, and B C K compact such that, for every
v € K\A, there existsv € B with < F(u),v—u >= 0,

2. F is hemicontinuous with respect to the weak topol-
ogy on K;

3. F Is pseudomonotone and hemicontinuous along
line segments,

then the EVI problem above admits a solution over the

constraint set K.



DOUBLE-LAYERED DYNAMICS: MERGING
PDS and EVI

T he theory of EVI and that of PDS can be intertwined
for the purpose of deepening the analysis of many dy-
namic applied problems arising in different disciplines.
The fundamental theoretical ideas, together with an ex-
ample of such problems, specifically, a dynamic traffic
network problem, were given in Cojocaru, Daniele, and
Nagurney (2004). However, the implications of one the-
ory over the other have to be further studied.

Here we continue to develop and consclidate the math-
ematical formalism o©f this new emerging theory which
we call double-layered dynamics, thus opening up new
questions as topics for future work.



First and foremost, we have seen that the EVI consid-
ered involves a constraint set of a Banach space, but

to be used in conjunction with PDS theory, we need to
limit ourselves to Hilbert spaces; therefore, weset p .= 2
and consider only constraint sets K € L2([0.77]. R?), as
given.

By definition, such sets are closed and convex.

Also note that the elements in the set K vary with time,
but K is fixed in the space of functions L2([0.7], R?),
1 = 0 given.



DOUBLE-LAYERED DYNAMICS:

Consider the above (EVI), where F is pseudomonotone
and Lipschitz continuous and K & L?([0,T]. R?) is given
as above.

Lipschitz continuity implies hemicontinuity, which, in
turn, implies hemicontinuity on line segments, so ac-
cording to Theorem 3, the EVI problem has solutions.

We are also in the scope of Theorem 1, and, therefore,
we can consider the PDS defined on the closed and
convex set I by the PrDE:

WD) — Ak (ul ).~ (u( 7)),
u(-.0) =u(-) e K,

where time 7 is different than time ¢ in the EVIL In

general, the PDS has solutions in the set of absolutely

continuous functions in the 7 variable, AC([0.~c). K ).

However, we will limit ourselves to finite intervals for T,

i.e., with = = [0,1], | = 0, given.



T he meaning of the “two times” used here needs to be
well understood. Intuitively, at each moment ¢ € [0.71],
the solution of the EVI represents a static state of the
underlying system.

As t varies over the interval [0.7], the static states de-
scribe one (or more) curve(s) of equilibria. In contrast, 7
is the time that describes the dynamics of the system un-
til it reaches one of the equilibria on the curve(s). This
structure motivates the name of the new theory, which
has many interesting features. Our intuitive explanation
is rigorously confirmed by the following result.



Theorem 4 (Cojocaru, Daniele, and Nagurney (2004))

T he solutions to the EVI problem are the same as the
critical points of the PDS and vice versa, that is, the
critical points of the PDS are the solutions to the EVI.

Hence, by choosing the Hilbert space to be L*([0.1] . R%),
we find that the solutions to the evolutionary variational
inequality: find v € K such that

T
/ (F'(u(t)),v(t) —u(t))dt =0, YvelkK
oS0

are the same as the critical points of the equation:

that is, the points such that
Mg (u(t. 7). —F(u(t.7))) =0 a.ein [0.1],

which are obviously stationary with respect to t.



A Pictorial of the Double-Layered
Dynamics

u(t,,0)

u(t,,0)



T his result is the most important feature in merging the
two theories and in computing and interpreting problems
ranging from spatial price (gquantity and price formula-
tions), traffic network equilibrium problems, and general
financial equilibrium problems.

Now we are ready to answer the guestion of uniqueness
of solutions to the EVI. It is known that, in general,
strict monotonicity implies uniqueness of solutions for a
variational inequality (Stampacchia (1968)) and, hence,
if £ is strictly monotone, then it is pseudomonotone and
the solution to the EVI is unique.

But, generally, pseudomonotonicity or strict pseudomo-
notonicity alone cannot guarantee uniqueness of such
solutions for the PDS.



This is not so in the PDS theory, where it is easy to
show that if F is only strictly pseudomonotone, but not
strictly monotone, the PDS still has a unique equilib-
FiLm.

Proposition 1 (Cojocaru, Daniele, and Nagurney
(2004b))

Assume that F is strictly pseudomonotone and Lipschitz
on K. Then the FDS5 has at most one equilibritm
point.



Here is a direct, important consequence of the new the-
ory of double-layered dynamics:

Proposition 2

Assume either one of the hypotheses (2) or (3) of The-
orem 3, where I s strictly pseudomonotone on K and
assume DLDH. Then the EVI has at most one solu-

tion.



STABILITY PROPERTIES of the CURVE of
EQUILIBRIA; the RELATION BETWEEN the
TWO TIMEFRAMES

Here we address the stability properties of solution(s)
to the EVI, viewed as curves of equilibria for PDS. We
also make precise the relation between PDS time and
EVI time, together with its meaning in applications.

In Cojocaru, Daniele, and Nagurney (2004) we remarked
that, intuitively, time ¢ describes the curve of equilibria,
while time 7 describes the evolution of the projected
dynamics in the presence of this curve. In our first pa-
per, we assumed that the projected dynamics should
describe how the underlying problem “approaches” this
curve, but we did not give a proof of why and how this
happens.



The assumption of pseudomonotonicity is vital to the
existence of EVI solutions, but not so for sclutions to
PDS.

However, it plays a very important role in the stability
study of perturbed equilibria of PDS, more precisely, in

the study of the local/global properties of the projected
systems around these equilibria.

T his stability question reamains meaningful in the double-
layered dynamics theory, where we seek to unravel the
behavior of perturbations of the curve(s) of equilibria.



Feasible Set K

A Stable Equilibrium Point



Fea,sible_ Set K

An Unstable Equilibrium Point



Feasible Set K

B(z',¢)
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A Finite Time Attractor



THREE IMPORTANT QUESTIONS

We see next that pseudomonotonicity-type conditions
fully answer three important questions along the lines
of our remarks above:

1. Is it accurate to expect that for almost all t € [0.71]]
given, the trajectories of the PDS at ¢ (which we
denote by PDS;) evolve towards the curve of equi-
libria?

2. What is the relation between an arbitrarily chosen
t = [0.77] and the time it takes for solutions to PDS;
to actually reach the curve of equilibria?

3. What is the interpretation of the double-layered dy-
namics for applications?



Answer to question (1). The first question is answered
positively, and is a consequence of the stability study of
perturbed equilibria for PDS on Hilbert spaces (see Isac

and Cojocaru (2002)). Before stating the main results,
we need to recall the notion of monotone attractor.
While the classical notion of an attractor for a dynami-
cal system is well-known, that of a monotone attrac-
tor is different and was initially intrcduced to study the
properties of equilibrium points of projected dynamical

systems (Zhang and Nagurney (1995)).



Definition

Let X be a Hilbert space, Kk C X closed, convex subset.
(1) A point z* € K is called a local monotone at-
tractor for the PDS |r there exists a neighborhocod V
of =" such that the function d(t) = |lz(t) — z"|| is a
non-increasing function of t, for any solution x=(t) of the
PDS, starting in the neighborhocod V.

(2) A point z* € K is a local strict monotone attrac-
tor if the function d(t) is decreasing.

A point z* € K is a global monotone attractor (respec-
tively a global strict monotone attractor) if conditions
(1) and (2) are satisfied for solutions starting at any
point of K.

It is not difficult to see that the notion of monotone
attractor and that of an attractor are different. For
example, a monotone attractor is not neceassarily an at-
tractor, if say d(x.t) decreases for t € [0, t1] and remains
constant in time for ¢t = t1, for some t;1 € Ry. In the
same way, an attractor is not necessarily a monotone
attractor, unless d(x,t) is monotonically decreasing to

Zero,



We now give stability results for the perturbed curve of
equilibria, based on pseudo-monotonicity-type.

Theorem 5 (Cojocaru, Daniele, and Nagurney (2004b))

Assume F : K — L?([0.T].R?) is Lipschitz continuous
on K and consider the EVI and the PDS. Then the
following hold:

1. if F is (locally) pseudomonotone on K, then the
curve(s) of equilibria (solution(s) of EVI) is(are) a
(local) monotone attractor,

2. irF is (locally) strictly pseudomonotone on K, then
the unique curve of equilibria is a (local) strict monotone
attractor;

3. ir F is (locally) strongly pseudomonotone on K,
then the unique curve of equilibria is exponentially
stable and a (local) attractor.



Answer to question (2). The stability properties of
the curve of equilibria as a whole, given by Theorem 5,
show that the curve is attracting solutions of almost all
PD5; and that it is possible for the curve to be reached
for some of the moments t € [0.717].

To answer question (2), we start first by noticing that
for almost all t € [0.717], arbitrarily fixed, we can identify
a closed and convex subset K; € R given by

Ke = {u(t) € RT|A(t) < u(t) < pu(t), A(E).u(t) given,

Evidently, to each such fixed ¢, we have a PD5; given
by
du(t, )

— = M (u(t,7), =F(u(t,7))), u(t,0) = up € K.



We recall the following definition (Zhang and Nagurney
(1995)).

Definition

A map F is called strongly pseudo-monotone with
degree o on K if, there exists n = 0 such that, for
every pair of distinct points ».y, we have

F(I)U —x) =0 — :j:F'::yj.y —x) = I:"HEJ" — 15~||":It

Evidently, if F is strongly pseudo-monotone with degree
a, then it is strictly pseudomonotone. Hence, the EVI

gives a uniqgue curve of equilibria.



We answer question (2) by the following:

Theorem 6 (Cojocaru, Daniele, and Nagurney (2004b))

Consider the above EVI with F Lipschitz continuous
and strongly pseudo-monotone with degree a << 2 on I\,
for almost all fixed t € [0.1], there exists l; = Q, finite,
such that the unique equilibrium u* .= u*(t) of the PDS;
is reached by the (unique) solution u(t.v) of the PDS5;,
starting at the initial point ug € K;. The timel; depends
upon n,« and |jug — u*||.

We have proved that for each u§ € K, there exists I <
~, depending on n,a, ||ul —u*||, given by

u* | |2—r:z

o b =
(2 —a)n
such that whenever o < 2,

D(t) > 0 when 7 <l and D(7) = 0 when 7 = [,

In other words, u* is a globally finite-time attractor for
the unique solution of PDS: starting at u,g and it will be
reached in [; units of time.



Answer to question (3). In real life, there is only one
concept of time in terms of a timeline. Therefore, in
applications it is important to have a clear, easy way to
estimate if, under what conditions, and, when, the curve
of equilibria is reached. Theorem 6 provides exactly
the desired answer: for almost any ¢ £ [0,7], we can
estimate that the equilibrium on the curve corresponding
to t will be reached in the time [; if and only if

2—nx

ub — u*
b> g, b=l
(2 —a)n
Otherwise, although the equilibrium can be computed,
the solution to FDS; does not have enocugh time to

reach the curve.



But [; depends intrinsically upon three parameters,

n, o, |luf —u'||.

two of which are given by F. Hence, we have, in fact,
only one that we can manipulate, and that is ||ufD —
u*||, i.e., the distance between the initial point of the
trajectory and the equilibrium «* at t.

Naturally, if we want to find/compute those solutions
that will be arriving on the curve of equilibria at a fixed
moment £, all we have to do is to make sure that we
choose a trajectory of the PDS; starting at a distance

||uf, —w*|| from the curve, so that the above is satisfied.



Let ¢ be arbitrarily fixed in [0,71] and consider the PDS
aiven by:

Su(t, ) |
5 = Pr(uern(F(u(t. 7)),  u(t,0) = () € K,

where 7 is the evolution time of the PDS and ¢t is the
evolution time of the EVI. Note that;

e at each fixed t € [0,17, the solution(s) of the EVI
represent ane or more equilibria of the PDS;

e as t varies over [0,7'], these equilibria describe one (or
more) curve(s);

e also, for each fixed ¢; 7 € [0.[] is the time it takes the
system to reach one of the equilibria on the curve(s).



HOW THESE CONCEPTS CAN BE APPLIED
TO TRAFFIC NETWORKS

To use these concepts/results we apply the following
steps:

e We discretize the evolution time interval of the EVI;

e We obtain a finite collections of PDS's, defined on
distinct closed, convex set Ly,

e We compute the equilibria of each PDS, i.e., we find
the equilibria at the discrete chosen moments t € [0.17];

e We interpolate the sequence of equilibria and obtain
an approximation of the curve(s) of equilibria.



A DYNAMIC NETWORK EXAMPLE

Consider a network consisting of a single origin/destination
pair of nodes and two paths connecting these nodes of a
single link each. The feasible set is given before where
u(t) denotes the vector of path flows at t. The cost
functions on the paths are defined as: 2ui(t) — 1.5 for
the first path and u-(f) — 1 for the second path. We
consider a vector field F qgiven by

F: K — L?([0,1]. R?),

(Fi(u(t)), Fo(u(t))) = (2ui(t) — 1.5, u=2(t) — 1).
The theory of EVI states that the system has a unique

equilibrium, since F is strictly monotone, for any arbi-
trarily fixed point t £ [0,2]. One can easily see that

(F(uy,uz)—F(v1,v2), (ug—v1, ua—v2)) = 2(ug —v1)?+ (ua—v3)? > 0,

for any
u# v e L%([0,2].R?).



With the help of PDS theory, we can compute an ap-
proximate curve of equilibria, by choosing

ke |
to € z|£; c{0,.... B}}. T herefore, we obtain a se-
quence of PDS defined by the vector field
—F(ui(to), uz(to)) = (—2ui(to) + 1.5, —ua(to) + 1)

on nonempty, closed, convex, 1-dimensional subsets

K, = {{[D.t.:.] * |0, gfg] } N{r+y= t.;.}} :

For each we can compute the unique equilibrium of the
system at {5, i.e., the point

(u1(to).u2(to)) € R*

such that — F(ui(fo),u2(to)) € Ng, (u1(to).u2(to)).




Using a simple MAPLE computation, we obtain that the
equilibria are the points:

(o0 (39 (42 (24 (42 (53 G
) (D)

Interpolating these points we obtain the approximate
curve of network equilibria as displayed in the Figure.
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ANOTHER DYNAMIC TRAFFIC NETWORK EX-
AMPLE

We again consider a transportation network consisting
of a single origin/destination pair of nodes and two
paths connecting these nodes of a single link each.

MNetwork Structure of the Numerical
Examples

The feasible set K is as before, where we take p .= 2.

We also have that g =2, .= 1, 1T :=2, p(t) :=1t, and
§i:=1forie {1,2}:

K= |J {u L2([0,2].2)|

t=[0,2]

(0,0) < (ui1(t),u2(t)) < (t.gt) a.e. in [0,2];

2
Z‘ wi(t) =t a.e. in [D.E]} .

i=1



In this application u(tf) denotes the vector of path flows
at t. The cost functions on the paths are defined as:

uy(t) + 1 for the first path and wux(f) + 2 for the second
path. We consider a vector field F defined by

F: L2([0,2].2) — L%([0,2].2):

(Fi(u(t). Fo(u(t))) = (u1(t) + 1, u=2(t) + 2).

The theory of EVI (as described above) states that
the system has a unigque equilibrium, since F is strictly
monotone, for any arbitrarily fixed point t € [0.2]. In-
deed, one can easily see that (F(ui.u2) — F(vi.v2), (u1 —
vi,us — v2)) = (ug — v1)? 4+ (us — 10)?2 = 0, for any u #
v € L2([0,2].2). With the help of PDS theory, we can
compute an approximate curve of equilibria, by select-
ing tg £ {%H: € {0,..., 8} } Hence, we obtain a sequence
of PDS defined by the vector field —F (ui(to),u2(to)) =
(—u1(to) + 1. —u2(tc) + 2) on nonempty, closed, convex,
1-dimensional subsets:

0 — {{[D.t.:.] X [D.%fg] } N{x+y= f.;.}} .



For each, we can compute the unique equilibrium of the
system at the point tg, that is, the point:

(ul(t.:.}, ug(f@)) = RQ such that
—F(ui(to), ua(to)) € Ni, (u1(to), ua(to)).

Proceeding in this manner, we obtain the equilibria con-
sisting of the points:

{(0.0). (%o) . (%o) | GD) (1,0, @é) |
(33)(53)-G3)}

The interpolation of these points vields the curve of
equilibria.

We note that due to the simplicity of the network topaol-
ogy and the linearity (and separability of the cost func-
tions in this example) we can also obtain explicit formu-
lae for the path flows over time as given below:

111(?7) = £,
if 0<t<1
ug(f) =0
and
ui(t) = E—.El.
if 1 <t<2.

ug{f} = %

=



The above results demonstrate how the two theories
of projected dynamical systems and evolutionary varia-
tional inequalities that have been developed in parallel
can be connected to enhance the modeling, analysis,
and computation of sclutions to a plethora of time—
dependent equilibrium problems that arise in such disci-

plines as engineering, operations research/management
science, economics, and finance.



FINAL COMMENTS

e [he PDS theory gives the natural environment in
which an EVI can be applied;

e [ he PDS-EVI mesh opens up more questions to study,
some of them theoretical and some regarding the future
PDS-EVI applications;

e An EVI can be defined on Banach spaces, a PDS only
on Hilbert spaces so far. This motivates the theoretical
extensions of the PDS to B-spaces;

e as Tar as applications, we believe that the PDS-EVI
has perhaps the strongest potential to model applied

problems involving double-layered timeframes.
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