Reverse Supply Chain Management and Electronic Waste Recycling: A **Multitiered Network Equilibrium Framework for E-Cycling**

Anna Nagurney and Fuminori Toyasaki

This Research has been Supported by AT&T Industrial Ecology Fellowships

Background

 63 million PCs will be obsolete in 2003 in the U.S. (Appelbaum (2002)).

- The shortage of landfills
- The problems of exporting hazardous materials to developing countries

Motivation

Recent legislation both in the United States as well as abroad has attention on recycling electronic wastes.

- * Massachusetts in 2000 banned cathode-ray tubes from landfills.
- * The Home Appliances Recycling Law in Japan (2001)
- * Waste from Electrical and Electronic Equipment directive (WEEE) in EU (2008)

Motivation

- Electronic waste recycling differs from household recycling in two ways (Sodhi and Reimer (2001)).
 - 1. Electronic wastes contain hazardous materials.
 - 2. Electronic wastes contain precious materials.

* Collecting and processing electronic wastes may be feasible or profitable.

Motivation

From supply chains to green logistics

Legislative and consumer pressure lead manufactures to apply cradle-to-grave product management (Bloemhof-Ruwaard and et.al. (1995)).

The need to manage E-cycling from the prospective of reverse supply chains.

Some Background for our Perspective

EE

Supernetworks

Decision-Making for the Information Age

Anna Nagurney June Dong

Environmental Networks

A FRAMEWORK FOR ECONOMIC DECISION-MAKING AND POLICY ANALYSIS

> KANWALROOP KATHY DHANDA ANNA NAGURNEY PADMA RAMANUJAM

> > NEW HORIZONS IN Environmental Economics

General Editors WALLACE E. OATES HENK FOLMER

References

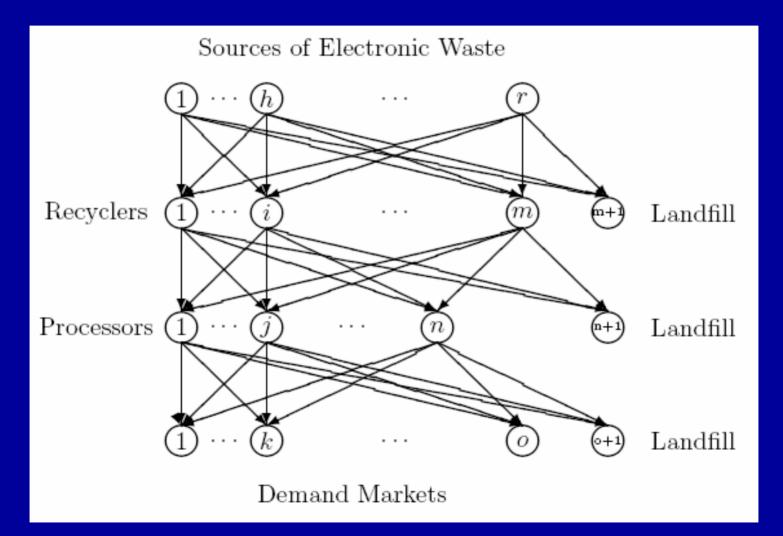
Nagurney, A., Dong, J., and Zhang, D. (2002) "A supply chain network equilibrium model." *Transportation Research E* **38**, 282-303.

Nagurney, A., Loo, J., Dong, J., and Zhang, D.
(2002)
"Supply chain networks and electronic commerce: a theoretical perspective." *Netnomics* 4, 187-220.

Nagurney, A., and Toyasaki, F. (2003) "Supply chain supernetworks and environmental criteria." *Transportation Research D* **8**, 185-213.

References

Many researchers have studied recycling issues; see,for example,


- * Hoshino, T., Yura, K., and Hitomi, K. (1995)
 Maximize total profit and recycling rate
 Use linear programming
- * Stuart, J.A., Ammons, J.C., and Turbini, L.J. (1999)
 Capture comprehensively measurable corporate environmental impact considerations for the product life cycle
 — Use mixed integer programming

References

* Uzsoy, R., and Venkatachalam, G. (1998)

- Consider recycling problems in terms of supply chains
- Use linear programming
- * Sodhi, M.S., and Reimer, B. (2001)
 Optimization models for the sources, the recyclers, and the processors

The 4-Tiered E-Cycling Network

Assumptions of the Model

- The prices and material flows are endogenously determined.
- The sources generate a fixed amount of electronic waste.
- The sources minimize their costs.
- The recyclers and the processors maximize their profits, respectively.
- Cournot-Nash oligopoly market.

Sources' Behavior

Minimize
$$\sum_{i=1}^{m} \rho_{1hi}^* q_{hi} + \bar{\rho}_{1h(m+1)} q_{h(m+1)} + \sum_{i=1}^{m+1} c_{hi}(q_{hi})$$
 (2)

subject to:

$$\sum_{i=1}^{m+1} q_{hi} = S^h, \tag{3}$$

$$q_{hi} \ge 0, \quad i = 1, \dots, m+1.$$
 (4)

Variational Inequality Formulation of the Sources

$$\sum_{h=1}^{r} \sum_{i=1}^{m} \left[\frac{\partial c_{hi}(q_{hi}^*)}{\partial q_{hi}} + \rho_{1hi}^* \right] \times [q_{hi} - q_{hi}^*]$$
$$+ \sum_{h=1}^{r} \left[\frac{\partial c_{h(m+1)}(q_{h(m+1)}^*)}{\partial q_{h(m+1)}} + \bar{\rho}_{1h(m+1)} \right] \times \left[q_{h(m+1)} - q_{h(m+1)}^* \right] \ge 0, \quad \forall Q^1 \in K,$$
where the feasible set K is defined as $K \equiv \{Q^1 \text{ such that } (3) \text{ and } (4) \text{ hold for all } h\}.$

Recyclers' Behavior

Maximize
$$\sum_{j=1}^{n} \rho_{2ij}^{*} q_{ij} + \sum_{h=1}^{r} \rho_{1hi}^{*} q_{hi} - \bar{\rho}_{2i(n+1)} q_{i(n+1)} - \sum_{j=1}^{n+1} c_{ij}(q_{ij}) - \sum_{h=1}^{r} \hat{c}_{hi}(q_{hi}) - c_i(Q^2)$$

subject to:

$$\sum_{j=1}^{n+1} \alpha_{ij} q_{ij} \le \sum_{h=1}^{r} q_{hi}$$

 $q_{hi} \ge 0, \quad h = 1, \dots, r; \quad q_{ij} \ge 0, \quad j = 1, \dots, n+1.$

Processors' Behavior

Maximize
$$\sum_{k=1}^{o} \rho_{3jk}^* q_{jk} - c_j(Q^3) - \bar{\rho}_{3j(o+1)} q_{j(o+1)} - \sum_{i=1}^{m} \rho_{2ij}^* q_{ij} - \sum_{k=1}^{o+1} c_{jk}(q_{jk}) - \sum_{i=1}^{m} \hat{c}_{ij}(q_{ij})$$

subject to:

$$\sum_{k=1}^{m} \beta_{jk} q_{jk} \le \sum_{i=1}^{m} q_{ij}$$

 $q_{ij} \ge 0, \quad i = 1, \dots, m; \quad q_{jk} \ge 0, \quad k = 1, \dots, o+1.$

The Demand Markets

For all processors j; j = 1,..., n

$$\rho_{3jk}^* + \hat{c}_{jk}(q_{jk}^*) \begin{cases} = \rho_{4k}^*, & \text{if } q_{jk}^* > 0 \\ \ge \rho_{4k}^*, & \text{if } q_{jk}^* = 0, \end{cases}$$

$$d_k(\rho_4^*) \begin{cases} = \sum_{j=1}^n q_{jk}^*, & \text{if } \rho_{4k}^* > 0 \\ \leq \sum_{j=1}^n q_{jk}^*, & \text{if } \rho_{4k}^* = 0. \end{cases}$$

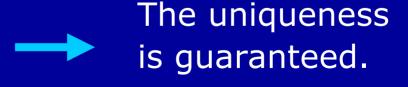
Variational Inequality Formulation

$$\begin{split} \sum_{h=1}^{r} \sum_{i=1}^{m} \left[\frac{\partial c_{hi}(q_{hi}^{*})}{\partial q_{hi}} + \frac{\partial \hat{c}_{hi}(q_{hi}^{*})}{\partial q_{hi}} - \gamma_{i}^{*} \right] \times [q_{hi} - q_{hi}^{*}] \\ + \sum_{h=1}^{r} \left[\frac{\partial c_{h}(m+1)(q_{h}^{*}(m+1))}{\partial q_{h(m+1)}} + \bar{\rho}_{1h(m+1)} \right] \times \left[q_{h(m+1)} - q_{h(m+1)}^{*} \right] \\ + \sum_{i=1}^{m} \sum_{j=1}^{n} \left[\frac{\partial c_{i}(Q^{2*})}{\partial q_{ij}} + \frac{\partial c_{ij}(q_{ij}^{*})}{\partial q_{ij}} + \frac{\partial \hat{c}_{ij}(q_{ij}^{*})}{\partial q_{ij}} + \alpha_{ij}\gamma_{i}^{*} - \eta_{j}^{*} \right] \times \left[q_{ij} - q_{ij}^{*} \right] \\ + \sum_{i=1}^{m} \left[\frac{\partial c_{i}(Q^{2*})}{\partial q_{i(n+1)}} + \frac{\partial c_{i(n+1)}(q_{i(n+1)}^{*})}{\partial q_{i(n+1)}} + \bar{\rho}_{2i(n+1)} + \alpha_{i(n+1)}\gamma_{i}^{*} \right] \times \left[q_{i(n+1)} - q_{i(n+1)}^{*} \right] \\ + \sum_{i=1}^{m} \left[\frac{\partial c_{i}(Q^{2*})}{\partial q_{i(n+1)}} + \frac{\partial c_{ik}(q_{jk}^{*})}{\partial q_{ik}} + \hat{c}_{jk}(q_{jk}^{*}) + \beta_{jk}\eta_{j}^{*} - \rho_{4k}^{*} \right] \times \left[q_{ijk} - q_{ijk}^{*} \right] \\ + \sum_{j=1}^{n} \sum_{k=1}^{n} \left[\frac{\partial c_{i}(Q^{3*})}{\partial q_{jk}} + \frac{\partial c_{ijk}(q_{jk}^{*})}{\partial q_{jk}} + \hat{c}_{jk}(q_{jk}^{*}) + \beta_{jk}\eta_{j}^{*} - \rho_{4k}^{*} \right] \times \left[q_{jk} - q_{jk}^{*} \right] \\ + \sum_{j=1}^{m} \left[\frac{\partial c_{j}(Q^{3*})}{\partial q_{j(o+1)}} + \frac{\partial c_{ij(o+1)}(q_{j(o+1)}^{*})}{\partial q_{j(o+1)}} + \beta_{j(o+1)}\eta_{j}^{*} + \bar{\rho}_{3j(o+1)} \right] \times \left[q_{j(o+1)} - q_{j(o+1)}^{*} \right] \\ + \sum_{j=1}^{n} \left[\frac{\partial c_{j}(Q^{3*})}{\partial q_{j(o+1)}} + \frac{\partial c_{j(o+1)}(q_{j(o+1)}^{*})}{\partial q_{j(o+1)}} + \beta_{jk}q_{jk}^{*} \right] \times \left[\eta_{j} - \eta_{j}^{*} \right] \\ + \sum_{k=1}^{n} \left[\sum_{j=1}^{n} q_{jk}^{*} - d_{k}(\rho_{4}^{*}) \right] \times \left[\rho_{4k} - \rho_{4k}^{*} \right] \ge 0, \quad \forall (Q^{1*}, Q^{2*}, \gamma^{*}, Q^{3*}, \eta^{*}, \rho_{4}^{*}) \in \mathcal{K}, \\ where \mathcal{K} \equiv \left\{ Q^{1}, Q^{2}, \gamma, Q^{3}, \eta, \rho_{4} \right\} |Q|(Q^{1}, Q^{2}, \gamma, Q^{3}, \eta, \rho_{4}) \ge 0, \text{ and } Q^{1} \text{ satisfies (3) for all h} \right\}$$

Variational Inequality Formulation

 $\langle F(X^*)^T, X - X^* \rangle \ge 0, \quad \forall X \in \mathcal{K},$

where $X \equiv (Q^1, Q^2, \gamma, Q^3, \eta, \rho_4)$ and

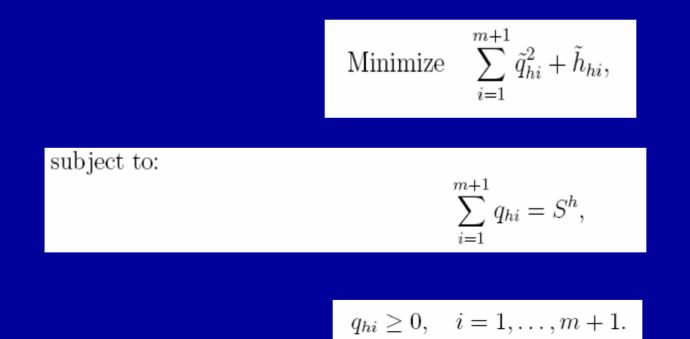

 $F(X) \equiv (F_{hi}, F_{ij}, F_i, F_{jk}, F_{\hat{j}}, F_{\hat{k}})_{h=1,\dots,r; i=1,\dots,m+1; j=1,\dots,n+1; k=1,\dots,o+1; \hat{j}=1,\dots,n; \hat{k}=1,\dots,o},$

Qualitative Properties

Bounded material flows and the imposition of a coercivity condition on demand functions or a boundedness condition

 The existence of
 material flows and the demand prices is guaranteed.

Under the strict monotonicity of F(x)


The Algorithm

Modified projection
method of KorpelevichStep 0: Initialization(1977)Step 1: Computation

This algorithm requires only monotonicity of F(x) and Lipshitz continuity condition. Step 2: Adaptation Step 2: Adaptation Step 3: Convergence Verification

Computation of the Top Tiers Material Flows

The top-tiered material flows are computed explicitly but not with specific formulae, since these flows must lie in the feasible set K.

Computation of the Material Flows from the Recyclers to the Processors and the Landfill

In particular, compute, at iteration τ , the \tilde{q}_{ij}^{τ} s according to:

$$\tilde{q}_{ij}^{\tau} = \max\{0, q_{ij}^{\tau-1} - \delta(\frac{\partial c_i(Q^{2\tau-1})}{\partial q_{ij}} + \frac{\partial c_{ij}(q_{ij}^{\tau-1})}{\partial q_{ij}} + \alpha_{ij}\gamma_i^{\tau-1} + \frac{\partial \hat{c}_{ij}(q_{ij}^{\tau-1})}{\partial q_{ij}} - \eta_j^{\tau-1})\}, \quad \forall i, j, j \in \mathbb{N}$$

and the $\tilde{q}_{i(n+1)}^{\tau}\mathbf{s}$ according to:

$$\tilde{q}_{i(n+1)}^{\tau} = \max\{0, q_{i(n+1)}^{\tau-1} - \delta(\frac{\partial c_i(Q^{2\tau-1})}{\partial q_{i(n+1)}} + \frac{\partial c_{i(n+1)}(q_{i(n+1)}^{\tau-1})}{\partial q_{i(n+1)}} + \alpha_{i(n+1)}\gamma_i^{\tau-1} + \bar{\rho}_{2i(n+1)})\}, \quad \forall i.$$

Computation of the Material Flows from Processors to the Demand Markets and the Landfill

Compute, at iteration τ , the \tilde{q}_{jk}^{τ} s according to:

$$\tilde{q}_{jk}^{\tau} = \max\{0, q_{jk}^{\tau-1} - \delta(\frac{\partial c_j(Q^{3\tau-1})}{\partial q_{jk}} + \frac{\partial c_{jk}(q_{jk}^{\tau-1})}{\partial q_{jk}} + \beta_{jk}\eta_j^{\tau-1} + \hat{c}_{jk}(q_{jk}^{\tau-1}) - \rho_{4k}^{\tau-1})\}, \quad \forall j, k, \ (36)$$

and the $\tilde{q}_{j(o+1)}^{\tau}$ s according to:

$$\tilde{q}_{j(o+1)}^{\tau} = \max\{0, q_{j(o+1)}^{\tau-1} - \delta(\frac{\partial c_j(Q^{3\tau-1})}{\partial q_{j(o+1)}} + \frac{\partial c_{j(o+1)}(q_{j(o+1)}^{\tau-1})}{\partial q_{j(o+1)}} + \beta_{j(o+1)}\eta_j^{\tau-1} + \bar{\rho}_{3j(o+1)})\}, \quad \forall j, k.$$
(37)

Computation of the Prices

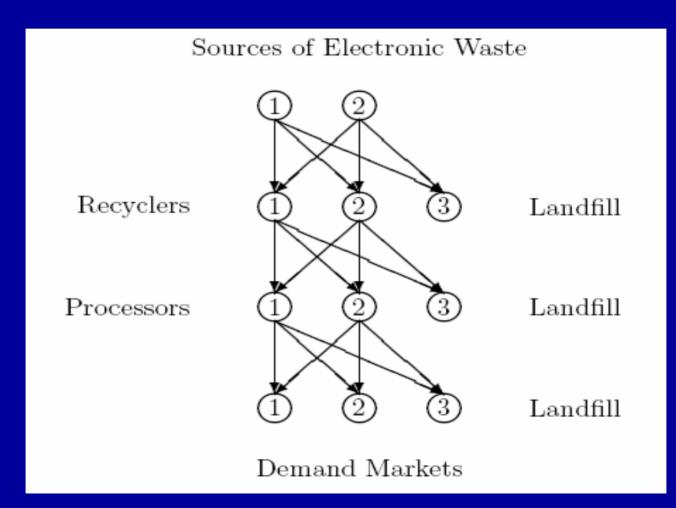
Computation of the Shadow Prices at the Recyclers

At iteration τ , compute the $\tilde{\gamma}_i^{\tau}$ s according to:

$$\tilde{\gamma}_i^{\tau} = \max\{0, \gamma_i^{\tau-1} - \delta(\sum_{h=1}^r q_{hi}^{\tau-1} - \sum_{j=1}^{n+1} \alpha_{ij} q_{ij}^{\tau-1})\}, \quad \forall i.$$

Computation of the Shadow Prices at the Processors

Similarly, we can compute the $\tilde{\eta}_j^{\tau}$ s according to:


$$\tilde{\eta}_j^{\tau} = \max\{0, \eta_j^{\tau-1} - \delta(\sum_{i=1}^m q_{ij}^{\tau-1} - \sum_{k=1}^{o+1} \beta_{jk} q_{jk}^{\tau-1})\}, \quad \forall j.$$

Computation of the Demand Market Prices at the Demand Markets

Finally, we can compute at iteration τ the $\tilde{\rho}_{4k}^{\tau}$ s according to:

$$\tilde{\rho}_{4k}^{\tau} = \max\{0, \rho_{4k}^{\tau-1} - \delta(\sum_{j=1}^{n} q_{jk}^{\tau-1} - d_k(\rho_4^{\tau-1}))\}, \quad \forall k$$

E-Cycling Network for the Numerical Examples

Common Input Data for Set 1 Examples

Volumes of electronic waste	$S^1 = S^2 = 20$
Transaction cost functions between	
sources and recyclers (cf. (1))	$c_{hi} = .5q_{hi}^2 + 3.5, h = 1, 2; i = 1, 2$
Transaction cost functions between	
sources and the landfill (cf. (1))	$c_{h3} = .5q_{h3}^2 + 2, h = 1, 2$
Second-tier landfill fixed prices	$\bar{\rho}_{1h3} = 1, h = 1, 2$
Transaction cost functions between	
recyclers and processors (cf. (6))	$c_{ij} = .5q_{ij}^2 + 5, i = 1, 2; j = 1, 2$
Transaction cost functions between	
recyclers and the landfill (cf. (6))	$c_{i3} = .5q_{i3}^2 + 3, i = 1, 2$
Third-tier landfill fixed prices	$\bar{\rho}_{2i3} = 1, i = 1, 2$
Transaction cost functions between	
recyclers and sources $(cf. (7))$	$\hat{c}_{hi} = 1.5q_{hi}^2 + 3, h = 1, 2; i = 1, 2$
Recycling cost functions (cf. (8))	$c_i = \sum_{j=1}^3 q_{ij}, i = 1, 2$ $c_i = 2 \sum_{k=1}^3 q_{ik}, j = 1, 2$
Processing cost functions (cf. after (14))	$c_j = 2\sum_{k=1}^{3} q_{jk}, j = 1, 2$
Transaction cost functions between	
the processors and the demand markets (cf. (13))	$c_{jk} = .5q_{jk}^2 + 1, j = 1, 2; k = 1, 2$
Transaction cost functions between	
processors and demand market pair	
(from the perspective of the consumers	
at the demand markets) (cf. (19))	$\hat{c}_{jk} = q_{jk} + 1, j = 1, 2; k = 1, 2$
Fourth-tier landfill fixed prices	$\bar{\rho}_{3j3} = 1, j = 1, 2$
Demand functions (cf. after (19))	$d_1 = -2\rho_{41} - 1.5\rho_{42} + 1000$
	$d_2 = -2\rho_{42} - 1.5\rho_{41} + 1000$

Equilibrium Solutions to Set 1 Examples (Baseline Set)

Set 1 Examples				
Equilibrium Solution	Example 1.1	Example 1.2	Example 1.3	
	$\alpha_{ij} = 1, \beta_{jk} = 1,$	$\alpha_{ij} = .5, \beta_{jk} = 1,$	$\alpha_{ij} = .5, \beta_{jk} = .25;$	
	$\forall i, j, k$	$\forall i, j, k$	$\forall i, j, k$	
Materia	l Flows from So	urces to Second 7	Tier	
$q_{hi}^*, h = 1, 2; i = 1, 2$	10.00	10.00	9.53	
$q_{h3}^*, h = 1, 2$	0.00	0.00	.95	
Material	Flows from Red	cyclers to Third	Tier	
$q_{ij}^*, i = 1, 2; j = 1, 2$	10.00	20.00	19.06	
$q_{i3}^{*}, i = 1, 2$	0,00	0.00	0.00	
Material I	Material Flows from Processors to Bottom Tier			
$q_{jk}^*, j = 1, 2; k = 1, 2$	10.00	20.00	76.26	
$q_{j3}^*, j = 1, 2$	0.00	0.00	0.00	
Prices at the Recyclers				
$\gamma_{i}^{*}, i = 1, 2$	231.97	372.47	40.67	
Prices at the Processors				
$\eta_{i}^{*}, j = 1, 2$	247.97	212.24	45.40	
Prices at the Demand Markets				
$\rho_{4k}^*, k = 1, 2$	279.99	274.28	242.14	

Common Input Data for Set 2 Examples

	4 0
Volumes of electronic waste	$S^1 = S^2 = 20$
Transaction cost functions between	
sources and recyclers (cf. (1))	$c_{hi} = .5q_{hi}^2 + 3.5, h = 1, 2; i = 1, 2$
Transaction cost functions between	
sources and the landfill (cf. (1))	$c_{h3} = .5q_{h3}^2 + 2, h = 1, 2$
Second-tier landfill fixed prices	$\bar{\rho}_{1h3} = 1, h = 1, 2$
Transaction cost functions between	
recyclers and processors (cf. (6))	$c_{ij} = .5q_{ij}^2 + 5, i = 1, 2; j = 1, 2$
Transaction cost functions between	-
recyclers and the landfill (cf. (6))	$c_{i3} = .5q_{i3}^2 + 3, i = 1, 2$
Third-tier landfill fixed prices	$\bar{\rho}_{2i3} = 1, i = 1, 2$
Transaction cost functions between	
recyclers and sources $(cf. (7))$	$\hat{c}_{hi} = 1.5q_{hi}^2 + 3, h = 1, 2; i = 1, 2$
Recycling cost functions (cf. (8))	$c_i = \sum_{j=1}^3 q_{ij}, i = 1, 2$ $c_j = 2 \sum_{k=1}^3 q_{jk}, j = 1, 2$
Processing cost functions (cf. after (14))	$c_j = 2\sum_{k=1}^{3} q_{jk}, j = 1, 2$
Transaction cost functions between	
the processors and the demand markets (cf. (13))	$c_{jk} = .5q_{jk}^2 + 1, j = 1, 2; k = 1, 2$
Transaction cost functions between	
processors and demand market pair	
(from the perspective of the consumers	
at the demand markets) (cf. (19))	$\hat{c}_{jk} = q_{jk} + 1, j = 1, 2; k = 1, 2$ $\bar{\rho}_{3j3} = 1, j = 1, 2$
Fourth-tier landfill fixed prices	$\bar{\rho}_{3j3} = 1, j = 1, 2$
Demand functions (cf. after (19))	$d_1 = -2\rho_{41} - 1.5\rho_{42} + 100$
	$d_2 = -2\rho_{42} - 1.5\rho_{41} + 100$

Equilibrium Solutions to Set 2 Examples (with Demand Function Distinct from Set 1's Examples)

Set 9 Examples					
	Set 2 Examples				
Equilibrium Solution	-	-	-		
			$\alpha_{ij} = .5, \beta_{jk} = .25,$		
	$\forall i, j, k$	$\forall i, j, k$	$\forall i, j, k$		
		urces to Second 7	Гier		
$q_{hi}^*, h = 1, 2; i = 1, 2$	3.50	2.75	2.75		
$q_{h3}^8, h = 1, 2$	13.00	14.50	14.50		
Material	Flows from Rec	yclers to Third '	Tier		
$q_{ij}^*, i = 1, 2; j = 1, 2$	3.50	4.50	1.72		
$q_{i3}^{*}, i = 1, 2$	0.00	0.00	0.00		
Material H	Material Flows from Processors to Bottom Tier				
$q_{jk}^*, j = 1, 2; k = 1, 2$	3.50	4.50	6.90		
$q_{j3}^{*}, j = 1, 2$	0.00	0.00	0.00		
Prices at the Recyclers					
$\gamma_{i}^{*}, i = 1, 2$	4.52	0.00	0.00		
Prices at the Processors					
$\eta_{j}^{*}, j = 1, 2$	14.03	10.49	7.71		
Prices at the Demand Markets					
$\rho_{4k}^*, k = 1, 2$	26.56	26.00	24.63		

Input Data for Set 3 Examples

In Example 3.1, we used data identical to that of Example 2.1, except that the demand functions

were

$$d_1 = -2\rho_{41} - 1.5\rho_{42} + 150, \quad d_2 = -2\rho_{42} - 1.5\rho_{41} + 100.$$

In Example 3.2, we used data identical to that of Example 3.1, except that the fixed unit prices associated with the sources using the landfill.

$$\bar{\rho}_{h3} = 10 \text{ for } h = 1, 2$$

Example 3.3 had data identical to that in Example 3.2, except that the values of the conversion rates were

$$\alpha_{ij}$$
s =.5 for $i = 1, 2; j = 1, 2, 3$

$$\beta_{jk}$$
s=.25 for $j = 1, 2$ and $k = 1, 2, 3$.

Equilibrium Solutions to Set 3 Examples (with Demand Functions Distinct at each Market)

	a	-		
	Set 3 Exa	mples		
Equilibrium Solution	-	-	-	
			$\alpha_{ij} = .5, \beta_{jk} = .25,$	
	$\forall i, j, k$	$\forall i, j, k$	$\forall i, j, k$	
Materia	l Flows from So	urces to Second	Tier	
$q_{hi}^*, h = 1, 2, i = 1, 2$	5.36	5.87	4.25	
$q_{h3}^*, h = 1, 2$	9.29	8.27	11.50	
Materia	Material Flows from Recyclers to Third Tier			
$q_{ij}^*, i = 1, 2; j = 1, 2$	5.36	5.87	2.21	
$q_{i3}^{*}, i = 1, 2$	0.00	0.00	0.00	
Material 1	Flows from Proc	essors to Bottor	n Tier	
$q_{jk}^*, j = 1, 2; k = 1, 2$	10.73	11.75	$q_{i1}^* = 16.00; j = 1, 2$	
<i></i>			$q_{j1}^* = 16.00; j = 1, 2$ $q_{j2}^* = 1.72, j = 1, 2$	
$q_{j3}^*, j = 1, 2$	0.00	0.00	0.00	
Prices at the Recyclers				
$\gamma_{i}^{*}, i = 1, 2$	15.64	9.71	0.00	
Prices at the Processors				
$\eta_{j}^{*}, j = 1, 2$	27.00	21.58	8.20	
Prices at the Demand Markets				
$\rho_{4k}^*, k = 1, 2$	4.11	5.87	9.22	

Summary

- Developed a rigorous E-cycling mathematical model

 (the endogenous equilibrium prices and material shipments between tiers)
- Provided qualitative properties of the equilibrium electronic waste material flow and price pattern
- Provided numerical results

Thank You!

For more information on this paper and the Virtual Center for Supernetworks and its activities see:

http://supernet.som.umass.edu