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We are in a New Era of Decision-Making
Characterized by:

complex interactions among decision-makers in
organizations;

alternative and at times conflicting criteria used in
decision-making;

constraints on resources: natural, human, financial,
time, etc.;

global reach of many decisions;

high impact of many decisions;

Increasing risk and uncertainty, and

the importance of dynamics and realizing a fast and
sound response to evolving events.



Network problems are their own class of
problems and they come in various forms and
formulations, i.e., as optimization (linear or
nonlinear) problems or as equilibrium
problems and even dynamic network
problems.

Critical infrastructure network problems, with an

emphasis on Transportation, will be the focus
of this talk.



Transportation,
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Components of Common Physical
Networks

Network System Nodes

Transportation

Manufacturing
and logistics

Communication

Energy

Intersections,
Homes,
Workplaces,
Airports,
Railyards

Workstations,
Distribution
Points
Computers,
Satellites,
Telephone
Exchanges

Pumping
Stations,
Plants

Links

Roads,
Airline Routes,
Railroad Track

Processing,
Shipment

Fiber Optic
Cables
Radio Links

Pipelines,
Transmission
Lines

Flows

Automobiles,
Trains, and
Planes,

Components,
Finished Goods

Voice,
Data,
Video

Water,
Gas, Oil,
Electricity



US Railroad Freight Flows

Railroad Freight Density
(million gross tons)
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Source: LS, Dapariment of Traedaponation, Federsl Railrsad Adminisration, Caload Wayhill Sastialics, 1993







Natural Gas Pipeline Network in the US




World Oil Trading Network
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The study of the efficient operation on transportation
networks dates to ancient Rome with a classical
example being the publicly provided Roman road
network and the time of day chariot policy, whereby
chariots were banned from the ancient city of Rome
at particular times of day.




Characteristics of Networks Today

large-scale nature and complexity of network
topology;

congestion;

the interactions among networks themselves such as
In transportation versus telecommunications;

policies surrounding networks today may have a
major impact not only economically but also socially,
politically, and security-wise.



alternative behaviors of the users of the
network

— system-optimized versus

— user-optimized (network equilibrium),

which may lead to



Transportation science has historically been the
discipline that has pushed the frontiers In
terms of methodological developments for
such problems (which are often large-scale)
beginning with the book, Studies in the
Economics of Transportation, by Beckmann,
McGuire, and Winsten (1956).

STUDIES IN

THE ECONOMICS OF
TRANSFORTATION




Dafermos (1980) showed that the transportation
network equilibrium (also referred to as user-
optimization) conditions as formulated by Smith
(1979) were a finite-dimensional variational
iInequality.

In 1993, Dupuis and Nagurney proved that the set of
solutions to a variational inequality problem
coincided with the set of solutions to a projected
dynamical system (PDS) in R".

In 1996, Nagurney and Zhang published Projected
Dynamical Systems and Variational
L E RS



Transportation Network Equilibrium Problem

Consider a general network G = [N, L], where N denotes
the set of nodes, and L the set of directed links. Let a
denote a link of the network connecting a pair of nodes,
and let p denote a path consisting of a sequence of
links connecting an O/D pair. P, denotes the set of
paths, assumed to be acyclic, connecting the O/D pair
of nodes w and P the set of all paths.

Let x, represent the flow on path p and f, the flow on
link a. The following conservation of flow equation must

hold:
Ja = Zarpéap,
peP
where 9,, = 1, if link a is contained in path p, and O,
otherwise. T his expression states that the load on a link
a IS equal to the sum of all the path flows on paths p
that contain (traverse) link a.



Moreover, if we let d,, denote the demand associated
with O/D pair w, then we must have that

dy = Z Lp,

pe P,

where z, > 0, Vp, that is, the sum of all the path flows
between an origin/destination pair w must be equal to
the given demand d,,.

Let ¢, denote the user cost associated with traversing
link @, which is assumed to be continuous, and C), the
user cost associated with traversing the path p. Then

acl

In other words, the cost of a path is equal to the sum

of the costs on the links comprising the path.




Transportation Network Equilibrium

The network equilibrium conditions are then given by:
For each path p € P, and every O/D pair w:

o [ = 0f @ >0
P\ > A, if @ =0

where A, is an indicator, whose value is not known a
priori. These equilibrium conditions state that the user
costs on all used paths connecting a given O/D pair will

be minimal and equalized.




As shown by Beckmann, McGuire, and Winsten (1956)
and Dafermos and Sparrow (1969), if the user link cost
functions satisfy the symmetry property that [d‘"b = 3—2]
for all links a,b in the network then the solution to the
above network equilibrium problem can be reformulated
as the solution to an associated optimization problem.
For example, if we have that ¢, = ¢,(f,), Va € L, then

the solution can be obtained by solving:

Minimize Z/ ca(y)dy

acl,

subject to:
dy = Z Ty, Vw e W,




The Braess (1968) Paradox

Assume a network with a single
O/D pair (1,4). There are 2
paths available to travelers:
ps=(a,c) and p,=(b,d).

For a travel demand of 6, the
equilibrium path flows are xp1*
= xpz* = 3 and

The equilibrium path travel cost
IS

C,=C, = 83. c.(f,)=10 f, c,(f,) = f,+50
c.(f.) = f.+50 c,(f,) = 10 f,




Adding a Link
Increases Travel Cost for All!

Adding a new link creates a new path
p3=(a!e!d)'

The original flow distribution pattern is
no longer an equilibrium pattern, since
at this level of flow the cost on path ps,
C,,=70.

The new equilibrium flow pattern
network is

xI°1 = xI°2 = xI°3 =2.

The equilibrium path travel costs:
C,=C, =C, =92
1 P2 P3




The 1968 Braess article has been translated from
German to English and appears as

On a Paradox of Traffic Planning

by Braess, Nagurney, Wakolbinger

in the November 2005 issue of Transportation Science.
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If no such symmetry assumption holds for the user
link costs functions, then the equilibrium
conditions can be reformulated as an
associated optimization problem and the
equilibrium conditions are formulated and solved
as a variational inequality problem!

Smith (1979), Dafermos (1980)



VI Formulation of Transportation

Network Equilibrium
(Dafermos (1980), Smith (1979))

A traffic path flow pattern satisfies the above equilib-
rium conditions if and only if it satisfies the variational
inequlity problem: determine =* € K, such that

Z Cp(z™) X (xp —x,) 20, VzeK.
P

Finite-dimensional variational inequality theory has been
applied to-date to the wide range of equilibrium prob-
lems noted above.

In particular, the finite-dimensional variational inequality
problem is to determine " € K C R" such that

(F(z*),x —2") > 0, VrelkK,

where (-,-) denoted the inner product in R" and K is

closed and convex.




The variational inequality problem, contains, as special
cases, such classical problems as:

« systems of equations

e optimization problems

« complementarity problems

and is also closely related to fixed point problems.

Hence, it is a unifying mathematical formulation for a
variety of mathematical programming problems.



The Transportation Network Equilibrium
Paradigm is the unifying paradigm for
Critical Infrastructure Problems:

* Transportation Networks

* Internet

* Financial Networks

» Electric Power Supply Chains.



The Equivalence of Supply Chain
Networks and Transportation Networks

Wanufacturers

>

[Demnand Markets

Nagurney, Transportation Research E (2006).
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The fifth chapter of Beckmann, McGuire, and
Winsten's book, Studies in the Economics of
Transportation (1956) describes some unsolved
problems including a single commodity network
equilibrium problem that the authors imply could

be generalized to capture electric power
networks.

Specifically, they asked whether electric power
generation and distribution networks can be

reformulated as transportation network equilibrium
problems.



The Electric Power Supply Chain Network

Power Generators

Power Suppliers

Demand Markets

Nagurney and Matsypura, Proceedings of the CCCT (2004).




The Transportation Network Equilibrium
Reformulation of Electric Power Supply
Chain Networks

Power Generators

. Transmission
Service Providers e

Demand Markets

Electric Power Supply Transportation Chain
Network Network

Nagurney et al. Transportation Research E (2007).



In 1952, Copeland wondered whether money
flows like water or electricity.



The Transportation Network Equilibrium
Reformulation of the Financial Network
Equilibrium Model with Intermediation

Sonrees of Fouancial Punds

Internet Links 7 BSos 4
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Demiand Markets - Uses of Funds
Liu and Nagurney, Computational Management Science (2007). '”




We have shown that money as well as
electricity flow like transportation and have
answered questions posed fifty years ago by

Copeland and by Beckmann, McGuire, and
Winsten!



The Tools that We are Using in Our
Dynamic Network Research Include:

network theory

optimization theory

game theory

variational inequality theory
evolutionary variational inequality theory
projected dynamical systems theory
double-layered dynamics theory
network visualization tools.



PrDEs and PDSs

The most general mathematical context to date in
which we can define a projected differential
equation (PrDE) and, consequently, a projected
dynamical system (PDS), is that of a Hilbert
space X of arbitrary (finite or infinite) dimension.

Suppose that we have k' € X, a nonempty, closed, con-
vex subset in a Hilbert space X. Let FF: K — X be a
Lipschitz continuous mapping. It is well-known that the
ODE:

o (f :l

ot

has solutions in a suitable class of functions; here that
class will be that of absclutely continuous functions
AC([0,00), X).

= —F(2(t)), =(0) €K




Let us define a PrDE on an example, with
drawings

Suppose X = R?, K = F;L and suppose that the image
below represents a trajectory of the equation
dx(t)

e
= = —F(a(®)).

starting in E';’L.




A PrDE describes the control problem:

5
E(I(t)) = —F(z(t)), «(0)€ R%

such that =(t) Ri, as shown in the figure below:

o

|
In other words, a trajectory of a projected differential

equation is always “trapped’” in the constraint set Ak =

PLEL and the velocity field along any such trajectory is
not continuous.




PrDEs and PDSs

To rigorously define the two notions, we recall the
ollowinag:

1). the projection of X onto K by P : X — K, with

| Prc(x) — z|| = -l*rj;_{ |z —z||, VzelX,

2. the tangent cone Tk (z) = Upsor(K — ).




PrDEs and PDSs

Let X, K € X, and F: K — X as before. Then a PrDE
is defined by:

%(I(f-)) = Mg (z(t), —F(x(t))), =(0) = =g,

where

. Pz —90F(z)) —=x

N (z.—F(x)) = lim = Pr(o)(—F(z)),

d—0t )

where T (x) is the tangent cone to the set K at x and
Ng(x) is the normal cone to K at the same point .

Fiit)




The right-hand side of any PrDE is nonlinear and
discontinuous.

An existence result for such equations was obtained by
Dupuis and Nagurney (1993) for X:=R", and by Cojocaru
(2002) for general Hilbert spaces.

T heorem

Let X be a Hilbert space of arbitrary dimension and let
K C X be a non-empty, closed, and convex subset. Let
F K — X be a Lipschitz continuous vector field on K
with @0 € K. Then the initial value problem

dx(t)

= Ng(z(t), —F(z(t))),z(0) = zp

I
Ll

has a unique solution in AC([0.~),K).

A projected dynamical system (PDS) is the dynamical system
given by the set of trajectories of a PrDE.



EQUILIBRIA of PDSs and
VARIATIONAL INEQUALITIES

An important feature of any PDS is that it is intimately related to a variational
inequality problem (VI).

The starting point of VI theory: 1966 (Hartman and Stampacchia); 1967 (Lions

and Stampacchia); it is now part of the calculus of variations; it has been

used to show existence of equilibrium in a plethora of equilibrium problems
and free boundary problems.

The following relation between a PDS and a VI was
shown by Dupuis and Nagurney (1993) for X = R"
and by Cojocaru (2002) for any Hilbert space. Here
F:K — X.

T heorem

T he equilibria of a PDS:

.!i'..} P P P,
?{ xr(t)) = MNg(x(t). —F(x(t))),

that is, x*= K such that
Nz, —F(z")) =0
are solutions to the VI(F,K): find x* € K such that
{(F(z*),z —z*) >0, Vzelk,

and vice-versa, where {-,-) denotes the inner product or
X.




A Geometric Interpretation of a Variational Inequality and a

Projected Dynamical System (Dupuis and Nagurney (1993),
Nagurney and Zhang (1996))




We are using evolutionary variational inequalities to
model dynamic networks with:

* dynamic (time-dependent) supplies and demands
* dynamic (time-dependent) capacities
 Structural changes in the networks themselves.

Such issues are important for robustness, resiliency,
and reliability of networks (including supply chains
and the Internet).



Evolutionary Variational Inegualities

, were originally introduced by Lions and
Stampacchia (1967) and by Brezis (1967) in order to study
problems arising principally from mechanics. They provided a
theory for the existence and uniqueness of the solution of such
problems.

Steinbach (1998) studied an obstacle problem with a memory
term as a variational inequality problem and established
existence and uniqueness results under suitable assumptions
on the time-dependent conductivity.

Daniele, Maugeri, and Oettli (1998, 1999), motivated by
, introduced evolutionary (time-
dependent) variational inequalities to this application domain
and to several others. See also Ran and Boyce(1996).



Evolutionary Variational Inequalities, Transporta-
tion, and the Internet

We model the Internet as a network G = [N, L], consist-
ing of the set of nodes N and the set of directed links
L. The set of origin/destination (O/D) pairs of nodes
is denoted by W and consists of ny elements. We de-
note the set of routes (with a route consisting of links)
joining the origin/destination (O/D) pair w by P,. We
assume that the routes are acyclic. We let P with np
elements denote the set of all routes connecting all the
O /D pairs in the Internet. Links are denoted by a,b,
etc; routes by r,q, etc., and O/D pairs by wi, ws, etc.
We assume that the Internet is traversed by "“jobs” or
“classes” of traffic and that there are K “jobs” with a
typical job denoted by k.

Let d* (t) denote the demand, that is, the traffic gener-

ated, between O/D pair w at time t by job class k. The
flow on route r at time t of class k£, which is assumed
to be nonnegative, is denoted by :cf.’(t) and the flow on

link a of class k at time t by f*(1).




Since the demands over time are assumed known, the
following conservation of flow equations must be satis-
fied at each t;:

di(ﬂ = Z :c’;‘_' (t), Ywe W.vk,
re b,

that is, the demand associated with an O/D pair and
class must be equal to the sum of the flows of that class
on the routes that connect that O/D pair. We assume
that the traffic associated with each O /D pair is divisible
and can be routed among multiple routes/paths. Also,
we must have that

0 < zM(t) < uf(t), ¥re P,VEk,

where p”(t) denotes the capacity on route r of class k
at time t.

We group the demands at time ¢t of classes for all the
O /D pairs into the Kny-dimensional vector d(t). Sim-
ilarly, we group all the class route flows at time t into
the Knp-dimensional vector z(t). The capacities on the
routes at time ¢t are grouped into the Knp-dimensional

vector p(t).




The link flows are related to the route flows, in turn,
through the following conservation of flow equations:

fE@) =) @ (D)8, Vae L,Vk,
relP?
where ¢, = 1 if link a is contained in route r, and
0. = 0, otherwise. Hence, the flow of a class on a link
is equal to the sum of the flows of the class on routes
that contain that link. All the link flows at time ¢ are
grouped into the vector f(t), which is of dimension Kn;.

The cost on route r at time ¢t of class k is denoted by
C*(t) and the cost on a link a of class k at time ¢ by

ch(t).

We allow the cost on a link to depend upon the entire
vector of link flows at time ¢, so that

chi(t) = i(f(¥)), Vae LVk.

We may write the link costs as a function of route flows,
that is,

Az()) = F(f(t)), Ya€ L,VE.

T he costs on routes are related to costs on links through
the following equations:

C"::-(I(t)) — zci("r(t))&am Vr e P, Vk.

acl

We group the route costs at time ¢ into the vector C'(1),

which is of dimension Knp.



We now define the feasible set K. We consider the
Hilbert space £ = L?([0,7], R""*) (where [0.7] denotes
the time interval under consideration) given by

K = {:f c L2([0,T], RX™) : 0 < x(t) < u(t)a.e. in[0,T];

S ak(t) = di(t),vw, Vka.e. in[0,T] }

f)':—: 1'”|r

We assume that the capacities pf(t), for all » and k, are
in £, and that the demands, d¥ > 0, for all w and k, are
also in £. Further, we assume that

0 <d(t) < du(t),a.e. on|0,T].

where & is the Kny x Knp-dimensional O/D pair-route
incidence matrix, with element (kw.kr) equal to 1 if
route r is contained in F,, and O, otherwise. The feasible

set K is nonempty. It is easily seen that K is also convex,
closed, and bounded.

The dual space of £ will be denoted by £*. On £ x L~
we define the canonical bilinear form by

-
({G,z)) = / (G(t),z(t))dt, GeLl" zelLl.
Jo




Furthermore, the cost mapping €' . K — L£*, assigns
to each flow trajectory z(-) € K the cost trajectory
C(x(-)) e L.

T he conditions below are a generalization of the Wardrop's
(1952) first principle of traffic behavior.

Definition: Dynamic Multiclass Network Equilib-
rium

A multiclass route flow pattern x* € K is said to be a
dynamic network equilibrium (according to the general-
ization of Wardrop's first principle) if, for every O/D pair

w e W, every router € P, every class k; k= 1,..., K,
and a.e. on [0,T]:

=0, if O <k (1) < puh(),
>0, if z¥(t) =0.

;1 #1 { <0, If zF(@) = k@),
Cr(z™(1)) — AL (1)
\



The standard form of the EVI that we work with is:

determine =" € K such that ((F(z").z—x")) > 0, VYo € K.

T heorem
rt e K is an equilibrium flow according to the Defini-

tion if and only if it satisfies the evolutionary variational
inequality:

-
/ (C(x"(t)),z(t) —z"(t))dt > 0, Vxelk.
Jo

Nagurney, Parkes, and Daniele, Computational Management Science (2007).




Recall the Braess Network
where we add the link e.




The Solution of an Evolutionary
(Time-Dependent) Variational Inequality
for the Braess Network with Added Link (Path)
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Braess Network with
Time-Dependent
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In Demand Regime [, only the new path is used.
In Demand Regime |l, the Addition of a New Link (Path) Makes Everyone

Worse Off!
In Demand Regime lll, only the original paths are used.
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Network 1 is the Original Braess Network - Network 2 has the added link.



The new link is NEVER used after a
certain demand is reached even if the
demand approaches infinity.

Hence, in general, except for a limited
range of demand, building the new link
IS a complete waste!



Double-Layered Dynamics

The unification of EVIs and PDSs allows the modeling
of dynamic networks over different time scales.

Papers:

Projected Dynamical Systems and Evolutionary Variational Inequalities via
Hilbert Spaces with Applications (Cojocaru, Daniele, and Nagurney),
Journal of Optimization Theory and Applications, vol. 127, 2005.

Double-Layered Dynamics: A Unified Theory of Projected Dynamical
Systems and Evolutionary Variational Inequalities (Cojocaru, Daniele, and
Nagurney), European Journal of Operational Research, vol. 175, 2006.



A Pictorial of the Double-Layered Dynamics

(K0




There are new exciting questions, both theoretical
and computational, arising from this

In the course of answering these questions, a new
theory is taking shape from the synthesis of
PDS and EVI, and, as such, it deserves a name
of its own; we call it double-layered dynamics.

We have also extended the Nagurney and Qiang
network efficiency measure to dynamic
networks.



Recent disasters have demonstrated the
Importance as well as the vulnerability of
network systems.

For example:
Minneapolis Bridge Collapse, August 1, 2007
Hurricane Katrina, August 23, 2005

The biggest blackout in North America, August 14,
2003

9/11 Terrorist Attacks, September 11, 2001.



Some Recent Literature on Network
Vulnerability

Latora and Marchiori (2001, 2002, 2004)

Barrat, Barthélemy and Vespignani (2005)

Dall’Asta, Barrat, Barthélemy and Vespignani (2006)
Chassin and Posse (2005)

Holme, Kim, Yoon and Han (2002)

Sheffi (2005)

Taylor and D’este (2004)

Jenelius, Petersen and Mattson (2006)

Murray-Tuite and Mahmassani (2004)



A Network Efficiency Measure with
Application to Critical Infrastructure

* A Network Efficiency Measure for Congested Networks
(2007), Nagurney and Qiang, Europhysics Letters.

» Applications to Transportation Networks -- 2007
Proceedings of the POMS Conference in Dallas, Texas.

» Additional papers in press in Journal of Global Optimization
and Optimization Letters.



The Nagurney and Qiang Network
Efficiency Measure

;

The network performance/efficiency measure, E(G,d), according to Nagurney and
Quang (2006). for a qen network tovologu G and fired demand vector d. is defined

(5. .
LaweW _‘_

E(G.d) =
Iy

where recall that ny is the number of O/D pairs in the network and A, is the equi-

librium disutility for O/D pair w

Europhysics Letters (2007).



Importance of a Network Component

Definition  Importance of a Network Component

The importance, I(g) of a network component g € G, is measured by the relative network

efficiency drop after g is removed from the network:

_ A8 &(G.d) - E(G —g.d)

I 1) — —
9)=— £(G,d)

where G — g is the resulting network after component g is removed from network G.




The Approach to Study the Importance of
Network Components

The elimination of a link is treated in the Nagurney and Qiang
network efficiency measure by removing that link while the
removal of a node is managed by removing the links entering
and exiting that node.

In the case that the removal results in no path connecting an
O/D pair, we simply assign the demand for that O/D pair to an
abstract path with a cost of infinity. Hence, our measure is
well-defined even in the case of disconnected networks.

The measure generalizes the Latora and Marchiori network
measure for complex networks.



Example 1

Assume a network with two O/D pairs:
w,=(1,2) and w,=(1,3) with demands:
d,,=100 and d,,,=20.

The paths are:
for w, p,=a; for w,, p,=b.

a

The equilibrium path flows are:

xp1*= 100, x,,,=20. c,(f,)=0.01f,+19
¢,(f,)=0.05f,+19

The equilibrium path travel costs are:
C,.=C,,=20.



Importance and Ranking of Links and

Nodes
Link Importance Value Importance Ranking
from Our Measure from Our Measure
a 0.8333 1
b 0.1667 2
Node Importance Value Importance Ranking
from Our Measure from Our Measure
1 1 1
2 0.8333 2
3 0.1667 3




Example 2

he network is given by:

w,=(1,20)  w,=(1,19)
d, =100  d,, =100



Link Cost Functions

Link a | Link Cost Function c,(fa.) Link a | Link Cost Function ¢,(f, )
1 00005f} +5f1 4+ 500 15 00003 f% + 9f15 + 200
00003 f5 + 4f5 + 200 16 8f16 + 300
00005 f4 + 3 f3 + 350 17 00003 f1> 4+ T fir + 450
00003 f{ + 6f4 + 400 13 5f1s + 300
00006 f2 + 6 f5 + 600 19 8f1g + 600
7fe + 500 00003 £, 4 6f20 + 300
0000812 4+ 8 fr + 400 00004f3, + 42 + 400
0000415 + 5fs + 650 0000213, 4+ 62 + 500
00001 f3 + 6fg + 700 00003f; + 9f23 + 350
4 f10 + 800 0000215, + 8 foy + 400
00007 f}; + 7f11 + 650 00003 f5 4+ 9 for + 450
8f12 + 700
00001f 5 + 7 f13 + 600
8f14 + 500
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Importance and Ranking of Links
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The Advantages of the Nagurney and
Qiang Network Efficiency Measure

The measure captures demands, flows, costs, and behavior
of users, in addition to network topology;

The resulting importance definition of network components is
applicable and well-defined even in the case of disconnected
networks;

It can be used to identify the importance (and ranking) of
either nodes, or links, or both; and

It can be applied to assess the efficiency/performance of a
wide range of network systems.

It is applicable also to elastic demand networks; (Qiang and
Nagurney, Optimization Letters, in press).



Motivation for Research on
Transportation Network Robustness

According to the ASCE:

Poor maintenance, natural disasters, deterioration over time,
as well as unforeseen attacks now lead to estimates of
$94 billion in the US in terms of needed repairs for roads
alone.

Poor road conditions in the United States cost US motorists
$54 billion in repairs and operating costs annually.



The focus of the robustness of networks (and complex
networks) has been on the impact of different network
measures when facing the removal of nodes on networks.

We focus on the degradation of links through reductions in
their capacities and the effects on the induced travel costs
In the presence of known travel demands and different
functional forms for the links.



Robustness in Engineering and
Computer Science

IEEE (1990) defined robustness as the degree to which a
system of component can function correctly in the presence
of invalid inputs or stressful environmental conditions.

Gribble (2001) defined system robustness as the ability of a
system to continue to operate correctly across a wide range
of operational conditions, and to fail gracefully outside of
that range.

Schilllo et al. (2001) argued that robustness has to be studied
in relation to some definition of the performance measure.



“Robustness” in Transportation

Sakakibara et al. (2004) proposed a topological index.
The authors considered a transportation network to
be robust if it is “dispersed” in terms of the number of
links connected to each node.

Scott et al. (2005) examined transportation network
robustness by analyzing the increase in the total
network cost after removal of certain network
components.



BPR Link Cost Functions

We use the Bureau of Public Roads (BPR) link cost functional
form in our transportation network robustness study, which
IS given by:

fa ) Jo
U

(l

c (f)=t|1+k(

where k and (3 are greater than zero and the u’s are the
practical capacities on the links.



The Transportation Network Robustness
Measure of Nagurney and Qiang (2007)

e T for a transportation network G with the veetor
of demands d, the vector of user link cost funetions ¢, and the vector of link
capacities u 12 defined as the relative performance retained under a given unitorm
capacity retention ratio v (v € (0,1]) so that the new capacities are given hy

~u. Its mathematical definition is given as:

i—nr

e ] . & e
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where £ and £7 are the network performance measures with the original capac-

ities and the remaining capacities, respectively.




Simple Example

Assume a network with one O/D
pair: w,=(1,2) with demand
given by d,,=10.

The paths are: p,=a and p,=b.

In the BPR link cost function, k=1
and p=4; t,°=10 and t,%=1.

Assume that there are two sets of
capacities:

Capacity Set A, where u_=u,=50;

Capacity Set B, where u_,=50 and
u,=10.




Robustness of the Simple Network
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Example: Braess Network with
Quadratic BPR Functions

Instead of using the original cost functions, we construct a
set of BPR functions as below under which the Braess
Paradox still occurs. The new demand is 110.

:IL' o opl fy) = 6001 4+ ( 0 JLT )

RO

o i)

el fo) = 50(1 + r—i:] T)yocglfal =14 I:_;-,_[i;_] :
e [L .

ce(fe) = 1001 + (2)%).




Network Robustness for the Braess Network Example
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Some Theoretical Results

Theorem
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Theorem

Consider a network consisting of two nodes 1 and 2 as in the figure below, which
are connected by a sel of parallel links. Assuwume that the associated BPR link cost
uncteons have @ = 1. Furthermore, let’s assume that there are positive flows
one all the links at both the original and partially degraded capacity levels. Then
the network robustness given by the exrpression is given by the explicit formula:

. ¥ L:" + .lif “y IfE-u_.
RY = Py
t ~U ¥ kd,

= 100%,

where dy,,, ts the given demand for O/0) pairwy = (1,2) and U = w, + uy +
SOOI Phy

Maoreaver, the network robustness R7 is bounded from below by ~ = 100%..
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