
Supply Chain Networks, Wages, and
Labor Productivity:

Insights from Lagrange Analysis and Computations

Anna Nagurney

Eugene M. Isenberg Chair in Integrative Studies
Director – Virtual Center for Supernetworks

Isenberg School of Management
University of Massachusetts Amherst

POMS Conference
April 21-25, 2022

Anna Nagurney Supply Chain Networks, Wages, and Labor Productivity



Acknowledgments

This talk is dedicated to essential workers, whose
selflessness, expertise, and dedication have helped to sustain
us in the Covid-19 pandemic.

I would also like to acknowledge all the freedom-loving
people on the planet, including those fighting for their
freedom in Ukraine.

Anna Nagurney Supply Chain Networks, Wages, and Labor Productivity



It’s All About People

A major research theme of ours in the COVID-19 pandemic is the

inclusion of labor in supply chains, using optimization and game

theory. The theme continues, as does its relevance, as the war on

Ukraine continues to rage.

Anna Nagurney Supply Chain Networks, Wages, and Labor Productivity



Research and Some Publications

“Perishable Food Supply Chain Networks with Labor in the
Covid-19 Pandemic,” A. Nagurney, in: Dynamics of Disasters -
Impact, Risk, Resilience, and Solutions, I.S. Kotsireas, A.
Nagurney, P.M. Pardalos, and A. Tsokas, Editors, Springer
International Publishing Switzerland, 2021, pp 173-193.

Anna Nagurney Supply Chain Networks, Wages, and Labor Productivity



Perishable Food Supply Chain Network Model with Labor
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Figure: The Perishable Food Supply Chain Network Topology
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Research and Some Publications

In a series of papers we constructed supply chain network models

with labor that included productivity factors and constraints on

labor in order to identify the impacts of disruptions and to suggest

possible mitigation procedures.
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Supply Chain Networks, Wages, and Productivity

This presentation is based on the paper, of the same title,
which is now in press in the Journal of Global Optimization:
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Supply Chain Networks, Wages, and Productivity

In this paper, we explore the impacts of wage-responsive
productivity of labor in supply chain networks on product
consumer prices and profits of competing firms.

Each link productivity factor is an increasing function of the
wage on the link (and not fixed). Hence, the productivity
factors are wage-responsive;

The amount of labor available on each link is fixed;

There is an upper bound on the wage on each link that a firm
desires to pay. The previously noted work considered bounds
on labor and not on wages;

We conduct Lagrange analysis on the model, which yields an
alternative variational inequality, amenable for elegant
solution, plus managerial insights;

We conduct sensitivity analysis on impacts of changes to
wage-responsive productivity as well as bounds on wages that
firms are willing to pay their employees.
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Supply Chain Networks, Wages, and Productivity

The Nobel laureate Joseph Stiglitz (1982) also considered
wage-responsive (dependent) productivity of labor but not in a
supply chain network context as we do here, wherein different links
of a firm associated with production, transportation, storage, and
distribution and different sites can have distinct wage-responsive
productivity factors and these can differ also across the supply
chain links of the competing firms.

This paper adds to the recent literature on novel applications
and extensions of supply chain networks using the rigorous
methodology of the theory of variational inequalities to
address challenges in the commercial sector inspired by the
COVID-19 pandemic.
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The Supply Chain Network Game Theory Models with
Wage-Responsive Productivity
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Te Basic Notation

Table: Notation for the Models with Wage-Dependent Labor Productivity

Notation Definition

xp ; p ∈ P i
k nonnegative product flow on path p beginning at firm node i and ending at demand

market k; i = 1, . . . , I ; k = 1, . . . , nR . Firm i ’s product path flows are grouped

into the vector x i ∈ R
n
Pi

+ . All the firms’ product path flows are grouped into the

vector x ∈ R
nP
+ .

dik demand for the product of firm i at demand market k; i = 1, . . . , I ; k =

1, . . . , nR . We group the {dik} elements for firm i into the vector d i ∈ R
nR
+ .

All the demands are grouped into the vector d ∈ R
I×nR
+ .

fa nonnegative flow of the product on link a, ∀a ∈ L. All the link flows are grouped

into the vector f ∈ R
nL
+ .

lfixed
a fixed amount of labor on link a (typically denoted in person hours).
wa wage for a unit of labor on link a per hour the cognizant firm is willing to pay, on

links a ∈ Li for i = 1, . . . , I .
w̄a upper bound on wage on link a that the firm responsible for the link is willing to

pay, for a ∈ Li for i = 1, . . . , I .
αawa productivity factor relating input of labor to output of product flow on link a, where

αa is given ∀a ∈ L and is positive and is refered to as the wage-responsiveness
productivity factor.

ĉa(f ) total operational cost associated with link a, ∀a ∈ L.
ρik (d) demand price function for firm i ’s product at demand market k; i = 1, . . . , I ;

k = 1, . . . , nR .

Anna Nagurney Supply Chain Networks, Wages, and Labor Productivity



The Model Without Wage Bounds

All the product paths flows must be nonnegative:

xp ≥ 0, ∀p ∈ P i , ∀i . (1)

The demand for each product must be satisfied at each demand
market, that is, for each firm i : i = 1, . . . , I :∑

p∈P i
k

xp = dik , k = 1, . . . , nR . (2)

The link flows of each firm i ; i = 1, . . . , I , are related to the
product path flows thus:

fa =
∑
p∈P

xpδap, ∀a ∈ Li , (3)

where δap = 1, if link a is contained in path p, and 0, otherwise.
A novel features of our model is the use of the following equations:

fa = αawal
fixed
a , ∀a ∈ Li , i = 1, . . . , I . (4)
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The Utility Functions of the Competing Firms

The utility function of each firm i , U i ; i = 1, . . . , I , represents the
profit, which is the difference between its revenue,

∑nR
k=1 ρik(d)dik ,

and its total operational costs and all the wages paid for labor,∑
a∈Li ĉa(f )−

∑
a∈Li wal

fixed
a :

U i =

nR∑
k=1

ρik(d)dik −
∑
a∈Li

ĉa(f )−
∑
a∈Li

wal
fixed
a . (5)

Due to (2), we can define demand price functions ρ̃ik(x) ≡ ρik(d),
∀i , ∀k, and, due to (3), we can define the total operational link
cost functions c̃a(x) ≡ ĉa(f ), ∀a ∈ L. Also, using (4), and,
subsequently, (3), we conclude that

wal
fixed
a =

fa
αalfixed

a

lfixed
a =

(
∑

p∈P xpδap)

αa
, ∀a ∈ L. (6)
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The Utility Functions of the Competing Firms

The Utility Functions

We define Ũi (x) ≡ Ui ; i = 1, . . . , I and, by also making use of (2):

Ũ i (x) =

nR∑
k=1

∑
p∈P i

k

ρ̃ik(x)xp−
∑
a∈Li

c̃a(x)−
∑
a∈Li

(
∑

p∈P xpδap)

αa
,∀i . (7)

The feasible set Ki for firm i is defined as: Ki ≡ {x i |x i ∈ R
n

Pi

+ , for

i = 1, . . . , I}. Also, K ≡
∏I

i=1 Ki .
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The Supply Chain Nash Equilibrium

Each firm i ; i = 1, . . . , I , seeks to determine its vector of strategies

consisting of its product path flows x i ∈ R
nPi

+ that maximizes its profits,

Ũ i (x), satisfying the Nash (1950,1951) equilibrium conditions in the

definition below. We assume that the utility function of each firm is

concave wrt its strategies and is continuously differentiable.

Definition 1: Supply Chain Network Nash Equilibrium for the
Game Theory Model Without Wage Bounds

A path flow pattern x∗ ∈ K is a supply chain network Nash
Equilibrium if for each firm i; i = 1, . . . , I :

Ũ i (x i∗, x̂ i∗) ≥ Ũ i (x i , x̂ i∗), ∀x i ∈ Ki , (8)

where x̂ i∗ ≡ (x1∗, . . . , x i−1∗, x i+1∗, . . . , x I∗).

According to (8), a Nash equilibrium is achieved when no
firm, acting unilaterally, can improve upon its profits.
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Variational Inequality Formulations

Using the classical theory of Nash equilibria and variational inequalities, it
follows that the solution to the above Nash Equilibrium problem (see
Nash (1950, 1951)) coincides with the solution of the variational
inequality problem: determine x∗ ∈ K , such that

−
I∑

i=1

nR∑
k=1

∑
p∈P i

k

∂Ũ i (x∗)

∂xp
× (xp − x∗p ) ≥ 0, ∀x ∈ K , (9)

or: determine x∗ ∈ K , such that

I∑
i=1

nR∑
k=1

∑
p∈P i

k

∂C̃p(x
∗)

∂xp
+

∑
a∈Li

1

αa
δap − ρ̃ik(x

∗)−
nR∑
l=1

∂ρ̃il(x
∗)

∂xp

∑
q∈P i

l

x∗q

×[xp−x∗p ] ≥ 0, ∀x ∈ K ,

(10)
where

∂C̃p(x)

∂xp
≡

∑
a∈Li

∑
b∈Li

∂ĉb(f )

∂fa
δap, ∀p ∈ P i ,∀i ; ∂ρ̃il(x)

∂xp
≡ ∂ρil(d)

∂dik
,∀p ∈ P i

k ,∀i , k.

(11)
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The Model with Wage Bounds plus Lagrange Analysis

We now extend the above model to introduce upper bounds on
wages that the firms are willing to pay their workers per hour. We
allow for distinct upper limits on different links. Specifically, the
model remains as above except for the addition of the following
constraints:

wa ≤ w̄a, ∀a ∈ L. (12)

Making use of (3) and (4), (12) can be reexpressed as:∑
p∈P

xpδap ≤ w̄aαal
fixed
a , ∀a ∈ L. (13)

We define the feasible set
K i

1 ≡ {x i ≥ 0, and (13) holds for all a ∈ Li}, with K1 ≡
∏I

i=1 K i
1.

With the wage link upper bounds the statement of the Nash
equilibrium according to Definition 1 is still relevant but over
the feasible set K1. The variational inequality (10) also holds
but with the new feasible set K1.
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The Model with Wage Bounds plus Lagrange Analysis

We define V (x) as

V (x) ≡
I∑

i=1

nR∑
k=1

∑
p∈P i

k

∂C̃p(x
∗)

∂xp
+

∑
a∈Li

1

αa
δap − ρ̃ik(x

∗)−
nR∑
l=1

∂ρ̃il(x
∗)

∂xp

∑
q∈P i

l

x∗q


×[xp − x∗p ] (14)

and observe that the variational inequality with wage bounds can be
rewritten as the following minimization problem:

min
K1

V (x) = V (x∗) = 0. (15)

In order to construct the Lagrange function, we reformulate the
constraints as below, with the associated Lagrange multiplier next to the
corresponding constraint:

ea =
∑
p∈P

xpδap − w̄aαal
fixed
a ≤ 0, λa,∀a,

gp = −xp ≤ 0, εp,∀p, (16)

and
Γ(x) = (ea, gp)a∈L;p∈P . (17)
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The Model with Wage Bounds plus Lagrange Analysis

We now construct the Lagrange function L(x , λ, ε)

=
I∑

i=1

nR∑
k=1

∑
p∈P i

k

∂C̃p(x
∗)

∂xp
+

∑
a∈Li

1

αa
δap − ρ̃ik(x

∗)−
nR∑
l=1

∂ρ̃il(x
∗)

∂xp

∑
q∈P i

l

x∗q


×[xp − x∗p ] +

∑
a∈L

eaλa +
∑
p∈P

gpεp,∀x ∈ RnP
+ ,∀λ ∈ RnL

+ ,∀ε ∈ RnP
+ , (18)

where λ is the vector of all λas and ε is the vector of all εps.
The feasible set K1 is convex and the Slater condition is satisfied. Indeed,
we know that Γ(x) is convex and ∃x̄ ∈ RnP

+ : Γ(x̄) < 0, since we can
always construct a small enough path flow pattern. Hence, if x∗ is a
minimal solution to problem (15), there exist λ∗ ∈ RnL

+ and ε∗ ∈ RnP
+

such that the vector (x∗, λ∗, ε∗) is a saddle point of the Lagrange
function (18):

L(x∗, ε, λ) ≤ L(x∗, ε∗, λ∗) ≤ L(x , ε∗, λ∗) (19)

and
e∗a λ∗a , ∀a,

g∗p ε∗p = 0, ∀p. (20)
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The Model with Wage Bounds plus Lagrange Analysis

From the right-hand side of (19) it follows that x∗ ∈ RnP
+ is a minimal

point of the function L(x , ε∗, λ∗) in the whole space RnP and, therefore,
we have that for all p ∈ P i

k , ∀i , k:

∂L(x∗, ε∗, λ∗)

∂xp
=

∂C̃p(x
∗)

∂xp
+

∑
a∈Li

1

αa
δap − ρ̃ik(x

∗)−
nR∑
l=1

∂ρ̃il(x
∗)

∂xp

∑
q∈P i

l

x∗q


+

∑
a∈L

λ∗aδap − ε∗p = 0, (21)

together with conditions (20).
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The Model with Wage Bounds plus Lagrange Analysis

Theorem

Conditions (20) and (21) correspond to an equivalent variational inequality to the one in (10), but over the feasible

set K1, given by: determine (x∗, ε∗, λ∗) ∈ R
2nP +nL
+ such that

IX
i=1

nRX
k=1

X
p∈Pi

k

2664 ∂C̃p(x∗)

∂xp
+

X
a∈Li

1

αa
δap − ρ̃ik (x∗)−

nRX
l=1

∂ρ̃il (x
∗)

∂xp

X
q∈Pi

l

x∗q +
X
a∈Li

λ
∗
a δap − ε

∗
p

3775× [xp − x∗p ]

+
X
p∈P

x∗p ×
h
εp − ε

∗
p

i
+

X
a∈L

24w̄aαa l
fixed
a −

X
p∈P

x∗p δap

35× ˆ
λa − λ

∗
a

˜
≥ 0, ∀(x, ε, λ) ∈ R

2nP +nL
+ , (22)

or simplified as: determine (x∗, λ∗) ∈ R
nP +nL
+ such that:

IX
i=1

nRX
k=1

X
p∈Pi

k

2664 ∂C̃p(x∗)

∂xp
+

X
a∈Li

1

αa
δap +

X
a∈Li

λ
∗
a δap − ρ̃ik (x∗)−

nRX
l=1

∂ρ̃il (x
∗)

∂xp

X
q∈Pi

l

x∗q

3775 × [xp − x∗p ]

+
X
a∈L

24w̄aαa l
fixed
a −

X
p∈P

x∗p δap

35 × ˆ
λa − λ

∗
a

˜
≥ 0, ∀(x, λ) ∈ R

nP +nL
+ . (23)
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Numerical Examples
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Figure: The Supply Chain Network Topology for the Numerical Examples
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Numerical Examples

The total operational link cost functions are:

ĉa(f ) = 2f 2
a , ĉb(f ) = 2f 2

b , ĉc(f ) = .5f 2
c , ĉd = .5f 2

d ,

ĉe(f ) = f 2
e + 2fe , ĉf (f ) = .5f 2

f , ĉg (f ) = .5f 2
g ,

ĉh(f ) = 1.5f 2
h , ĉi (f ) = 1.5f 2

i + fi , ĉj(f ) = f 2
j + 2fj , ĉk = f 2

k ,

ĉl(f ) = .5f 2
l , ĉm(f ) = .5f 2

m + fm, ĉn(f ) = f 2
n + 2fn.

The demand price functions are:

ρ11(d) = −5d11 − 2d21 + 800, ρ12(d) = −5d12 − d22 + 850,

ρ21(d) = −3d21 − d11 + 700, ρ22(d) = −5d22 − .5d12 + 750.

The operational cost functions and demand price functions are
constructed to reflect a fairly high value product that is not that
expensive to produce, transport, store, and distribute.
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Numerical Examples

The αa and the lfixed
a parameters (cf. (4)) are, for a ∈ L as follows:

αa = .5, αb = .5, αc = .3, αd = .3, αe = .4, αf = .5, αg = .3,

αh = .3, αi = .4, αj = .3, αk = .3, αl = .5, αm = .3, αn = .3,

lfixed
a = 10, lfixed

b = 10, lfixed
c = 9, lfixed

d = 7, lfixed
e = 8, lfixed

f = 6,

lfixed
g = 8, lfixed

h = 3, lfixed
i = 3, lfixed

j = 9, lfixed
k = 9, lfixed

l = 8,

lfixed
m = 7, lfixed

n = 8.

The paths are defined as: path p1 = (a, c , e, f ), path
p2 = (b, d , e, f ), path p3 = (a, c , e, g), path p4 = (b, d , e, g), path
p5 = (h, j , l ,m), path p6 = (i , k, l ,m), path p7 = (h, j , l , n), and
path p8 = (i , k, l , n, ).
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Numerical Examples

Series 1: Examples 1 Through 4
Example 1 has all link wage bounds w̄a = 10; Example 2 has all
wage bounds w̄a = 15; Example 3 has all wage bounds w̄a = 20;
and Example 4 has all wage bounds w̄a = 25. We use the modified
projection method for the computations.
Example 1 Results
The modified projection method converges to the following
equilibrium path flow pattern:

x∗p1
= 7.19, x∗p2

= 7.19, x∗p3
= 8.81, x∗p4

= 8.81,

x∗p5
= 0.59, x∗p6

= 2.09, x∗p7
= 8.41, x∗p8

= 9.91.

The demand market prices are:

ρ11 = 722.75, ρ12 = 743.56, ρ21 = 677.59, ρ22 = 722.86.

The profit for Firm 1 is: 20,530.75 and the profit for Firm 2 is:
13,628.85.
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Numerical Examples

Example 2 Results
The modified projection method converges to the following
equilibrium path flow pattern:

x∗p1
= 11.19, x∗p2

= 11.19, x∗p3
= 12.81, x∗p4

= 12.81,

x∗p5
= 1.94, x∗p6

= 4.19, x∗p7
= 11.56, x∗p8

= 13.81.

The demand market prices are now:

ρ11 = 675.81, ρ12 = 696.54, ρ21 = 659.22, ρ22 = 711.82.

The profit for Firm 1 is now: 26,605.95, whereas the profit for
Firm 2 is: 19,213.26.

With the wage bounds raised, reflecting that the firms are
willing to pay their workers more for their labor, the profit for
each firm increases, while the demand market prices that
consumers pay decrease, signaling a win-win situation.
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Numerical Examples

Example 3 Results
The modified projection method for Example 3, with all wage
bounds set to 20, converges to the following equilibrium path flow
pattern:

x∗p1
= 15.20, x∗p2

= 15.20, x∗p3
= 16.81, x∗p4

= 16.81,

x∗p5
= 3.29, x∗p6

= 6.29, x∗p7
= 14.71, x∗p8

= 17.71.

The demand market prices are now:

ρ11 = 628.88, ρ12 = 649.53, ρ21 = 640.86, ρ22 = 700.78.

The profit for Firm 1 is now: 29,897.83 and the profit for Firm 2
is: 24,012.63.

With the wage bounds further increased that the profits of
both firms increase (as compared to their respective values
in Examples 1 and 2) and, again, the demand market prices
decrease at all demand markets under more generous upper
bounds on wages.
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Numerical Examples

Example 4 Results
The algorithm for Example 4, with all wage bounds now set to 25,
converges to the following equilibrium path flow pattern:

x∗p1
= 18.69, x∗p2

= 18.69, x∗p3
= 20.30, x∗p4

= 20.30,

x∗p5
= 4.67, x∗p6

= 8.42, x∗p7
= 17.83, x∗p8

= 21.58.

The demand market prices are:

ρ11 = 586.95, ρ12 = 607.61, ρ21 = 623.37, ρ22 = 690.28.

The profit for Firm 1 is now: 30,425.58 and the profit for Firm 2
is: 28,060.79.

We see that the results are quite robust and reveal that
raising wages can benefit both firms as well as consumers.
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Sensitivity Analysis

We now proceed to conduct additional sensitivity analysis.

Figure: Sensitivity Analysis for Different Wage Bounds on the Supply
Chain Networks of Both Firms and Effects on the Firms’ Profits
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Sensitivity Analysis

We see something interesting happening, and this further
emphasizes the importance of having a rigorous theoretical
and computational framework for conducting such exercises.

At a wage bound of 30, Firm 1 now has a lower profit than it had
at a wage bound of 25, whereas the profit of Firm 2 continues to
increase, but at a decreasing rate. Plus, Firm 2 now has a profit
exceeding that of Firm 1. And, for link wage bounds of 65 or
higher, the profit of Firm 1 stabilizes at 27,225.99 and that of Firm
2 at 39,800.45.
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Sensitivity Analysis

It is important to emphasize that the model has, in effect, link
production functions that relate labor, which is fixed, and the
wage-responsiveness productivity factor and wage to the product
output on each link.

However, the product flows are associated with paths, since the
product requires multiple supply chain links, beginning from
production to ultimate distribution, and the latter, for each firm
and demand market pair sum up to the demand.

All these are intricately related. Of course, the solution of the
supply chain network model without bounds for this dataset would
yield the same profits (and equilibrium pattern) as obtained for
wages on the supply chain links of 65 or above.
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Numerical Results and Insights

Our paper has many additional numerical examples as well as
results of sensitivity analysis exercises.

• Firms that are willing to pay their workers higher hourly
wages can enjoy higher profits, and can, hence, beat their
competitors, in terms of lower prices for consumers at the demand
markets, higher wages for the workers, and, of course, higher
profits.

• Our framework also has relevance for addressing, in part,
the labor shortage in various industrial sectors and even in
freight services since we show that, even with fixed labor
amounts associated with various supply chain network economic
activities, having more productive labor, that is wage-sensitive, can
yield financial gains for firms.
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Numerical Results and Insights

• However, it is important to conduct sensitivity analysis, since,
after a point that the wage bounds are raised, a firm may
experience a decline in profits. Furthermore, ultimately, the profits
of competing firms may stabilize and there will be no change with
increases in the wage bounds. This is also interesting, since it
suggests a natural type of wage “cap.”

• This work adds to the literature on the integration of
principles from economics and operations research
perspectives for supply chains.
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Thank You!

For more information: https://supernet.isenberg.umass.edu/
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