Statics and Dynamics of Complex Network Systems: Supply Chain Analysis and Financial Networks with Intermediation

Dissertation Defense by Ke Ke June 21, 2004

Complex network systems

- Financial networks with intermediation
- Supply chains
- In

- Static setting
- Dynamic setting

Dissertation Structure

- Introduction
 - Literature survey
 - Research motivation
- Methodologies
 - Variational inequality theory
 - Projected dynamical systems
- Multilevel network perspective for supply chain
- Financial networks with intermediation
 - Statics
 - Dynamics
 - Electronic transaction
 - Risk management with variable weights

Literature Survey for Supply Chain Analysis

- Interdisciplinary topic that received great attention
 - Theoretical challenges
 - Practical importance
- Conceptual in nature
 - Cohen and Huchzermeier (1997), Bramel and Simchi-Levi (1997), Poirier (1996, 1999), Miller (2001)
- Analytical study
 - Federgruen and Zipkin (1986), Federgruen (1993), Chan, Muriel and Simchi-Levi (1998), Ganeshan et al. (1998)

Development of supply chain network models

- Study of interactions among decision-makers
 - Compete within a tier
 - Cooperate between tiers
- Nagurney, Dong, and Zhang (2002)
 - First multitiered model studying the supply chains in a unified manner in network equilibrium context
- Nagurney and Dong (2002b)
 - For further background
- Nagurney, Loo, Dong, and Zhang (2002)
 - Static models over a single network
- Nagurney and Dong (2002a) and Nagurney, Dong, and Mokhtarian (2001, 2003)
 - Unified treatment of complex network systems
 - Teleshopping vs shopping
 - Telecommuting vs commuting

Research Motivation for Supply Chain Analysis

To capture distinct flows

- Logistical
- Informational
- Financial

within the same supply chain network system

- Observe evolution of
 - Prices
 - Commodity shipments

through a discrete-time process

Novelty of My Research

- Nagurney, Ke, Cruz, Hancock and Southworth (2002)
 - Environment and Planning B
 - First proposed the multilevel (Logistical/Informational/Financial) network perspective to study the supply chain problem in network equilibrium context.
 - In the supply chain model, the financial and informational networks are made explicit.
 - The multilevel network was widely used thereafter and inspired the idea of supernetworks (http://supernet.som.umass.edu/).

Literature Survey for Financial Networks with Intermediation

- Intermediation
 - Banks, savings institutions, investment and insurance companies
- Quesnay (1758)

- Origin use of networks to represent financial system
- Depict the circular flow of funds
- Thore (1969, 1980)
 - Study systems of linked portfolios in credit networks
 - Decentralization/decomposition theory
 - Basic intertemporal models

Literature Survey for Financial Networks with Intermediation

Nagurney, Dong, and Hughes (1992)
 Multi-sector, multi-instrument
 Dong, Zhang, and Nagurney (1996)
 Dynamic model

Nagurney and Dong (1995, 1996a, b)

Inclusion of transaction costs

Literature Survey for Electronic Finance

- A growing area of study
 - Increasing impact on
 - Financial markets
 - Financial intermediation
 - Related regulatory issues and governance
 - Claessens, Glaessner, and Klingebiel (2000, 2001), Long (2000), Banks (2001), Turner (2001)
- Particular emphasis
 - Conceptualization
 - Role of networks in the transformations
 - McAndrews and Stefanidis (2000), Allen, Hawkins, and Seto (2001), Economides (2001), and Nagurney and Dong (2002)

Literature Survey for Risk Management with Variable Weights

- Behavior of investors
 - Maximize the expected return
 - Minimize the risk
- Markowitz (1952, 1959)

- Mean and variance
- Numerous extension (Sharpe (1971), Stone (1973), Young (1998))
 - Equal trade-off between two criteria
- Dong and Nagurney (2001) and Nagurney, Dong, and Mokhtarian (2002)
 - Variable weights

Research Motivation for Financial Networks with Intermediation

- The financial economy explicitly includes
 - Financial intermediaries
 - Source agents
 - Uses of financial funds
- Advances of telecommunications have enormous effect
 - Financial services
 - Options available for financial transactions
 - Distribution channels
 - New types of products
 - Role of financial intermediaries
- Construction of a unified, quantifiable framework
- Variable weights to catch the risk attitudes of investors

Novelty of My Research

- Nagurney and Ke (2001a)
 - Published in *Quantitative Finance*
 - First publication that modeled the financial network with intermediation quantifiably.
- Nagurney and Ke (2001b)
 - Disequilibrium dynamics
 - Foundation for further study
- Nagurney and Ke (2003)
 - Published in Quantitative Finance
 - First considered the impact of electronic transaction
 - Capture competition within a tier of nodes and cooperation between tiers.
- Nagurney and Ke (2004)
 - First studied the bicriteria decision-making problem in multitiered financial networks.

Introduction

Methodologies

- Variational inequality theory
- Projected dynamical systems

Multilevel network perspective for supply chain

Financial networks with intermediation

Conclusion

Definition of variational inequality problem:

To determine a vector $X^* \in \mathcal{K} \subset \mathcal{R}^n$ such that

 $F(X^*)^T \cdot (X - X^*) \ge 0, \quad \forall X \in \mathcal{K}$

- Qualitative properties
 - Existence
 - Monotonicity
 - Lipschitz continuity
 - Uniqueness

- Introduction
- Methodologies
 - Variational inequality theory
 - Projected dynamical systems
- Multilevel network perspective for supply chain
- Financial networks with intermediation
- Conclusion

- Algorithms
 - Projection method
 - Initialization
 - Computation

$$\left[X^{\tau} + \alpha G^{-1} F(X^{\tau-1}) - X^{\tau-1}\right]^{T}$$

$$\cdot \left[X - X^{\tau} \right] \ge 0, \quad \forall X \in \mathcal{K}$$

 Convergence verification

- Introduction
- Methodologies
 - Variational inequality theory
 - Projected dynamical systems
- Multilevel network perspective for supply chain
- Financial networks with intermediation
- Conclusion

- Modified projection method
 - Initialization
 - Computation

$$\left[\bar{X}^{\tau} + \alpha F(X^{\tau-1}) - X^{\tau-1}\right]^T$$

$$\cdot \left[X - \bar{X}^{\tau} \right] \ge 0, \quad \forall X \in \mathcal{K}.$$

Adaptation

$$\left[X^{\tau} + \alpha F(\bar{X}^{\tau}) - X^{\tau-1}\right]^{T}$$

$$\cdot [X - X^{\tau}] \ge 0, \quad \forall X \in \mathcal{K}$$

Convergence verification

- Introduction
- Methodologies
 - Variational inequality theory
 - <u>Projected dynamical systems</u>
- Multilevel network perspective for supply chain
- Financial networks with intermediation
- Conclusion

 Definition of Projected Dynamical Systems

Given $X \in \mathcal{K}$ and $v \in F^n$, define the projection of v at X (with respect to K) by

$$\pi_{\mathcal{K}}(X,v) = \lim_{\delta \to 0} \frac{P_{\mathcal{K}}(X+\delta v) - X}{\delta}$$

And $P_{\mathcal{K}}(X) = \operatorname{argmin}_{X' \in \mathcal{K}} \|X' - X\|.$

Definition: The projected dynamical system (PDS) is defined as map: $\Phi: \mathcal{K} \times \mathcal{R} \mapsto \mathcal{K}$ where: $\Phi(X,t) = \phi_X(t)$ solves the initial value problem: $\dot{\phi}_X(t) = \pi_{\mathcal{K}}(\phi_X(t), -F(\phi_X(t))),$ $\phi_X(0) = X$

- Introduction
- Methodologies
 - Variational inequality theory
 - Projected dynamical systems
- Multilevel network perspective for supply chain
- Financial networks with intermediation
- Conclusion

- Qualitative properties
 - Existence, uniqueness, and continuous dependence (Theorem 2.8)
 - Lipschitz continuity (Theorem 2.9)
 - Stability analysis

- Introduction
- Methodologies
 - Variational inequality theory
 - <u>Projected dynamical systems</u>
- Multilevel network perspective for supply chain
- Financial networks with intermediation
- Conclusion

- Algorithm (the Euler method)
 - Initialization
 - Set the sequence $\{\alpha_{\tau}\}$
 - Computation

$$X^{\tau} = P_{\mathcal{K}}(X^{\tau-1} - \alpha_{\tau-1}F(X^{\tau-1}))$$

Convergence verification

Chapter 3: Dynamics of Supply Chains: A Multilevel Network Perspective

Notable Features

- Within the same network:
- Logistical network
 - Depict the physical flows of products
 - Examine the relationships of various individual entities
- Informational network
 - Processing information
 - Demand forecasting information
 - Management information
 - Price information
- Financial network
 - Prices

The Dynamics

The quantity flows over logistical network

- The firms adjust commodity shipment
- The consumers adjust consumption based on prices
- The retailers operating between them
- The prices over financial network

The Projected Dynamical System

- The equilibrium point (the variational inequality formulation)
- Qualitative properties
 - Monotonicity

- Lipschitz continuity
- Existence and uniqueness
- Stability of the system
- A discrete-time adjustment process
 - The Euler method
 - Computation of the commodity shipments at each iteration
 - Computation of the prices at each iteration

Numerical Examples

1 2 Informational Network Financial Network Vetwork

Figure 3.2: Multilevel Network for Examples 3.1 and 3.2 Figure 3.3: Multilevel Network for Example 3.3

Input Data for Examples

The production cost functions of the manufacturers	Example 3.1: $f_i(q)=2.5q_i^2+q_1q_2+2q_i$ Example 3.2: $f_1(q)=2.5q_1^2+q_1q_2+12q_1$ Example 3.3: $f_2(q)=2.5q_2^2+q_1q_2+12q_2$
The transaction cost functions faced by the manufacturers and associated with retailers	Example 3.1: $c_{ij}(Q^1)=.5 q_{ij}^{1^2}+3.5 q_{ij}^{1}$ Example 3.2: $c_{1j}(Q^1)=q_{1j}^{1^2}+3.5 q_{1j}^{1}$ Example 3.3: $c_{i3}(Q^1)=.5 q_{i3}^{1^2}+5 q_{i3}^{1}$
The handling costs of the retailers	$c_j(Q^1) = .5(\sum_{i=1}^2 q_{ij}^1)^2$
The demand functions	$d_1(\rho^3) = -2\rho_1^3 - 1.5\rho_2^3 + 1000$ $d_2(\rho^3) = -2\rho_2^3 - 1.5\rho_1^3 + 1000$
The transaction costs between the retailers and the consumers	$c_{jk}(Q^2) = q_{jk}^2 + 5$

Equilibrium Patterns of the Numerical Examples

			Example 3.1	Example 3.2	Example 3.3
Flows Q^*	Q^{1*}	q_{11}^{1*}	16.608	14.507	9.243
	(q_{ij}^{1*})	q_{12}^{1*}	16.608	14.507	9.243
		q_{21}^{1*}	16.608	17.230	13.567
		q_{22}^{1*}	16.608	17.230	13.567
		q_{13}^{1*}			14.645
		q_{23}^{1*}			9.726
	Q^{2*}	q_{11}^{2*}	16.608	15.869	11.404
	(q_{jk}^{2*})	q_{12}^{2*}	16.608	15.869	11.404
	2	q_{21}^{2*}	16.608	15.869	11.404
		q_{22}^{2*}	16.608	15.869	11.404
		q_{31}^{2*}			12.184
		q_{32}^{2*}			12.184
prices ρ^{3*}	$ ho_k^{3*}$	$ ho_{1}^{3*}$	276.224	276.646	275.717
		$ ho_2^{3*}$	276.224	276.646	275.717

Chapter 4: Financial Networks with Intermediation

Demand Markets - Uses of Funds

Notable Features

- Financial systems in disequilibrium or in equilibrium
- Interactions
 - Among individual sectors
 - Each facing own objective function
- Emphasize the advantage of network modeling and computation
- Allowing non-investment
- Consideration of transaction costs

The behavior and optimality conditions Agents with sources of funds

Maximize
$$U^{i}(q_{i}^{1}) = \sum_{j=1}^{n} \sum_{l=1}^{L} \rho_{ijl}^{1} q_{ijl}^{1} - \sum_{j=1}^{n} \sum_{l=1}^{L} c_{ijl}(q_{ijl}^{1}) - q_{i}^{1T} V^{i} q_{ijl}^{1}$$

$$\sum_{j=1}^{n} \sum_{l=1}^{L} q_{ijl}^{1} \leq S^{i}$$

Intermediaries

Maximize
$$U^{j}(q_{j}^{2}) = \sum_{k=1}^{o} (\rho_{jk}^{2} q_{jk}^{2} - c_{jk}(q_{jk}^{2})) - c_{j}(Q^{1}) - \sum_{i=1}^{m} \sum_{l=1}^{L} (\hat{c}_{ijl}(q_{ijl}^{1}) + \rho_{ijl}^{1} q_{ijl}^{1}) - q_{j}^{2^{T}} V^{j} q_{j}^{2}$$

Subject to:

i=1 l=1

$$\sum_{k=1}^{o} q_{jk}^2 \le \sum_{i=1}^{m} \sum_{l=1}^{L} q_{ijl}^1$$

Demand markets

$$\rho_{jk}^{2*} + \hat{c}_{jk}(Q^{2*}) \begin{cases} = \rho_k^{3*}, & \text{if } q_{jk}^{2*} > 0 \\ \ge \rho_k^{3*}, & \text{if } q_{jk}^{2*} = 0. \end{cases} \quad d_k(\rho^{3*}) \begin{cases} = \sum_{j=1}^n q_{jk}^{2*}, & \text{if } \rho_k^{3*} > 0 \\ \le \sum_{j=1}^n q_{jk}^{2*}, & \text{if } \rho_k^{3*} = 0. \end{cases}$$

Variational inequality formulation

$$\begin{split} \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{l=1}^{L} \left[2V_{z_{jl}}^{i} \cdot q_{l}^{1*} + 2V_{z_{il}}^{j} \cdot q_{j}^{2*} + \frac{\partial c_{ijl}(q_{ijl}^{1*})}{\partial q_{ijl}^{1}} + \frac{\partial c_{j}(Q^{1*})}{\partial q_{ijl}^{1}} \right. \\ & \left. + \frac{\partial \hat{c}_{ijl}(q_{ijl}^{1*})}{\partial q_{ijl}^{1}} - \gamma_{j}^{*} \right] \times \left[q_{ijl}^{1} - q_{ijl}^{1*} \right] \\ & \left. + \sum_{j=1}^{n} \sum_{k=1}^{o} \left[2V_{z_{mL+k}}^{j} \cdot q_{j}^{2*} + \frac{\partial c_{jk}(q_{jk}^{2*})}{\partial q_{jk}^{2}} + \hat{c}_{jk}(Q^{2*}) + \gamma_{j}^{*} - \rho_{k}^{3*} \right] \times \left[q_{jk}^{2} - q_{jk}^{2*} \right] \\ & \left. + \sum_{j=1}^{n} \left[\sum_{i=1}^{m} \sum_{l=1}^{L} q_{ijl}^{1*} - \sum_{k=1}^{o} q_{jk}^{2*} \right] \times \left[\gamma_{j} - \gamma_{j}^{*} \right] \\ & \left. + \sum_{k=1}^{o} \left[\sum_{j=1}^{n} q_{jk}^{2*} - d_{k}(\rho^{3*}) \right] \times \left[\rho_{k}^{3} - \rho_{k}^{3*} \right] \ge 0, \quad \forall (Q^{1}, Q^{2}, \gamma, \rho^{3}) \in \mathcal{K}, \end{split}$$

- Qualitative properties
 - Uniqueness
 - Existence
- The algorithm
 - Modified projection method
 - Computation of financial flow of products and prices
- Numerical examples

Chapter 5: Dynamics of Financial Networks with Intermediation

- Network structure
- The dynamics

- Financial flows
 - Source agents adjust investment in various instruments
 - Intermediaries adjust transactions
 - Consumers obtain the financial products
- Prices over time

- The projected dynamical system
- The equilibrium point (the variational inequality formulation)
- Qualitative properties
 - Existence and uniqueness
 - Stability of the system
- A discrete-time adjustment process
 - The Euler method
 - Computation of financial flows and prices at each iteration
- Numerical examples
 - Verify that the set of stationary points of PDS coincides with the set of solutions to the VI problem

Chapter 6: Dynamics of Financial Networks with Electronic Transactions

Demand Markets - Uses of Funds

Notable Features

- Electronic transactions
- Source agents can transact:
 - With the intermediaries either physically or electronically
 - With the consumers in an electronic manner
- Intermediaries transact with the consumers
 - Physically
 - Electronically

The behavior and optimality conditions

- Agents with sources of funds
 - Maximize the net revenue
 - Minimize the risk
- Intermediaries
 - Maximize the net revenue
 - Minimize the risk
- Demand markets
- Variational inequality formulation
- The dynamics
 - The projected dynamical system

Qualitative properties

- Uniqueness
- Existence
- Lipschitz continuity
- Stability of the system
- The algorithm
 - The Euler method
 - Computation of financial flows and prices
- Numerical examples

Numerical Examples

Figure: The Financial Network Structure of Example 6.1

Numerical Examples (Cont.)

Figure: The Financial Network Structure of Example 6.2

Numerical Examples (Cont.)

Figure: The Financial Network Structure of Example 6.3

Input Data for Examples 6.1-6.3

The transaction cost functions of the source agents	$c_{ijl}(q_{ijl}^1) = 0.5(q_{ijl}^1)^2 + 3.5q_{ijl}^1$
The handling costs of the intermediaries	$c_{j}(Q^{1}) = 0.5 \left(\sum_{i=1}^{2} q_{ij1}^{1}\right)^{2}$
The transaction costs of the intermediaries associated with transacting with source agents	$\hat{c}_{ijl}(q_{ijl}^1) = 1.5(q_{ijl}^1)^2 + 3q_{ijl}^1$
The transaction costs of the consumers transacting with the intermediaries	$\hat{c}_{jkl}(q_{jkl}^2) = q_{jkl}^2 + 5$
The demand functions at the demand markets	$d_1(\rho^3) = -2\rho_1^3 - 1.5\rho_2^3 + 1000$ $d_2(\rho^3) = -2\rho_2^3 - 1.5\rho_1^3 + 1000$

Additional transaction costs for Example 6.2 and 6.3:

The transaction cost functions of the source agents for dealing with demand markets:	$c_{ik}(q_{ik}^3) = 0.5(q_{ik}^3)^2 + q_{ik}^3$
Transaction cost functions from the demand markets:	$\hat{c}_{ik} (Q^2, Q^3) = q_{ik}^3 + 1$

Based on Example 6.2, the additional transaction costs for Example 6.3 are:

The transaction costs of the source agents transacting with the financial intermediaries electronically:

 $c_{ij2}(q_{ij2}^1) = 0.5(q_{ij2}^1)^2 + 0.5q_{ij2}^1$

Transaction costs of the intermediaries transacting with sources electronically:

$$\widehat{c}_{ij2}(q_{ij2}^1) = 0.5(q_{ij2}^1)^2 + 0.5q_{ij2}^1$$

needed of an and a second of the second seco	Table 6.1:	Equilibrium	Patterns	of the	Numerical	Examples
--	------------	-------------	----------	--------	-----------	----------

			Example 6.1	Example 6.2	Example 6.3
Flows Q^*	Q^{1*}	q_{111}^{1*}	10	4.8	3.09
	$(q_{ijl}^{1\ast})$	q_{121}^{1*}	10	4.8	3.09
		q_{211}^{1*}	10	4.8	3.09
		q_{221}^{1*}	10	4.8	3.09
		q_{112}^{1*}			3.33
		q_{122}^{1*}			3.33
		q_{212}^{1*}			3.33
		q_{222}^{1*}			3.33
	Q^{2*}	q_{111}^{2*}	10	4.8	6.42
	$(q_{jkl}^{2\ast})$	q_{121}^{2*}	10	4.8	6.42
		q_{211}^{2*}	10	4.8	6.42
		q_{221}^{2*}	10	4.8	6.42
	Q^{3*}	q_{11}^{3*}		5.2	3.57
	$(q^{3\ast}_{ik})$	q_{12}^{3*}		5.2	3.57
		q_{21}^{3*}		5.2	3.57
		q_{22}^{3*}		5.2	3.57
Lagrange Multipliers	γ_j^*	γ_1^*	245.02	260.59	255.72
γ^*		γ_2^*	245.02	260.59	255.72
Prices ρ^{3*}	$ ho_k^{3*}$	$ ho_1^{3*}$	280	280	280
		$ ho_2^{3*}$	280	280	280

Chapter 7: Financial Networks with Intermediation: Risk Management with Variable Weights

Why variable weights? In decision-making under uncertainty,

Risk attitude Decisions Expected monetary payoffs

To reveal a sector's preference over the return and the risk, we reconstruct the objective functions to include the variable weights.

Notable Features

- Each source agent
 - Maximize net revenue z_{1i}^{1}
 - Minimize risk z_{2i}^1
- Each intermediary
 - Maximize net revenue z_{1j}^2
 - Minimize risk z_{2j}^2
- Essence: "How much achievement on one objective is the decision-maker willing to give up in order to improve achievement on another objective?"
- Criterion-dependent weight w_{2I}^{t}
 - For source agents: I=i; i=1,...,m, and t=1
 - For intermediaries: I=j; j=1,...,n, and t=2

Risk-penalizing value function Source Agents

Maximize
$$U^{i}(q_{i}^{1}) = \sum_{j=1}^{n} \sum_{l=1}^{L} (\rho_{ijl}^{1} q_{ijl}^{1} - c_{ijl}(q_{ijl}^{1})) - w_{2i}^{1}(r^{i}(q_{i}^{1}))r^{i}(q_{i}^{1})$$

Intermediaries

Maximize
$$U^{j}(q_{j}^{2}) = \sum_{k=1}^{o} (\rho_{jk}^{2} q_{jk}^{2} - c_{jk}(q_{jk}^{2})) - c_{j}(Q^{1}) - \sum_{i=1}^{m} \sum_{l=1}^{L} (\hat{c}_{ijl}(q_{ijl}^{1}) + \rho_{ijl}^{1} q_{ijl}^{1}) - w_{2j}^{2}(r^{j}(q_{j}^{2}))r^{j}(q_{j}^{2}),$$
(7.16)

Subject to:

$$\sum_{k=1}^{o} q_{jk}^2 \le \sum_{i=1}^{m} \sum_{l=1}^{L} q_{ijl}^1$$

Demand Markets

Variational inequality formulation

- Qualitative properties
 - Uniqueness
 - Existence
- The algorithm

- Modified projection method
- Computation of financial flow of products and prices
- Numerical examples

Input Data for Examples 7.1-7.3

The transaction cost functions of the source agents	$c_{ijl}(q_{ijl}^1) = 0.5(q_{ijl}^1)^2 + 3.5q_{ijl}^1$
The handling costs of the intermediaries	$c_j(Q^1) = 0.5 \left(\sum_{i=1}^2 q_{ij1}^1\right)^2$
The transaction costs of the intermediaries associated with transacting with source agents	$\hat{c}_{ijl}(q_{ijl}^1) = 1.5(q_{ijl}^1)^2 + 3q_{ijl}^1$
The transaction costs of the consumers associated with transacting with the intermediaries	$\hat{c}_{jkl}(q_{jkl}^2) = q_{jkl}^2 + 5$
The demand functions at the demand markets	$d_1(\rho^3) = -2\rho_1^3 - 1.5\rho_2^3 + 1000$ $d_2(\rho^3) = -2\rho_2^3 - 1.5\rho_1^3 + 1000$

Weights in Examples 7.2 and 7.3

- Example 7.2: weights associated with the source agents transacting with the first financial intermediary were doubled
- Example 7.3: $w_{2i}^1 = z_{2i}^1$ for i = 1, 2.

			Example 7.1	Example 7.2	Example 7.3
Flows Q^*	Q^{1*}	q_{111}^{1*}	10	9.29	3.10
	$(q_{ijl}^{1\ast})$	q_{121}^{1*}	10	10.71	3.10
		q_{211}^{1*}	10	9.29	3.10
		q_{221}^{1*}	10	10.71	3.10
	Q^{2*}	q_{11}^{2*}	10	9.29	3.10
	$(q_{jk}^{2\ast})$	q_{12}^{2*}	10	9.29	3.10
		q_{21}^{2*}	10	10.71	3.10
		q_{22}^{2*}	10	10.71	3.10
Lagrange Multipliers	γ_j^*	γ_1^*	245.00	247.14	269.63
γ^*		γ_2^*	245.00	242.86	269.63
Prices ρ^{3*}	ρ_k^{3*}	ρ_1^{3*}	280	280	283.94
		ρ_2^{3*}	280	280	283.94

Table 7.1: Equilibrium Patterns of the Numerical Examples

Comparison of the Two Areas

Similarities

- Network structure
- Variables
- Cost structure
- Methodology

Differences

- Construction
- Flows on the links
- Direction of flows
- Behavior of top two tiers
- Role of middle tier
- Constraints

Contributions

- First dynamic multilevel supply chain model within context of network equilibrium (Nagurney, Ke, Cruz, Hancock, and Southworth (2002))
- First financial network study to explicitly include the financial intermediaries quantifiably (Nagurney and Ke (2001a))
- First financial network study to consider the impact of electronic transactions quantifiably (Nagurney and Ke (2003))
- Incorporate the dimension of the explicit dynamic behavior of the various financial agents as well as the price dynamics
- Inclusion of variable weights brings the model closer to the "reality" of financial transactions

Future Research

Empirical study

- Multilevel supply chain network model
- Theoretical models of financial networks

Informational Networks

- Vary with respect to
 - Timelines
 - Quality of information
- Different costs
- Introduction of variable weights into current
 - Supply chain network models
 - International financial network models
- Additional criteria

Acknowledgement

This research was supported, in part, by NSF Grant No.: CMS-0085720 and, in part, by NSF Grant No.: IIS-0002647. This support is gratefully acknowledged.

Download articles at: <u>http://supernet.som.umass.edu</u>

Thank You!