Equilibrium Modeling and Vulnerability Analysis of Complex Network Systems:

Which Nodes and Links Really Matter?

Anna Nagurney
John F. Smith Memorial Professor
Department of Finance and Operations Management
University of Massachusetts
Amherst, MA 01003

September 23, 2008
Funding for this research has been provided by:

National Science Foundation

AT&T Foundation

John F. Smith Memorial Fund - University of Massachusetts at Amherst

THE ROCKEFELLER FOUNDATION

RADCLIFFE INSTITUTE FOR ADVANCED STUDY
HARVARD UNIVERSITY
Outline of Presentation

• Background
• The Transportation Network Equilibrium Problem and Methodological Tools
• The Braess Paradox
• Transportation and Complex Networks
• A New Network Performance/Efficiency Measure with Applications to Network Systems
• What About Dynamic Networks?
• Evolutionary Variational Inequalities, the Internet, an the Time-Dependent (Demand-Varying) Braess Paradox
• Extension of the Efficiency Measure to Dynamic Networks
• Where Are We Now? An Empirical Case Study to Real-World Electric Power Supply Chains
Background
Interdisciplinary Impact of Networks

Economics
- Interregional Trade
- General Equilibrium
- Industrial Organization
- Portfolio Optimization
- Flow of Funds
- Accounting

Mathematics
- Networks

Engineering
- Energy
- Manufacturing
- Telecommunications
- Transportation

Sociology
- Social Networks
- Organizational Theory

Computer Science
- Routing Algorithms

Biology
- DNA Sequencing
- Targeted Cancer Therapy
We Are in a New Era of Decision-Making Characterized by:

• *complex interactions* among decision-makers in organizations;
• alternative and at times *conflicting criteria* used in decision-making;
• *constraints on resources*: natural, human, financial, time, etc.;
• *global reach* of many decisions;
• *high impact* of many decisions;
• increasing *risk and uncertainty*, and
• the *importance of dynamics* and realizing a fast and sound response to evolving events.
Network problems are their own class of problems and they come in various forms and formulations, i.e., as optimization (linear or nonlinear) problems or as equilibrium problems and even dynamic network problems.

Complex network problems, with a focus on transportation, will be the focus of this talk.
Transportation, Communication, and Energy Networks

Bus Network
Rail Network

Iridium Satellite Constellation Network
Satellite and Undersea Cable Networks
British Electricity Grid
<table>
<thead>
<tr>
<th>Network System</th>
<th>Nodes</th>
<th>Links</th>
<th>Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
<td>Intersections, Homes, Workplaces, Airports, Railyards</td>
<td>Roads, Airline Routes, Railroad Track</td>
<td>Automobiles, Trains, and Planes,</td>
</tr>
<tr>
<td>Manufacturing and logistics</td>
<td>Workstations, Distribution Points</td>
<td>Processing, Shipment</td>
<td>Components, Finished Goods</td>
</tr>
<tr>
<td>Communication</td>
<td>Computers, Satellites, Telephone Exchanges</td>
<td>Fiber Optic Cables, Radio Links</td>
<td>Voice, Data, Video</td>
</tr>
<tr>
<td>Energy</td>
<td>Pumping Stations, Plants</td>
<td>Pipelines, Transmission Lines</td>
<td>Water, Gas, Oil, Electricity</td>
</tr>
</tbody>
</table>
US Railroad Freight Flows

Railroad Freight Density
(million gross tons)

- Under 10 mgt
- 10 to 20 mgt
- 20 to 40 mgt
- 40 to 60 mgt
- 60 to 100 mgt
- Over 100 mgt

Natural Gas Pipeline Network in the US
World Oil Trading Network
The study of the efficient operation on transportation networks dates to *ancient Rome* with a classical example being the publicly provided Roman road network and the *time of day chariot policy*, whereby chariots were banned from the ancient city of Rome at particular times of day.
Characteristics of Networks Today

• *large-scale nature* and complexity of network topology;

• *congestion*;

• the *interactions among networks* themselves such as in transportation versus telecommunications;

• *policies* surrounding networks today may have a *major impact* not only economically but also environmentally, *socially, politically, and security-wise*.
• alternative behaviors of the users of the network

– system-optimized versus

– user-optimized (network equilibrium),

which may lead to

paradoxical phenomena.
There are two fundamental principles of travel behavior, due to Wardrop (1952), which we refer to as user-optimization (or network equilibrium) or system-optimization. These terms were coined by Dafermos and Sparrow (1969); see also Beckmann, McGuire, and Winsten (1956).

In a user-optimized (network equilibrium) problem, each user of a network system seeks to determine his/her cost-minimizing route of travel between an origin/destination pair, until an equilibrium is reached, in which no user can decrease his/her cost of travel by unilateral action.

In a system-optimized network problem, users are allocated among the routes so as to minimize the total cost in the system. Both classes of problems, under certain imposed assumptions, possess optimization formulations.
Traffic Congestion
For a typical user link travel time function, where the free flow travel time refers to the travel time to traverse a link when there is zero flow on the link (or zero vehicles).
BPR Link Cost Function

A common link performance function is the Bureau of Public Roads (BPR) cost function developed in 1964. This equation is given by

\[c_a = c^0_a \left[1 + \alpha \left(\frac{f_a}{t'_a} \right)^\beta \right], \]

where, \(c_a \) and \(f_a \) are the travel time and link flow, respectively, on link \(a \), \(c^0_a \) is the free-flow travel time, and \(t'_a \) is the "practical capacity" of link \(a \). The quantities \(\alpha \) and \(\beta \) are model parameters, for which the values \(\alpha = 0.15 \) minutes and \(\beta = 4 \) are typical values. For example, these values imply that the practical capacity of a link is the flow at which the travel time is 15% greater than the free-flow travel time.
The Transportation Network Equilibrium (TNE) Problem and Methodological Tools
Transportation applications have motivated the development of methodological tools in Operations Research (and in Economics).

Dafermos (1980) showed that the transportation network equilibrium (also referred to as user-optimization) conditions as formulated by Smith (1979) were a finite-dimensional variational inequality. In 1981, Dafermos proposed a multicriteria transportation network equilibrium model in which the costs were flow-dependent.

In 1993, Dupuis and Nagurney proved that the set of solutions to a variational inequality problem coincided with the set of solutions to a projected dynamical system (PDS) in \mathbb{R}^n.

In 1996, Nagurney and Zhang published *Projected Dynamical Systems and Variational Inequalities*.

Daniele, Maugeri, and Oettli (1998, 1999) introduced evolutionary variational inequalities for time-dependent (dynamic) traffic network equilibrium problems.

In 2002, Nagurney and Dong published *Supernetworks: Decision-Making for the Information Age*.
The Transportation Social - Knowledge Network

On the Beach in Mallacoota, Australia

Professors Beckmann and Dafermos at Anna Nagurney’s Post-Ph.D. Defense Party in Barus Holley

INFORMS Honoring the 50th Anniversary of the Publication of Studies in the Economics of Transportation

Professor Beckmann with Professor Michael Florian of Montreal

Professors Beckman and McGuire
Consider a general network $G = [N, L]$, where N denotes the set of nodes, and L the set of directed links. Let a denote a link of the network connecting a pair of nodes, and let p denote a path consisting of a sequence of links connecting an O/D pair. P_w denotes the set of paths, assumed to be acyclic, connecting the O/D pair of nodes w and P the set of all paths.

Let x_p represent the flow on path p and f_a the flow on link a. The following conservation of flow equation must hold:

$$f_a = \sum_{p \in P} x_p \delta_{ap},$$

where $\delta_{ap} = 1$, if link a is contained in path p, and 0, otherwise. This expression states that the load on a link a is equal to the sum of all the path flows on paths p that contain (traverse) link a.
Moreover, if we let d_w denote the demand associated with O/D pair w, then we must have that

$$d_w = \sum_{p \in P_w} x_p,$$

where $x_p \geq 0$, $\forall p$, that is, the sum of all the path flows between an origin/destination pair w must be equal to the given demand d_w.

Let c_a denote the user cost associated with traversing link a, which is assumed to be continuous, and C_p the user cost associated with traversing the path p. Then

$$C_p = \sum_{a \in L} c_a \delta_{ap}.$$

In other words, the cost of a path is equal to the sum of the costs on the links comprising the path.
The network equilibrium conditions are then given by: For each path $p \in P_w$ and every O/D pair w:

$$C_p \begin{cases} = \lambda_w, & \text{if } x_p^* > 0 \\ \geq \lambda_w, & \text{if } x_p^* = 0 \end{cases}$$

where λ_w is an indicator, whose value is not known a priori. These equilibrium conditions state that the user costs on all used paths connecting a given O/D pair will be minimal and equalized.
As shown by Beckmann, McGuire, and Winsten (1956) and Dafermos and Sparrow (1969), if the user link cost functions satisfy the symmetry property that \(\frac{\partial c_b}{\partial c_a} = \frac{\partial c_a}{\partial c_b} \) for all links \(a, b \) in the network then the solution to the above network equilibrium problem can be reformulated as the solution to an associated optimization problem. For example, if we have that \(c_a = c_a(f_a), \forall a \in L \), then the solution can be obtained by solving:

\[
\text{Minimize} \quad \sum_{a \in L} \int_0^{f_a} c_a(y) \, dy
\]

subject to:

\[
d_w = \sum_{p \in P_w} x_p, \quad \forall w \in W,
\]

\[
f_a = \sum_{p \in P} x_p, \quad \forall a \in L,
\]

\[
x_p \geq 0, \quad \forall p \in P.
\]
The Braess (1968) Paradox

Assume a network with a single O/D pair (1,4). There are 2 paths available to travelers: $p_1 = (a,c)$ and $p_2 = (b,d)$.

For a travel demand of 6, the equilibrium path flows are $x_{p_1}^* = x_{p_2}^* = 3$ and

The equilibrium path travel cost is

$C_{p_1} = C_{p_2} = 83$.

$c_a(f_a) = 10 f_a$ $c_b(f_b) = f_b + 50$

$c_c(f_c) = f_c + 50$ $c_d(f_d) = 10 f_d$
Adding a Link Increases Travel Cost for All!

Adding a new link creates a new path $p_3=(a,e,d)$.

The original flow distribution pattern is no longer an equilibrium pattern, since at this level of flow the cost on path p_3, $C_{p_3}=70$.

The new equilibrium flow pattern network is

$$x_{p_1}^* = x_{p_2}^* = x_{p_3}^* = 2.$$

The equilibrium path travel costs:

$$C_{p_1} = C_{p_2} = C_{p_3} = 92.$$
The 1968 Braess article has been translated from German to English and appears as

On a Paradoxe of Traffic Planning

by Braess, Nagurney, Wakolbinger

in the November 2005 issue of Transportation
The System-Optimization (S-O) Problem

The above discussion focused on the user-optimized (U-O) problem. We now turn to the system-optimized (S-O) problem in which a central controller, say, seeks to minimize the total cost in the network system, where the total cost is expressed as

$$\sum_{a \in L} \hat{c}_a(f_a)$$

where it is assumed that the total cost function on a link a is defined as:

$$\hat{c}_a(f_a) \equiv c_a(f_a) \times f_a,$$

subject to the conservation of flow constraints, and the nonnegativity assumption on the path flows. Here separable link costs have been assumed, for simplicity, and other total cost expressions may be used, as mandated by the particular application.
Under the assumption of strictly increasing user link cost functions, the optimality conditions are: For each path $p \in P_w$, and every O/D pair w:

$$\hat{C}_p' \begin{cases} = \mu_w, & \text{if } x_p > 0 \\ \geq \mu_w, & \text{if } x_p = 0, \end{cases}$$

where \hat{C}_p' denotes the marginal total cost on path p, given by:

$$\hat{C}_p' = \sum_{a \in L} \frac{\partial \hat{C}_a(f_a)}{\partial f_a} \delta_{ap}.$$

The above conditions correspond to Wardrop’s second principle of travel behavior.
What is the S-O solution for the two Braess networks (before and after the addition of a new link e)?

Before the addition of the link e, we may write:

\[\hat{c}'_a = 20f_a, \quad \hat{c}'_b = 2f_b + 50, \]
\[\hat{c}'_c = 2f_c + 50, \quad \hat{c}'_d = 20f_d. \]

It is easy to see that, in this case, the S-O solution is identical to the U-O solution with \(x_{p_1} = x_{p_2} = 3 \) and \(\hat{C}'_{p_1} = \hat{C}'_{p_2} = 116. \) Furthermore, after the addition of link e, we have that \(\hat{c}'_e = 2f_e + 10. \) The new path \(p_3 \) is not used in the S-O solution, since with zero flow on path \(p_3 \), we have that \(\hat{C}'_{p_3} = 170 \) and \(\hat{C}'_{p_1} = \hat{C}'_{p_2} \) remains at 116.
If the symmetry assumption does not hold for the user link costs functions, then the transportation network equilibrium conditions can no longer be reformulated as an associated optimization problem and the equilibrium conditions are formulated and solved as a \textit{variational inequality problem}!
VI Formulation of TNE
Dafermos (1980), Smith (1979)

A traffic path flow pattern satisfies the above equilibrium conditions if and only if it satisfies the variational inequality problem: determine $x^* \in K$, such that

$$
\sum_p C_p(x^*) \times (x_p - x^*_p) \geq 0, \quad \forall x \in K.
$$

Finite-dimensional variational inequality theory has been applied to-date to the wide range of equilibrium problems noted above.

In particular, the finite-dimensional variational inequality problem is to determine $x^* \in K \subset \mathbb{R}^n$ such that

$$
\langle F(x^*), x - x^* \rangle \geq 0, \quad \forall x \in K,
$$

where $\langle \cdot, \cdot \rangle$ denoted the inner product in \mathbb{R}^n and K is closed and convex.
A Geometric Interpretation of a Variational Inequality and a Projected Dynamical System

Dupuis and Nagurney (1993)
Nagurney and Zhang (1996)
The variational inequality problem, contains, as special cases, such classical problems as:

- systems of equations
- optimization problems
- complementarity problems

and is also closely related to fixed point problems.

Hence, it is a unifying mathematical formulation for a variety of mathematical programming problems.
Transportation and Complex Network Systems
Extensions of the fixed demand models in which the cost on a link depends on the flow on a link have been made to capture multiple modes of transportation as well as elastic demands.

• For example, one may have that the cost on a link as experienced by a mode of transportation (or a class of user) depends, in general, on the flow of all the modes (or classes) on all the links on the network.

• To handle elastic demand associated with travel between origin/destination pairs, we introduce a travel disutility associated with traveling between each O/D pair which can be a function of the travel demands associated with all the O/D pairs (and all modes in a multimodal case).
• The U-O and the S-O conditions are then generalized to include the multiple modes/classes of transportation as well as the travel disutilities, which are now functions and are associated with the different modes/classes.

• For a variety of such models, along with references see the books by Nagurney (1999, 2000).
The TNE Paradigm is the Unifying Paradigm for Complex Network Problems:

• Transportation Networks
• The Internet
• Financial Networks
• Electric Power Supply Chains.
The Equivalence of Supply Chains and Transportation Networks

Two-way information exchanges between specific decision-makers

The fifth chapter of Beckmann, McGuire, and Winsten’s book, *Studies in the Economics of Transportation* (1956) describes some *unsolved problems* including a single commodity network equilibrium problem that the authors imply could be generalized to capture electric power networks.

Specifically, they asked whether electric power generation and distribution networks can be reformulated as transportation network equilibrium problems.
Electric Power Supply Chains
The Electric Power Supply Chain Network

The Transportation Network Equilibrium Reformulation of Electric Power Supply Chain Networks

Electric Power Supply Chain Network with Fuel Suppliers

In 1952, Copeland wondered whether money flows like water or electricity.
The Transportation Network Equilibrium Reformulation of the Financial Network Equilibrium Model with Intermediation

We have shown that *money* as well as *electricity* flow like *transportation* and have answered questions posed fifty years ago by Copeland and by Beckmann, McGuire, and Winsten!
Recent disasters have demonstrated the importance and the vulnerability of network systems.

Examples:

- 9/11 Terrorist Attacks, September 11, 2001;
- The biggest blackout in North America, August 14, 2003;
- Two significant power outages in September 2003 -- one in the UK and the other in Italy and Switzerland;
- Hurricane Katrina, August 23, 2005;
- The Minneapolis I-35 Bridge Collapse, August 1, 2007;
Disasters in Transportation Networks
Communication Network Disasters

www.tx.mb21.co.uk

www.w5jgv.com

www.wirelessestimator.com
Electric Power Network Disasters
Recent Literature on Network Vulnerability

- Holme, Kim, Yoon and Han (2002)
- Taylor and D’este (2004)
- Chassin and Posse (2005)
- Barrat, Barthélemy and Vespignani (2005)
- Sheffi (2005)
- Dall’Asta, Barrat, Barthélemy and Vespignani (2006)
- Jenelius, Petersen and Mattson (2006)
- Taylor and D’Este (2007)
Our Research on Network Efficiency, Vulnerability, and Robustness

Robustness of Transportation Networks Subject to Degradable Links, Nagurney and Qiang, *Europhysics Letters*, 80, December (2007).

A New Performance/Efficiency Measure with Applications to Complex Networks
The network performance/efficiency measure $\mathcal{E}(G,d)$, for a given network topology G and fixed demand vector d, is defined as

\[
\mathcal{E}(G,d) = \frac{\sum_{w \in W} d_w \lambda_w}{n_w},
\]

where n_w is the number of O/D pairs in the network and λ_w is the equilibrium disutility for O/D pair w.

Importance of a Network Component

Definition: Importance of a Network Component

The importance, $I(g)$, of a network component $g \in G$ is measured by the relative network efficiency drop after g is removed from the network:

$$I(g) = \frac{\Delta \mathcal{E}}{\mathcal{E}} = \frac{\mathcal{E}(G, d) - \mathcal{E}(G - g, d)}{\mathcal{E}(G, d)},$$

where $G - g$ is the resulting network after component g is removed.
The Latora and Marchiori (L-M) Network Efficiency Measure

Definition: The L-M Measure

The network performance/efficiency measure, $E(G)$ for a given network topology, G, is defined as:

$$E(G) = \frac{1}{n(n - 1)} \sum_{i \neq j \in G} \frac{1}{d_{ij}}$$

where n is the number of nodes in the network and d_{ij} is the shortest path length between node i and node j.
The L-M Measure vs. the N-Q Measure

Theorem:

If positive demands exist for all pairs of nodes in the network, G, and each of demands is equal to 1, and if d_{ij} is set equal to λ_w, where $w=(i,j)$, for all $w \in W$, then the N-Q and L-M network efficiency measures are one and the same.
The Approach to Study the Importance of Network Components

The elimination of a link is treated in the N-Q network efficiency measure by removing that link while the removal of a node is managed by removing the links entering and exiting that node.

In the case that the removal results in no path connecting an O/D pair, we simply assign the demand for that O/D pair to an abstract path with a cost of infinity. Hence, our measure is well-defined even in the case of disconnected networks.

The measure generalizes the Latora and Marchiori network measure for complex networks.
Example 1

Assume a network with two O/D pairs: \(w_1 = (1,2) \) and \(w_2 = (1,3) \) with demands: \(d_{w_1} = 100 \) and \(d_{w_2} = 20 \).

The paths are:
for \(w_1 \), \(p_1 = a \); for \(w_2 \), \(p_2 = b \).

The equilibrium path flows are:
\(x_{p_1}^* = 100 \), \(x_{p_2}^* = 20 \).

The equilibrium path travel costs are:
\(c_{a}(f_a) = 0.01f_a + 19 \)
\(c_{b}(f_b) = 0.05f_b + 19 \)

The equilibrium path travel costs are:
\(C_{p_1} = C_{p_2} = 20 \).
Importance and Ranking of Links and Nodes

<table>
<thead>
<tr>
<th>Link</th>
<th>Importance Value from Our Measure</th>
<th>Importance Ranking from Our Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.8333</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0.1667</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>Importance Value from Our Measure</th>
<th>Importance Ranking from Our Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0.8333</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0.1667</td>
<td>3</td>
</tr>
</tbody>
</table>
Example 2

The network is given by:

\[w_1 = (1, 20) \]

\[w_2 = (1, 19) \]

\[d_{w_1} = 100 \]

\[d_{w_2} = 100 \]

Example 2: Link Cost Functions

<table>
<thead>
<tr>
<th>Link a</th>
<th>Link Cost Function $c_a(f_a)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$0.00005f_1^4 + 5f_1 + 500$</td>
</tr>
<tr>
<td>2</td>
<td>$0.00003f_2^4 + 4f_2 + 200$</td>
</tr>
<tr>
<td>3</td>
<td>$0.00005f_3^4 + 3f_3 + 350$</td>
</tr>
<tr>
<td>4</td>
<td>$0.00003f_4^4 + 6f_4 + 400$</td>
</tr>
<tr>
<td>5</td>
<td>$0.00006f_5^4 + 6f_5 + 600$</td>
</tr>
<tr>
<td>6</td>
<td>$7f_6 + 500$</td>
</tr>
<tr>
<td>7</td>
<td>$0.00008f_7^4 + 8f_7 + 400$</td>
</tr>
<tr>
<td>8</td>
<td>$0.00004f_8^4 + 5f_8 + 650$</td>
</tr>
<tr>
<td>9</td>
<td>$0.00001f_9^4 + 6f_9 + 700$</td>
</tr>
<tr>
<td>10</td>
<td>$4f_{10} + 800$</td>
</tr>
<tr>
<td>11</td>
<td>$0.00007f_{11}^4 + 7f_{11} + 650$</td>
</tr>
<tr>
<td>12</td>
<td>$8f_{12} + 700$</td>
</tr>
<tr>
<td>13</td>
<td>$0.00001f_{13}^4 + 7f_{13} + 600$</td>
</tr>
<tr>
<td>14</td>
<td>$8f_{14} + 500$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Link a</th>
<th>Link Cost Function $c_a(f_a)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>$0.00003f_{15}^4 + 9f_{15} + 200$</td>
</tr>
<tr>
<td>16</td>
<td>$8f_{16} + 300$</td>
</tr>
<tr>
<td>17</td>
<td>$0.00003f_{17}^4 + 7f_{17} + 450$</td>
</tr>
<tr>
<td>18</td>
<td>$5f_{18} + 300$</td>
</tr>
<tr>
<td>19</td>
<td>$8f_{19} + 600$</td>
</tr>
<tr>
<td>20</td>
<td>$0.00003f_{20}^4 + 6f_{20} + 300$</td>
</tr>
<tr>
<td>21</td>
<td>$0.00004f_{21}^4 + 4f_{21} + 400$</td>
</tr>
<tr>
<td>22</td>
<td>$0.00002f_{22}^4 + 6f_{22} + 500$</td>
</tr>
<tr>
<td>23</td>
<td>$0.00003f_{23}^4 + 9f_{23} + 350$</td>
</tr>
<tr>
<td>24</td>
<td>$0.00002f_{24}^4 + 8f_{24} + 400$</td>
</tr>
<tr>
<td>25</td>
<td>$0.00003f_{25}^4 + 9f_{25} + 450$</td>
</tr>
<tr>
<td>26</td>
<td>$0.00006f_{26}^4 + 7f_{26} + 300$</td>
</tr>
<tr>
<td>27</td>
<td>$0.00003f_{27}^4 + 8f_{27} + 500$</td>
</tr>
<tr>
<td>28</td>
<td>$0.00003f_{28}^4 + 7f_{28} + 650$</td>
</tr>
</tbody>
</table>
Algorithms for Solution

The projection method (cf. Dafermos (1980) and Nagurney (1999)) embedded with the equilibration algorithm of Dafermos and Sparrow (1969) was used for the computations.

In addition, the column generation method of Leventhal, Nemhauser, and Trotter (1973) was implemented to generate paths, as needed, in the case of the large-scale Sioux Falls network example.
Example 2: Importance and Ranking of Links

<table>
<thead>
<tr>
<th>Link a</th>
<th>Importance Value</th>
<th>Importance Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9086</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>0.8984</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>0.8791</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>0.8672</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>0.8430</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>0.8226</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>0.7750</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>0.5483</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>0.0362</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>0.6641</td>
<td>14</td>
</tr>
<tr>
<td>11</td>
<td>0.0000</td>
<td>22</td>
</tr>
<tr>
<td>12</td>
<td>0.0006</td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>0.0000</td>
<td>22</td>
</tr>
<tr>
<td>14</td>
<td>0.0000</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Link a</th>
<th>Importance Value</th>
<th>Importance Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0.0000</td>
<td>22</td>
</tr>
<tr>
<td>16</td>
<td>0.0001</td>
<td>21</td>
</tr>
<tr>
<td>17</td>
<td>0.0000</td>
<td>22</td>
</tr>
<tr>
<td>18</td>
<td>0.0175</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>0.0362</td>
<td>17</td>
</tr>
<tr>
<td>20</td>
<td>0.6641</td>
<td>14</td>
</tr>
<tr>
<td>21</td>
<td>0.7537</td>
<td>13</td>
</tr>
<tr>
<td>22</td>
<td>0.8333</td>
<td>10</td>
</tr>
<tr>
<td>23</td>
<td>0.8598</td>
<td>8</td>
</tr>
<tr>
<td>24</td>
<td>0.8939</td>
<td>5</td>
</tr>
<tr>
<td>25</td>
<td>0.4162</td>
<td>16</td>
</tr>
<tr>
<td>26</td>
<td>0.9203</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>0.9213</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>0.0155</td>
<td>19</td>
</tr>
</tbody>
</table>
Example 2: Link Importance Rankings
Example 3 - Sioux Falls Network

The network data are from LeBlanc, Morlok, and Pierskalla (1975).

The network has 528 O/D pairs, 24 nodes, and 76 links.

The user link cost functions are of Bureau of Public Roads (BPR) form.
Example 3 - Sioux Falls Network
Link Importance Rankings
Example 4: An Electric Power Supply Chain Network

Nagurney and Liu (2006) and Nagurney, Liu, Cojocaru and Daniele (2007) have shown that an electric power supply chain network can be transformed into an equivalent transportation network problem.
Supernetwork Transformation

Figure 3: Electric Power Supply Chain Network and the Corresponding Supernetwork

Five Demand Ranges

• Demand Range I: $d_w \in [0, 1]$
• Demand Range II: $d_w \in (1, 4/3]$
• Demand Range III: $d_w \in (4/3, 7/3]$
• Demand Range IV: $d_w \in (7/3, 11/3]$
• Demand Range V: $d_w \in (11/3, \infty)$
Importance Ranking of Links in the Electric Power Supply Chain Network
Importance Ranking of Nodes in the Electric Power Supply Chain Network

- Power Generator 1
- Power Supplier 1
- Power Supplier 2
- Power Supplier 3
- Demand Market 1

Ranking:
- Importance Ranking in Demand Range I
- Importance Ranking in Demand Range II
- Importance Ranking in Demand Range III
- Importance Ranking in Demand Range IV
- Importance Ranking in Demand Range V
The Advantages of the N-Q Network Efficiency Measure

• The measure captures demands, flows, costs, and behavior of users, in addition to network topology;
• The resulting importance definition of network components is applicable and well-defined even in the case of disconnected networks;
• It can be used to identify the importance (and ranking) of either nodes, or links, or both; and
• It can be applied to assess the efficiency/performance of a wide range of network systems.
• It is applicable also to elastic demand networks (Qiang and Nagurney, Optimization Letters (2008)).
• It has been extended to dynamic networks (Nagurney and Qiang, Netnomics, in press).
What About Dynamic Networks?
We are using evolutionary variational inequalities to model dynamic networks with:

- **dynamic (time-dependent)** supplies and demands
- **dynamic (time-dependent)** capacities
- **structural changes** in the networks themselves.

Such issues are important for robustness, resiliency, and reliability of networks (including supply chains and the Internet).
Evolutionary variational inequalities, which are infinite dimensional, were originally introduced by Lions and Stampacchia (1967) and by Brezis (1967) in order to study problems arising principally from mechanics. They provided a theory for the existence and uniqueness of the solution of such problems.

Steinbach (1998) studied an obstacle problem with a memory term as a variational inequality problem and established existence and uniqueness results under suitable assumptions on the time-dependent conductivity.

Daniele, Maugeri, and Oettli (1998, 1999), motivated by dynamic traffic network problems, introduced evolutionary (time-dependent) variational inequalities to this application domain and to several others. See also Ran and Boyce (1996).
2005-2006 Radcliffe Institute for Advanced Study Fellowship Year at Harvard Collaboration with Professor David Parkes of Harvard University and Professor Patrizia Daniele of the University of Catania
A network like the Internet is volatile. Its traffic patterns can change quickly and dramatically... The assumption of a static model is therefore particularly suspect in such networks. (page 10 of Roughgarden’s (2005) book, *Selfish Routing and the Price of Anarchy*).

A Dynamic Model of the Internet

We now define the feasible set \mathcal{K}. We consider the Hilbert space $\mathcal{L} = L^2([0, T], R^{Kn_P})$ (where $[0, T]$ denotes the time interval under consideration) given by

$$\mathcal{K} = \left\{ x \in L^2([0, T], R^{Kn_P}) : 0 \leq x(t) \leq \mu(t) \text{ a.e. in } [0, T]; \right. $$

$$\sum_{p \in P_w} x^k_p(t) = d^k_w(t), \forall w, \forall k \text{ a.e. in } [0, T] \right\}. $$

We assume that the capacities $\mu^k_r(t)$, for all r and k, are in \mathcal{L}, and that the demands, $d^k_w \geq 0$, for all w and k, are also in \mathcal{L}. Further, we assume that

$$0 \leq d(t) \leq \Phi \mu(t), \text{a.e. on } [0, T],$$

where Φ is the $Kn_W \times Kn_P$-dimensional O/D pair-route incidence matrix, with element (kw, kr) equal to 1 if route r is contained in P_w, and 0, otherwise. The feasible set \mathcal{K} is nonempty. It is easily seen that \mathcal{K} is also convex, closed, and bounded.

The dual space of \mathcal{L} will be denoted by \mathcal{L}^*. On $\mathcal{L} \times \mathcal{L}^*$ we define the canonical bilinear form by

$$\langle \langle G, x \rangle \rangle := \int_0^T \langle G(t), x(t) \rangle dt, \quad G \in \mathcal{L}^*, \quad x \in \mathcal{L}. $$
Furthermore, the cost mapping $C : \mathcal{K} \rightarrow \mathcal{L}^*$, assigns to each flow trajectory $x(\cdot) \in \mathcal{K}$ the cost trajectory $C(x(\cdot)) \in \mathcal{L}^*$.

The conditions below are a generalization of the Wardrop’s (1952) first principle of traffic behavior.

Definition: Dynamic Multiclass Network Equilibrium

A multiclass route flow pattern $x^* \in \mathcal{K}$ is said to be a dynamic network equilibrium (according to the generalization of Wardrop’s first principle) if, for every O/D pair $w \in W$, every route $r \in P_w$, every class $k; k = 1, \ldots, K$, and a.e. on $[0,T]$:

$$C^k_r(x^*(t)) - \lambda^k_w(t) \begin{cases}
\leq 0, & \text{if } x^k_r(t) = \mu^k_r(t), \\
0, & \text{if } 0 < x^k_r(t) < \mu^k_r(t), \\
\geq 0, & \text{if } x^k_r(t) = 0.
\end{cases}$$
The standard form of the EVI that we work with is:

\[
\text{determine } x^* \in \mathcal{K} \text{ such that } \langle \langle F(x^*), x - x^* \rangle \rangle \geq 0, \forall x \in \mathcal{K}.
\]

Theorem (Nagurney, Parkes, Daniele (2007))

\[
x^* \in \mathcal{K} \text{ is an equilibrium flow according to the Definition if and only if it satisfies the evolutionary variational inequality:}
\]

\[
\int_0^T \langle C(x^*(t)), x(t) - x^*(t) \rangle dt \geq 0, \forall x \in \mathcal{K}.
\]

The Time-Dependent (Demand-Varying) Braess Paradox and Evolutionary Variational Inequalities
Recall the Braess Network where we add the link e.
The Solution of an Evolutionary (Time-Dependent) Variational Inequality for the Braess Network with Added Link (Path)
In Demand Regime I, only the new path is used.
In Demand Regime II, the Addition of a New Link (Path) Makes Everyone Worse Off!
In Demand Regime III, only the original paths are used.

Network 1 is the Original Braess Network - Network 2 has the added link.
The new link is NEVER used after a certain demand is reached even if the demand approaches infinity.

Hence, in general, except for a limited range of demand, building the new link is a complete waste!
Extension of the Network Efficiency Measure to Dynamic Networks

An Efficiency Measure for Dynamic Networks Modeled as Evolutionary Variational Inequalities with Applications to the Internet and Vulnerability Analysis, Nagurney and Qiang, Netnombics, in press.
Network Efficiency Measure for Dynamic Networks - Continuous Time

The network efficiency for the network G with time-varying demand d for $t \in [0, T]$, denoted by $\mathcal{E}(G, d, T)$, is defined as follows:

$$
\mathcal{E}(G, d, T) = \frac{\int_0^T \left[\sum_{w \in W} d_w(t) \lambda_w(t) \right]/n_W \, dt}{T}.
$$

The above measure is the average network performance over time of the dynamic network.
Network Efficiency Measure for Dynamic Networks - Discrete Time

Let $d^1_w, d^2_w, \ldots, d^H_w$ denote demands for O/D pair w in H discrete time intervals, given, respectively, by:
$[t_0, t_1], (t_1, t_2], \ldots, (t_{H-1}, t_H]$, where $t_H \equiv T$. We assume that the demand is constant in each such time interval for each O/D pair. Moreover, we denote the corresponding minimal costs for each O/D pair w at the H different time intervals by: $\lambda^1_w, \lambda^2_w, \ldots, \lambda^H_w$. The demand vector d, in this special discrete case, is a vector in $R^{n_w \times H}$. The dynamic network efficiency measure in this case is as follows:

Dynamic Network Efficiency: Discrete Time Version

The network efficiency for the network (G, d) over H discrete time intervals:
$[t_0, t_1], (t_1, t_2], \ldots, (t_{H-1}, t_H]$, where $t_H \equiv T$, and with the respective constant demands:
$d^1_w, d^2_w, \ldots, d^H_w$ for all $w \in W$ is defined as follows:

$$\mathcal{E}(G, d, t_H = T) = \frac{\sum_{i=1}^H [(\sum_{w \in W} \frac{d^i_w}{\lambda^i_w})(t_i - t_{i-1})/n_w]}{t_H}.$$
Importance of a Network Component

The importance of a network component g of network G with demand d over time horizon T is defined as follows:

$$I(g, d, T) = \frac{\mathcal{E}(G, d, T) - \mathcal{E}(G - g, d, T)}{\mathcal{E}(G, d, T)}$$

where $\mathcal{E}(G-g,d,T)$ is the dynamic network efficiency after component g is removed.
Importance of Nodes and Links in the Dynamic Braess Network Using the N-Q Measure when $T=10$

<table>
<thead>
<tr>
<th>Link</th>
<th>Importance Value</th>
<th>Importance Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.2604</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0.1784</td>
<td>2</td>
</tr>
<tr>
<td>c</td>
<td>0.1784</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>0.2604</td>
<td>1</td>
</tr>
<tr>
<td>e</td>
<td>-0.1341</td>
<td>3</td>
</tr>
</tbody>
</table>

Link e is never used after $t = 8.89$ and in the range $t \in [2.58, 8.89]$, it increases the cost, so the fact that link e has a negative importance value makes sense; over time, its removal would, on the average, improve the network efficiency!

<table>
<thead>
<tr>
<th>Node</th>
<th>Importance Value</th>
<th>Importance Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0.2604</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0.2604</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1.0000</td>
<td>1</td>
</tr>
</tbody>
</table>
Where Are We Now?

Empirical Case Study

- New England electric power market and fuel markets
- 82 generators who own and operate 573 power plants
- 5 types of fuels: natural gas, residual fuel oil, distillate fuel oil, jet fuel, and coal
- Hourly demand/price data of July 2006 (24 × 31 = 744 scenarios)
- 6 blocks (L1 = 94 hours, and Lw = 130 hours; w = 2, ..., 6)
The New England Electric Power Supply Chain Network with Fuel Suppliers
Predicted Prices vs. Actual Prices ($/Mwh)
Summary and Conclusions

We have described a new network efficiency/performance measure that can be applied to fixed demand, elastic demand as well as dynamic network problems to identify the importance and rankings of network components.

We also demonstrated through a variety of complex network applications the suitability of the measure to investigate vulnerability as well as robustness of complex networks with a focus on transportation and related applications, including the Internet and electric power supply chains.

An analogue of the measure has been developed and applied to financial networks with intermediation and electronic commerce by Nagurney and Qiang -- in *Computational Methods in Financial Engineering* (2008), Kontogiorghes, Rustem, and Winker, editors, Springer,
Ongoing Research and Questions

• How can time delays be incorporated into the measure?

• How do we capture multiclass user behavior; equivalently, behavior in multimodal networks?

• Can the framework be generalized to capture multicriteria decision-making?

• What happens if either system-optimizing (S-O) or user-optimizing (U-O) behavior needs to be assessed from a network system performance angle? We have some results in this dimension in terms of vulnerability and robustness analysis as well as from an environmental (emissions generated) perspective.

• Can we identify the most important nodes and links in large-scale electric power supply chains as in our empirical case study?
The Virtual Center for Supernetworks at the Isenberg School of Management, under the directorship of Anna Nagurney, the John F. Smith Memorial Professor, is an interdisciplinary center, and includes the Supernetworks Laboratory for Computation and Visualization.

Mission: The mission of the Virtual Center for Supernetworks is to foster the study and application of supernetworks and to serve as a resource to academia, industry, and government on networks ranging from transportation, supply chains, telecommunication, and electric power networks in economic, environmental, financial, knowledge and social networks.

The Applications of Supernetworks Include: multimodal transportation networks, critical infrastructure, energy and the environment, the Internet and electronic commerce, global supply chain management, international financial networks, web-based advertising, complex networks and decision-making, integrated social and economic networks, network games, and network metrics.
Thank you!

For more information, see http://supernet.som.umass.edu