A Dynamic Theory for the Integration of Social and Economic Networks with Applications to Supply Chain and Financial Networks

TINA WAKOLBINGER
ISENBERG SCHOOL OF MANAGEMENT
UNIVERSITY OF MASSACHUSETTS
AMHERST

FOGELMAN COLLEGE OF BUSINESS & ECONOMICS
UNIVERSITY OF MEMPHIS
JANUARY 29, 2007
Outline

- Introduction
 - Research Motivation
 - Literature Review
- Methodologies
- Dynamic Supernetworks for the Integration of Social Networks and Supply Chains
- Financial Engineering of the Integration of Global Supply Chain Networks and Social Networks with Risk Management
Outline

• The Evolution and Emergence of Integrated Social and Financial Networks
• The Co-Evolution and Emergence of Integrated International Financial Networks and Social Networks
• Future Research
Dissertation

- Develops a dynamic supernetwork framework that explicitly integrates social networks with economic networks
 - Captures rigorously the role that relationship levels play in economic networks
 - Captures interactions among individual sectors
 - Includes electronic transactions, transaction costs, and risk
Motivation

“Economic action is embedded in social relations that sometimes facilitate and at other times derail exchange.” (Uzzi, 1996, p. 674)

The evolution of social and economic networks should be studied together.
Motivation

• Important role of relationships in supply chain networks

• Important role of relationships in financial transactions
Research Framework

Decision-Makers

- Establish Relationships
- Direct Benefits and Costs
- Transact Products
- Influences Economic Transactions

Social Network

Economic Network
Related Supply Chain Literature

- First multitiered model studying supply chains in a network equilibrium context
 - Nagurney, Dong, and Zhang (2002)

- E-commerce in supply chains
Related Supply Chain Literature

- Risk management in supply chains

- Risk management in global supply chains
Related Financial Literature

- Representation of financial system as a network
 - Quesnay (1758)

- Risk-return analysis
 - Markowitz (1952, 1959)

- Systems of linked portfolios in credit networks
 - Thore (1969)

- Multi-sector, multi-instrument financial equilibrium
 - Nagurney, Dong, and Hughes (1992)
Related Financial Literature

- Network models with financial intermediation

- Electronic finance

- Global financial network
Research Framework

Decision-Makers

Establish Relationships

Direct Benefits and Costs

Influences Economic Transactions

Direct Benefits and Costs

Transact Products

Social Network

Economic Network
A social network is typically defined as a set of actors that may have relationships with one another.

The graph of ownership for stocks traded in 2001 on the New York Stock Exchange

Source: Valdis Krebs: www.orgnet.com

Source: Guido Caldarelli, SIAM News
Emerging Structure of Networks

- Randomly generated network
 - Erdős and Rényi (1959, 1960)
- Small world network
 - Watts and Strogatz (1998)
- Scale-free network
 - Barabási and Albert (1998)
- Network formation as a game between actors
 - Jackson (2004)
Dynamic Representation of Social Networks

Source: Gloor and Zhao: http://www.ickn.org/JoSS_subm/TeCFlow4JoSS.htm
Interaction between Social and Economic Networks

- **Kranton and Minehart (2000, 2001)**
 - Buyers can decide to establish costly relationships to bid in auctions of sellers
 - Buyers can only trade with sellers with whom they have a relationship
 - No relationship value, no relationship strength

- **Golicic, Foggin, and Mentzer (2003)**
 - Conceptual framework
 - Relationship magnitude influences costs and benefits
Methodologies

- Variational inequality theory
 - To analyze network equilibria
 - Nagurney (1999)

- Projected dynamical systems
 - To analyze the dynamics
 - Dupuis and Nagurney (1993)
 - Nagurney and Zhang (1996a)
Outline of Each Chapter

- Presentation of the supernetwork
 - Supernetwork structure
 - Behavior of individual decision-makers
- Variational inequality formulation
- Dynamics
 - Projected dynamical system
- Algorithm
- Numerical examples
“Dynamic Supernetworks for the Integration of Social Networks and Supply Chains with Electronic Commerce: Modeling and Analysis of Buyer-Seller Relationships with Computations”

Supernetwork 1

- Models the interaction between a supply chain and a social network
- Captures interactions among individual sectors
- Includes electronic transactions, transaction costs, and risk
- Shows the dynamic evolution of:
 - Product flows and associated prices on the supply chain network
 - Relationship levels on the social network
Motivation

- Many companies form close, collaborative relationships with suppliers and customers (cf. Hogan (2001))
 - Potential for competitive advantage
 - Important to create a portfolio of relationships (cf. Cannon and Perreault (1999), Golicic, Foggin, and Mentzer (2003))
 - Difficult to chose partners with whom relationships should be established
 - Difficult to quantify value of relationships
Relationships in Supply Chains

- **Can reduce risk**
 - Reduce information asymmetry
 - Reduce transactional uncertainty (cf. Uzzi (1996))

- **Can reduce transaction costs**
 - Reduce coordination and motivation costs (cf. Dyer (2000))
 - Facilitate the exchange of private information (cf. Uzzi (1999))
 - Avoid contracting costs, lower the need for monitoring, and facilitate contractual adaptation (cf. Gulati (1995))
Supernetwork Structure
Assumptions

- Manufacturers and retailers are multicriteria decision-makers
- Manufacturers and retailers try to
 - Maximize profit
 - Minimize risk
 - Maximize relationship value
 - Individual weights assigned to the different criteria
- Nash equilibrium
Supernetwork 1

- Decision-makers in the network can decide about the amount of product they wish to transact and the relationship levels $[0,1]$ they wish to establish.
- Establishing relationship levels incurs some costs.
- Relationship levels:
 - Influence transaction costs
 - Influence risk
 - Have some additional value ("relationship value")
A Manufacturer’s Decision-Making Problem

\[
\text{Maximize} \quad \sum_{j=1}^{n} \sum_{l=1}^{2} \rho_{ijl}^* q_{ijl} + \sum_{k=1}^{o} \rho_{ik}^* q_{ik} - f_i(Q^1, Q^2) - \sum_{j=1}^{n} \sum_{l=1}^{2} c_{ijl}(q_{ijl}, h_{ijl}) \\
- \sum_{k=1}^{o} c_{ik}(q_{ik}, h_{ik}) - \sum_{j=1}^{n} \sum_{l=1}^{2} b_{ijl}(h_{ijl}) - \sum_{k=1}^{o} b_{ik}(h_{ik}) - \alpha_i \sum_{j=1}^{n} \sum_{l=1}^{2} r_{ijl}(q_{ijl}, h_{ijl}) \\
+ \sum_{k=1}^{o} r_{ik}(q_{ik}, h_{ik}) + \beta_i \left(\sum_{j=1}^{n} \sum_{l=1}^{2} v_{ijl}(h_{ijl}) + \sum_{k=1}^{o} v_{ik}(h_{ik}) \right)
\]

subject to:

\[q_{ijl} \geq 0, \ \forall j, l, \quad q_{ik} \geq 0, \ \forall k,\]

\[0 \leq h_{ijl} \leq 1, \ \forall j, l, \quad 0 \leq h_{ik} \leq 1, \ \forall k.\]
A Retailer’s Decision-Making Problem

Maximize \[\rho_{2j} \sum_{k=1}^{o} q_{jk} - c_j(Q^1) - \sum_{i=1}^{m} \sum_{l=1}^{2} \hat{c}_{ijkl}(q_{ijkl}, h_{ijkl}) - \sum_{k=1}^{o} c_jk(q_{jk}, h_{jk}) - \]

\[\sum_{i=1}^{m} \sum_{l=1}^{2} \rho_{1ijkl} q_{ijkl} - \sum_{i=1}^{m} \sum_{l=1}^{2} \hat{b}_{ijkl}(h_{ijkl}) - \sum_{k=1}^{o} b_{jk}(h_{jk}) - \delta_j \sum_{i=1}^{m} \sum_{l=1}^{2} \hat{r}_{ijkl}(q_{ijkl}, h_{ijkl}) \]

+ \sum_{k=1}^{o} r_{jk}(q_{jk}, h_{jk})) + \gamma_j \left(\sum_{i=1}^{m} \sum_{l=1}^{2} \hat{v}_{ijkl}(h_{ijkl}) + \sum_{k=1}^{o} v_{jk}(h_{jk}) \right) \]

subject to:

\[\sum_{k=1}^{o} q_{jk} \leq \sum_{i=1}^{m} \sum_{l=1}^{2} q_{ijkl} \]

\[q_{ijkl} \geq 0 \quad \forall i, l, q_{jk} \geq 0, \quad \forall k, \]

\[0 \leq h_{ijkl} \leq 1, \quad \forall i, l, \quad 0 \leq h_{jk} \leq 1, \quad \forall k. \]
Equilibrium Conditions for Demand Markets

for all retailers: $j; j = 1, ..., n$:

\[
\rho_{2j}^* + \hat{c}_{jk}(q_{jk}^*, h_{jk}^*) \begin{cases}
= \rho_{3k}^*, & \text{if } q_{jk} > 0 \\
\geq \rho_{3k}^*, & \text{if } q_{jk} = 0,
\end{cases}
\]

and for all manufacturers $i; i = 1, \ldots, m$:

\[
\rho_{1ik}^* + \hat{c}_{ik}(q_{ik}^*, h_{ik}^*) \begin{cases}
= \rho_{3k}^*, & \text{if } q_{ik} > 0 \\
\geq \rho_{3k}^*, & \text{if } q_{ik} = 0,
\end{cases}
\]

and

\[
d_k(\rho_{3k}^*) \begin{cases}
= \sum_{j=1}^{n} q_{jk}^* + \sum_{i=1}^{m} q_{ik}^*, & \text{if } \rho_{3k}^* > 0 \\
\leq \sum_{j=1}^{n} q_{jk}^* + \sum_{i=1}^{m} q_{ik}^*, & \text{if } \rho_{3k}^* = 0.
\end{cases}
\]
The Equilibrium State

Definition: The equilibrium state of the supernetwork is one where the flows between the tiers of the supernetwork coincide and the product transactions, relationship levels, and prices satisfy the sum of the optimality conditions and the equilibrium conditions.

The equilibrium state is equivalent to a VI of the form:

\[
\text{determine } X^* \in \mathcal{K} \text{ satisfying }
\]

\[
\langle F(X^*), X - X^* \rangle \geq 0, \quad \forall X \in \mathcal{K},
\]
The Projected Dynamical System

The dynamic model can be formulated as a projected dynamical system (Dupuis and Nagurney (1993) and Nagurney and Zhang (1996a)) defined by the initial value problem:

\[\dot{X} = \Pi_K(X, -F(X)), \quad X(0) = X_0, \]

where \(\Pi_K \) denotes the projection of \(-F(X)\) onto \(K \) at \(X \) and \(X_0 \) is equal to the point corresponding to the initial product transactions, relationship levels, shadow prices, and demand market prices.

The set of stationary points of the projected dynamical system coincides with the set of solutions of the variational inequality problem.
The Disequilibrium Dynamics

The trajectory of the PDS describes the dynamic evolution of:

- Product transactions on the supply chain network
- Relationship levels on the social network
- Demand market prices
- Lagrange multipliers or shadow prices associated with the retailers
Euler Method

Step 0: Initialization

Set $X^0 \in \mathcal{K}$.

Let $\mathcal{T} = 1$ and set the sequence $\{\alpha_{\mathcal{T}}\}$ so that $\sum_{\mathcal{T}=1}^{\infty} \alpha_{\mathcal{T}} = \infty$, $\alpha_{\mathcal{T}} > 0$ for all \mathcal{T}, and $\alpha_{\mathcal{T}} \rightarrow 0$ as $\mathcal{T} \rightarrow \infty$.

Step 1: Computation

Compute $X^\mathcal{T} \in \mathcal{K}$ by solving the variational inequality subproblem:

$$\langle X^\mathcal{T} + \alpha_{\mathcal{T}} F(X^{\mathcal{T}-1}) - X^{\mathcal{T}-1}, X - X^\mathcal{T} \rangle \geq 0, \quad \forall X \in \mathcal{K}$$

Step 2: Convergence Verification

If $|X^\mathcal{T} - X^{\mathcal{T}-1}| \leq \epsilon$, with $\epsilon > 0$, a pre-specified tolerance, then stop; otherwise, set $\mathcal{T} := \mathcal{T} + 1$, and go to Step 1.
Qualitative Properties

I have established

- Existence of a solution to the VI
- Uniqueness of a solution to the VI
- Conditions for the existence of a unique trajectory to the projected dynamical system
- Convergence of the Euler method
Supernetwork 2

“Financial Engineering of the Integration of Global Supply Chain Networks and Social Networks with Risk Management”

Jose M. Cruz, Anna Nagurney, and Tina Wakolbinger (2006), Naval Research Logistics 53, 674-696.
Supernetwork 2

- Extends the supernetwork consisting of a supply chain and a social network to the international domain
 - Introduction of multiple countries and currencies
- Includes more general risk and relationship value functions
Motivation

- Global transactions are increasingly exposed to new risks and uncertainties
- Global marketplaces are increasingly competitive
- Relationships are a critical business asset in international transactions (cf. Castells (2000))
 - Need to reduce costs and increase benefits of business relationships
- Increasing interest in conceptualizing and measuring value in business-to-business relationships (cf. Hogan (2001))
Assumptions

- L countries
- Retailers are not country specific
- H different currencies
- Exchange rates are fixed
- All transaction costs are measured in a base currency
- The demand for the product in a country can be associated with a particular currency

Research Motivation

- Increasing importance of electronic financial transactions

- Realization of strong importance of personal relationships in financial transactions
 - Micro-financing
 - Lending
Relationships in Financial Transactions

- Make firms more likely to get loans and to receive lower interest rates on loans (cf. Uzzi (1999))

Supernetwork 3

- Models the interaction between financial and social networks
- Captures interactions among individual sectors
- Includes electronic transactions
- Allows for non-investment
- Incorporates transaction costs and risk
- Shows the dynamic evolution of:
 - Financial flows and associated prices on the financial network with intermediation
 - Relationship levels on the social network
Behavior of Decision-Makers

- **Source agents and intermediaries**
 - Maximize net revenue
 - Minimize risk
 - Maximize relationship value
 - Individual weights assigned to the different criteria

- **Risk-return analysis**
 - Markowitz (1952, 1959)
Supernetwork Structure

Flows are Relationship Levels

The Supernetwork

Flows are Financial Transactions

Financial Network with Intermediation

Social Network
Numerical Examples

The financial holdings of the two source agents: 20

Risk functions: variance-covariance matrices (identity matrices); Weights for risk are equal to 1
Numerical Examples

<table>
<thead>
<tr>
<th>Notation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_{ij1}(q_{ij1}, h_{ij1}) = .5q_{ij1}^2 + 3.5q_{ij1} - h_{ij1}$</td>
<td>Transaction costs for source agents transacting with intermediaries</td>
</tr>
<tr>
<td>$c_j(Q^1) = .5\left(\sum_{i=1}^{2} q_{ij}\right)^2$</td>
<td>Handling costs of the intermediaries</td>
</tr>
<tr>
<td>$\hat{c}{ij1}(q{ij1}, h_{ij1}) = 1.5q_{ij1}^2 + 3q_{ij1}$</td>
<td>Transaction costs of intermediaries transacting with source agents</td>
</tr>
<tr>
<td>$d_1(\rho_3) = -2\rho_{31} - 1.5\rho_{32} + 1000$</td>
<td>Demand functions at demand market 1</td>
</tr>
<tr>
<td>$d_2(\rho_3) = -2\rho_{32} - 1.5\rho_{31} + 1000$</td>
<td>Demand functions at demand market 2</td>
</tr>
<tr>
<td>$\hat{c}{jk1}(Q^2, Q^2, h^2, h^3) = q{jk1} - h_{jk1} + 5$</td>
<td>Transaction costs of consumers transacting with intermediaries</td>
</tr>
<tr>
<td>$c_{jk1}(q_{jk1}) = 0$</td>
<td>Transaction costs for intermediaries transacting with demand markets</td>
</tr>
<tr>
<td>$v_{ij1}(h_{ij1}) = h_{ij1}$</td>
<td>Relationship value functions between source agents and intermediaries</td>
</tr>
<tr>
<td>$v_{jk1}(h_{jk1}) = h_{jk1}$</td>
<td>Relationship value functions between intermediaries and demand markets</td>
</tr>
<tr>
<td>$b_{ij1}(h_{ij1}) = 2h_{ij1} + 1$</td>
<td>Relationship cost functions between source agents and intermediaries</td>
</tr>
<tr>
<td>$b_{jk1}(h_{jk1}) = h_{jk1} + 1$</td>
<td>Relationship cost functions between intermediaries and demand markets</td>
</tr>
</tbody>
</table>
The weight for relationship value for each source agent is 1 in Example 1 and 10 in Example 2.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Example 1</th>
<th>Example 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1*</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Q3*</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Slack</td>
<td>18.00</td>
<td>18.00</td>
</tr>
<tr>
<td>ε_j^*</td>
<td>14.58</td>
<td>14.58</td>
</tr>
<tr>
<td>$\rho_{31}^* = \rho_{32}^*$</td>
<td>285.14</td>
<td>285.14</td>
</tr>
<tr>
<td>h_{ij1}^*</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>h_{jk}^*</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
“The Co-Evolution and Emergence of Integrated International Financial Networks and Social Networks: Theory, Analysis, and Computations”

Anna Nagurney, Jose M. Cruz, and Tina Wakolbinger (2005); invited chapter for *Globalization and Regional Economic Modeling*, edited by R. Cooper, K. P. Donaghy, G. J. D. Hewings, Springer.
Contributions

First international network model to include
- Multicriteria decision-makers
 - Net revenue maximization
 - Risk minimization
 - Relationship value maximization
- Electronic transactions
- Dynamic adjustment processes

The model can handle as many
- Countries, currencies
- Source agents, intermediaries, demand markets
 as needed
Supernetwork Structure

Flows are Relationship Levels

The Supernetwork

International Financial Network with Intermediation

Flows are Financial Transactions

Social Network
Novelty of the Research

- Economic flows and social network structure are interrelated
- Supernetworks show the dynamic co-evolution of economic flows and social network structure
- Relationships have different strength
- Networks of relationships have a measurable economic value
Future Research

- I will simulate changes in
 - Transaction costs
 - Risk and demand functions
 - Weights for relationship value and risk
 - Costs for establishing relationships

- I will analyze effects of these changes on manufacturers’ and retailers’ utilities and the evolution of the social network structure
Future Research

- **Empirical and theoretical exploration of**
 - Relationship management in supply chains
 - Role of asymmetric information and reputation in electronic marketplaces and supply chains
 - Risk management in global supply chains

- **Further development of theoretical models with emphasis on**
 - Multi-period models
 - Dynamics
 - Uncertainty
Support for this research has been provided by the National Science Foundation under Grant No.: IIS-0002647 under the Management of Knowledge Intensive Dynamic Systems (MKIDS) program.
This support is gratefully acknowledged.
Thank you!