Supply Chain Network Design for Critical Needs with Outsourcing

Anna Nagurney¹ Min Yu¹ Qiang Qiang²

¹Isenbern School of Management
University of Massachusetts
Amherst, Massachusetts 01003

²Management Division
Pennsylvania State University
Great Valley School of Graduate Professional Studies
Malvern, Pennsylvania 19355

NetSci 2010 Conference
Massachusetts Institute of Technology
Cambridge, MA
May 12 - 14, 2010
This research was supported by the John F. Smith Memorial Fund at the University of Massachusetts Amherst. This support is gratefully acknowledged.
The number of disasters is increasing globally, as is the number of people affected by disasters. At the same time, with the advent of increasing globalization, viruses are spreading more quickly and creating new challenges for medical and health professionals, researchers, and government officials.

Between 2000 and 2004 the average annual number of disasters was 55% higher than in the period 1994 through 1999, with 33% more humans affected in the former period than in the latter (cf. Balcik and Beamon (2008) and Nagurney and Qiang (2009)).
Natural Disasters (1975–2008)
However, although the average number of disasters has been increasing annually over the past decade the average percentage of needs met by different sectors in the period 2000 through 2005 identifies significant shortfalls.

According to Development Initiatives (2006), based on data in the Financial Tracking System of the Office for the Coordination of Humanitarian Affairs, from 2000-2005, the average needs met by different sectors in the case of disasters were:

- 79% by the food sector;
- 37% of the health needs;
- 35% of the water and sanitation needs;
- 28% of the shelter and non-food items, and
- 24% of the economic recovery and infrastructure needs.
Bellagio Conference on Humanitarian Logistics

Humanitarian Logistics: Networks for Africa

Rockefeller Foundation Bellagio Center Conference, Bellagio, Lake Como, Italy
May 5-9, 2008

Conference Organizer: Anna Nagurney, John F. Smith Memorial Professor
University of Massachusetts at Amherst

See: http://hlogistics.som.umass.edu/
Hurricane Katrina in 2005

Hurricane Katrina has been called an “American tragedy,” in which essential services failed completely (Guidotti (2006)).
Haiti Earthquake in 2010

Delivering the humanitarian relief supplies (water, food, medicines, etc.) to the victims was a major logistical challenge.
H1N1 (Swine) Flu

As of May 2, 2010, worldwide, more than 214 countries and overseas territories or communities have reported laboratory confirmed cases of pandemic influenza H1N1 2009, including over 18,001 deaths (www.who.int).

Parts of the globe experienced serious flu vaccine shortages, both seasonal and H1N1 (swine) ones, in late 2009.
Map of Influenza Activity and Virus Subtypes

Source: World Health Organization

Note: The available country data were joined in larger geographical areas with similar influenza transmission patterns to be able to give an overview (www.who.int/csr/disease/swineflu/transmission_zones/en/). The displayed data reflect reports of the stated week, or up to two weeks before if no data were available for the current week of that area. Data used are from FluNet (www.who.int/flunet) regional WHO offices or ministry of health websites.

The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

Data Source: World Health Organization
Map Production: Public Health Information and Geographic Information Systems (GIS)
World Health Organization

© WHO 2010. All rights reserved.
We are living in a world of *Fragile Networks*.
Underlying the delivery of goods and services in times of crises, such as in the case of disasters, pandemics, and life-threatening major disruptions, are supply chains, without which essential products do not get delivered in a timely manner, with possible increased disease, injuries, and casualties.

It is clear that better-designed supply chain networks would have facilitated and enhanced various emergency preparedness and relief efforts and would have resulted in less suffering and lives lost.
Supply Chain Networks are a class of complex network. Today, supply chain networks are increasingly global in nature.
Supply Chain Networks provide the logistical backbones for the provision of products as well as services both in corporate as well as in emergency and humanitarian operations.

Here we focus on supply chains in the case of **Critical Needs Products.**
Critical Needs Products

Critical needs products are those that are essential to the survival of the population, and can include, for example, vaccines, medicine, food, water, etc., depending upon the particular application.

The demand for the product should be met as nearly as possible since otherwise there may be additional loss of life.

In times of crises, a system-optimization approach is mandated since the demands for critical supplies should be met (as nearly as possible) at minimal total cost.
An Overview of the Relevant Literature

This talk is based on the paper:

Supply chain network design for critical needs with outsourcing,

A. Nagurney, M. Yu, and Q. Qiang, to appear in Papers in Regional Science,

where additional background as well as references can be found.
We assume that the organization (government, humanitarian one, socially responsible firm, etc.) is considering n_M manufacturing facilities/plants; n_D distribution centers, but must serve the n_R demand points.

The supply chain network is modeled as a network $G = [N, L]$, consisting of the set of nodes N and the set of links L. Let L^1 and L^2 denote the links associated with “in house” supply chain activities and the outsourcing activities, respectively. The paths joining the origin node to the destination nodes represent sequences of supply chain network activities that ensure that the product is produced and, ultimately, delivered to those in need at the demand points.

The optimization model can handle both design (from scratch) and redesign scenarios.
Supply Chain Network Topology with Outsourcing

The Organization

Manufacturing at the Plants

Distribution Center Storage

Shipping

Demand Points

Anna Nagurney
Supply Chain Network Design for Critical Needs
The possible manufacturing links from the top-tiered node 1 are connected to the possible manufacturing nodes of the organization, which are denoted, respectively, by: M_1, \ldots, M_{n_M}.

The possible shipment links from the manufacturing nodes, are connected to the possible distribution center nodes of the organization, denoted by $D_{1,1}, \ldots, D_{n_D,1}$.

The links joining nodes $D_{1,1}, \ldots, D_{n_D,1}$ with nodes $D_{1,2}, \ldots, D_{n_D,2}$ correspond to the possible storage links.

There are possible shipment links joining the nodes $D_{1,2}, \ldots, D_{n_D,2}$ with the demand nodes: R_1, \ldots, R_{n_R}.
There are also outsourcing links, which may join the top node to each bottom node (or the relevant nodes for which the outsourcing activity is feasible, as in production, storage, or distribution, or a combination thereof). The organization does not control the capacities on these links since they have been established by the particular firm that corresponds to the outsource link.

The ability to outsource supply chain network activities for critical needs products provides alternative pathways for the production and delivery of products during times of crises such as disasters.
Demands, Path Flows, and Link Flows

Let d_k denote the demand at demand point k; $k = 1, \ldots, n_R$, which is a random variable with probability density function given by $F_k(t)$. Let x_p represent the nonnegative flow of the product on path p; f_a denote the flow of the product on link a.

Conservation of Flow Between Path Flows and Link Flows

$$f_a = \sum_{p \in P} x_p \delta_{ap}, \quad \forall a \in L,$$

that is, the total amount of a product on a link is equal to the sum of the flows of the product on all paths that utilize that link. $\delta_{ap} = 1$ if link a is contained in path p, and $\delta_{ap} = 0$, otherwise.
Supply Shortage and Surplus

Let

$$\nu_k \equiv \sum_{p \in P_{w_k}} x_p, \quad k = 1, \ldots, n_R,$$

where \(\nu_k\) can be interpreted as the \textit{projected demand} at demand market \(k; \ k = 1, \ldots, n_R\). Then,

$$\Delta_k^- \equiv \max\{0, d_k - \nu_k\}, \quad k = 1, \ldots, n_R,$$

$$\Delta_k^+ \equiv \max\{0, \nu_k - d_k\}, \quad k = 1, \ldots, n_R,$$

where \(\Delta_k^-\) and \(\Delta_k^+\) represent the supply shortage and surplus at demand point \(k\), respectively. The expected values of \(\Delta_k^-\) and \(\Delta_k^+\) are given by:

$$E(\Delta_k^-) = \int_{\nu_k}^{\infty} (t - \nu_k) F_k(t) d(t), \quad k = 1, \ldots, n_R,$$

$$E(\Delta_k^+) = \int_0^{\nu_k} (\nu_k - t) F_k(t) d(t), \quad k = 1, \ldots, n_R.$$
The Operation Costs, Investment Costs and Penalty Costs

The total cost on a link is assumed to be a function of the flow of the product on the link. We have, thus, that

\[\hat{c}_a = \hat{c}_a(f_a), \quad \forall a \in L. \]

We denote the nonnegative existing capacity on a link \(a \) by \(\bar{u}_a, \forall a \in L \). Note that the organization can add capacity to the “in house” link \(a; \forall a \in L^1 \). We assume that

\[\hat{\pi}_a = \hat{\pi}_a(u_a), \quad \forall a \in L^1. \]

The expected total penalty at demand point \(k; k = 1, \ldots, n_R \), is,

\[E(\lambda_k^- \Delta_k^- + \lambda_k^+ \Delta_k^+) = \lambda_k^- E(\Delta_k^-) + \lambda_k^+ E(\Delta_k^+), \]

where \(\lambda_k^- \) is the unit penalty of supply shortage at demand point \(k \) and \(\lambda_k^+ \) is that of supply surplus. Note that \(\lambda_k^- E(\Delta_k^-) + \lambda_k^+ E(\Delta_k^+) \) is a function of the path flow vector \(x \).
The organization seeks to determine the optimal levels of product processed on each supply chain network link (including the outsourcing links) coupled with the optimal levels of capacity investments in its supply chain network activities subject to the minimization of the total cost.

The total cost includes the total cost of operating the various links, the total cost of capacity investments, and the expected total supply shortage/surplus penalty.
The Supply Chain Network Design Optimization Problem

Minimize
\[\sum_{a \in L} \hat{c}_a(f_a) + \sum_{a \in L^1} \hat{\pi}_a(u_a) + \sum_{k=1}^{n_R} (\lambda_k^- E(\Delta^-_k) + \lambda_k^+ E(\Delta^+_k)) \]

subject to: constraints (1), (2) and

\[f_a \leq \bar{u}_a + u_a, \quad \forall a \in L^1, \]
\[f_a \leq \bar{u}_a, \quad \forall a \in L^2, \]
\[u_a \geq 0, \quad \forall a \in L^1, \]
\[x_p \geq 0, \quad \forall p \in P. \]
The Feasible Set

We associate the Lagrange multiplier ω_a with constraint (11) for link $a \in L^1$ and we denote the associated optimal Lagrange multiplier by ω_a^*. Similarly, Lagrange multiplier γ_a is associated with constraint (12) for link $a \in L^2$ with the optimal multiplier denoted by γ_a^*. These two terms may also be interpreted as the price or value of an additional unit of capacity on link a. We group these Lagrange multipliers into the vectors ω and γ, respectively. Let K denote the feasible set such that

$$K \equiv \{(x, u, \omega, \gamma) | x \in R_{+}^{np}, u \in R_{+}^{nL^1}, \omega \in R_{+}^{nL^1}, \text{ and } \gamma \in R_{+}^{nL^2}\}.$$
Theorem

The optimization problem is equivalent to the variational inequality problem: determine the vector of optimal path flows, the vector of optimal link capacity enhancements, and the vectors of optimal Lagrange multipliers \((x^*, u^*, \omega^*, \gamma^*) \in K\), such that:

\[
\begin{align*}
\sum_{k=1}^{n_R} \sum_{p \in P_{w_k}} \left[\frac{\partial \hat{C}_p(x^*)}{\partial x_p} + \sum_{a \in L^1} \omega^*_a \delta_{ap} + \sum_{a \in L^2} \gamma^*_a \delta_{ap} + \lambda^+_k P_k \left(\sum_{p \in P_{w_k}} x^*_p \right) \right] & \\
- \lambda^-_k \left(1 - P_k \left(\sum_{p \in P_{w_k}} x^*_p \right) \right) & \times [x_p - x^*_p] \\
+ \sum_{a \in L^1} \left[\frac{\partial \hat{\pi}_a(u^*_a)}{\partial u_a} - \omega^*_a \right] & \times [u_a - u^*_a] + \sum_{a \in L^1} [\bar{u}_a + u^*_a - \sum_{p \in P} x^*_p \delta_{ap}] & \times [\omega_a - \omega^*_a] \\
+ \sum_{a \in L^2} [\bar{u}_a - \sum_{p \in P} x^*_p \delta_{ap}] & \times [\gamma_a - \gamma^*_a] \geq 0, \quad \forall (x, u, \omega, \gamma) \in K.
\end{align*}
\]
Theorem (cont’d.)

In addition, (15) can be reexpressed in terms of links flows as: determine the vector of optimal link flows, the vectors of optimal projected demands and link capacity enhancements, and the vectors of optimal Lagrange multipliers \((f^*, v^*, u^*, \omega^*, \gamma^*) \in K^1\), such that:

\[
\sum_{a \in L^1} \left[\frac{\partial \hat{c}_a(f_a^*)}{\partial f_a} + \omega_a^* \right] \times [f_a - f_a^*] + \sum_{a \in L^2} \left[\frac{\partial \hat{c}_a(f_a^*)}{\partial f_a} + \gamma_a^* \right] \times [f_a - f_a^*] \\
+ \sum_{a \in L^1} \left[\frac{\partial \hat{\pi}_a(u_a^*)}{\partial u_a} - \omega_a^* \right] \times [u_a - u_a^*] \\
+ \sum_{k=1}^{n_R} \left[\lambda_k^+ P_k(v_k^*) - \lambda_k^- (1 - P_k(v_k^*)) \right] \times [v_k - v_k^*] + \sum_{a \in L^1} \left[\bar{u}_a + u_a^* - f_a^* \right] \times [\omega_a - \omega_a^*] \\
+ \sum_{a \in L^2} \left[\bar{u}_a - f_a^* \right] \times [\gamma_a - \gamma_a^*] \geq 0, \quad \forall (f, v, u, \omega, \gamma) \in K^1, \quad (16)
\]

where \(K^1 \equiv \{(f, v, u, \omega, \gamma) | \exists x \geq 0, \text{ and } (1), (2), (13), \text{ and } (14) \text{ hold, and } \omega \geq 0, \gamma \geq 0\} \).
Consider a vaccine manufacturer who is gearing up for next year’s production of H1N1 (swine) flu vaccine. Governments around the world are beginning to contract with this company for next year’s flu vaccine.

By applying the general theoretical model to the company’s data, the firm can determine whether it needs to expand its facilities (or not), how much of the vaccine to produce where, how much to store where, and how much to have shipped to the various demand points. Also, it can determine whether it should outsource any of its vaccine production and at what level.

The firm by solving the model with its company-relevant data can then ensure that the price that it receives for its vaccine production and delivery is appropriate and that it recovers its incurred costs and obtains, if negotiated correctly, an equitable profit.
A company can, using the model, prepare and plan for an emergency such as a natural disaster in the form of a hurricane and identify where to store a necessary product (such as food packets, for example) so that the items can be delivered to the demand points in a timely manner and at minimal total cost.

In August 2005 Hurricane Katrina hit the US and this natural disaster cost immense damage with repercussions that continue to this day. While US state and federal officials came under severe criticism for their handling of the storm’s aftermath, Wal-Mart had prepared in advance and through its logistical efficiencies had dozens of trucks loaded with supplies for delivery before the hurricane even hit landfall.
Consider the supply chain network topology in which the organization is considering a single manufacturing plant, a single distribution center for storing the critical need product and is to serve a single demand point. The links are labeled, that is, \(a, b, c, d, \) and \(e \), with \(e \) denoting the outsourcing link.
Example 1

The total cost functions on the links were:

\[\hat{c}_a(f_a) = 0.5f_a^2 + f_a, \quad \hat{c}_b(f_b) = 0.5f_b^2 + 2f_b, \quad \hat{c}_c(f_c) = 0.5f_c^2 + f_c, \]
\[\hat{c}_d(f_d) = 0.5f_d^2 + 2f_d, \quad \hat{c}_e(f_e) = 5f_e. \]

The investment capacity cost functions were:

\[\hat{\pi}_a(u_a) = 0.5u_a^2 + u_a, \quad \forall a \in L^1. \]

The existing capacities were: \(\bar{u}_a = 0, \quad \forall a \in L^1 \), and \(\bar{u}_e = 2 \).

The demand for the product followed a uniform distribution on the interval \([0, 10]\) so that:

\[P_1\left(\sum_{p \in P_{w_1}} x_p \right) = \frac{\sum_{p \in P_{w_1}} x_p}{10}. \]

The penalties were: \(\lambda_{1^-} = 10, \quad \lambda_{1^+} = 0. \)
Example 2

Example 2 had the same data as Example 1 except that we now increased the penalty associated with product shortage from 10 to 50, that is, we now set $\lambda_1^- = 50$.

Example 3

Example 3 had the same data as Example 2 except that $\bar{u}_a = 3$ for all the links $a \in L^1$. This means that the organization does not have to construct its supply chain activities from scratch as in Examples 1 and 2 but does have some existing capacity.
Example 4

Example 4 had the total cost functions on the links given by:

\[\hat{c}_a(f_a) = f_a^2, \quad \hat{c}_b(f_b) = f_b^2, \quad c_c(f_c) = f_c^2, \quad \hat{c}_d(f_d) = f_d^2, \quad \hat{c}_e(f_e) = 100f_e. \]

The investment capacity cost functions were: \(\widehat{\pi}_a(u_a) = u_a^2, \quad \forall a \in L^1. \)

The existing capacities were: \(\bar{u}_a = 10, \quad \forall a \in L. \)

We assumed that the demand followed a uniform distribution on the interval \([10, 20]\) so that

\[
P_1\left(\sum_{p \in P_{w_1}} x_p \right) = \frac{\sum_{p \in P_{w_1}} x_p - 10}{10}.
\]

The penalties were: \(\lambda^-_1 = 1000, \quad \lambda^+_1 = 10. \)
Example 1

The path flow solution was: $x^*_{p_1} = 0.00$, $x^*_{p_2} = 2.00$, which corresponds to the link flow pattern:

$$f^*_a = f^*_b = f^*_c = f^*_d = 0.00, f^*_e = 2.00.$$

The capacity investments were: $u^*_a = 0.00$, $\forall a \in L^1$. The optimal Lagrange multipliers were: $\omega^*_a = 1.00$, $\forall a \in L^1$, $\gamma^*_e = 3.00$.

Since the current capacities in the “in-house” supply chain links are zero, it is more costly to expand them than to outsource. Consequently, the organization chooses to outsource the product for production and delivery.
Example 2

The path flow solution was: $x_{p_1}^* = 2.31, \quad x_{p_2}^* = 2.00$, which corresponds to the link flow pattern:

$$f_a^* = f_b^* = f_c^* = f_d^* = 2.31, \quad f_e^* = 2.00.$$

The capacity investments were: $u_a^* = 2.31, \quad \forall a \in L^1$.

The optimal Lagrange multipliers were: $\omega_a^* = 3.31, \quad \forall a \in L^1, \quad \gamma_e^* = 23.46$.

Since the penalty cost for under-supplying is increased, the organization increased its “in-house” capacity and product output.
Example 3

The path flow solution was: $x_{p1}^* = 3.23$, $x_{p2}^* = 2.00$, which corresponds to the link flow pattern:

$$f_a^* = f_b^* = f_c^* = f_d^* = 3.23, f_e^* = 2.00.$$

The capacity investments were: $u_a^* = 0.23$, $\forall a \in L^1$. The optimal Lagrange multipliers were: $\omega_a^* = 1.23$, $\forall a \in L^1$, $\gamma_e^* = 18.84$.

Given the existing capacities in the “in-house” supply chain links, the organization chooses to supply more of the critical product from its manufacturer and distributor.
Example 4

The path flow solution was: $x_{p_1}^* = 11.25$, $x_{p_2}^* = 7.66$, which corresponds to the link flow pattern:

$$f_a^* = f_b^* = f_c^* = f_d^* = 11.25, f_e^* = 7.66.$$

The capacity investments were: $u_a^* = 1.25$, $\forall a \in L^1$. The optimal Lagrange multipliers were: $\omega_a^* = 2.50$, $\forall a \in L^1$, $\gamma_e^* = 0.00$.

Since the penalty cost for under-supplying is much higher than that of over-supplying, the organization needs to both expand the “in-house” capacities and to outsource the production and delivery of the product to the demand point.
The Algorithm – The Euler Method

At an iteration τ of the Euler method (see Dupuis and Nagurney (1993) and Nagurney and Zhang (1996)) one computes:

$$X^{\tau+1} = P_K(X^{\tau} - a_{\tau} F(X^{\tau})),$$ \hspace{1cm} (17)

where P_K is the projection on the feasible set K and F is the function that enters the variational inequality problem: determine $X^* \in K$ such that

$$\langle F(X^*)^T, X - X^* \rangle \geq 0, \quad \forall X \in K,$$ \hspace{1cm} (18)

where $\langle \cdot, \cdot \rangle$ is the inner product in n-dimensional Euclidean space, $X \in \mathbb{R}^n$, and $F(X)$ is an n-dimensional function from K to \mathbb{R}^n, with $F(X)$ being continuous.

The sequence $\{a_{\tau}\}$ must satisfy: $\sum_{\tau=0}^{\infty} a_{\tau} = \infty$, $a_{\tau} > 0$, $a_{\tau} \to 0$, as $\tau \to \infty$.

Explicit Formulae for (17) to the Supply Chain Network Design Variational Inequality (15)

\[x_{p}^{\tau+1} = \max\{0, x_{p}^{\tau} + a_{\tau}(\lambda_{k}^{-}(1 - P_{k}(\sum_{p \in P_{w_{k}}} x_{p}^{\tau}))) - \lambda_{k}^{+} P_{k}(\sum_{p \in P_{w_{k}}} x_{p}^{\tau}) \} \]

\[-\frac{\partial \hat{C}_{p}(x^{\tau})}{\partial x_{p}} - \sum_{a \in L^{1}} \omega_{a}^{\tau} \delta_{ap} - \sum_{a \in L^{2}} \gamma_{a}^{\tau} \delta_{ap} \}, \forall p \in P; \quad (19) \]

\[u_{a}^{\tau+1} = \max\{0, u_{a}^{\tau} + a_{\tau}(\omega_{a}^{\tau} - \frac{\partial \hat{\pi}_{a}(u_{a}^{\tau})}{\partial u_{a}})\}, \quad \forall a \in L^{1}; \quad (20) \]

\[\omega_{a}^{\tau+1} = \max\{0, \omega_{a}^{\tau} + a_{\tau}(\sum_{p \in P} x_{p}^{\tau} \delta_{ap} - \bar{u}_{a} - u_{a}^{\tau})\}, \quad \forall a \in L^{1}; \quad (21) \]

\[\gamma_{a}^{\tau+1} = \max\{0, \gamma_{a}^{\tau} + a_{\tau}(\sum_{p \in P} x_{p}^{\tau} \delta_{ap} - \bar{u}_{a})\}, \quad \forall a \in L^{2}. \quad (22) \]
Additional Numerical Examples

The Organization

Anna Nagurney
Supply Chain Network Design for Critical Needs
Example 5

The demands at the three demand points followed a uniform probability distribution on the intervals \([0, 10]\), \([0, 20]\), and \([0, 30]\), respectively:

\[
P_1\left(\sum_{p \in P_{w_1}} x_p\right) = \frac{\sum_{p \in P_{w_1}} x_p}{10}, \quad P_2\left(\sum_{p \in P_{w_2}} x_p\right) = \frac{\sum_{p \in P_{w_2}} x_p}{20},
\]

\[
P_3\left(\sum_{p \in P_{w_3}} x_p\right) = \frac{\sum_{p \in P_{w_3}} x_p}{30},
\]

where \(w_1 = (1, R_1)\), \(w_2 = (1, R_2)\), and \(w_3 = (1, R_3)\).

The penalties were:

\[
\lambda_{1^-} = 50, \quad \lambda_{1^+} = 0; \quad \lambda_{2^-} = 50, \quad \lambda_{2^+} = 0; \quad \lambda_{3^-} = 50, \quad \lambda_{3^+} = 0.
\]

The capacities associated with the three outsourcing links were:

\[
\bar{u}_{18} = 5, \quad \bar{u}_{19} = 10, \quad \bar{u}_{20} = 5.
\]

We set \(\bar{u}_a = 0\) for all links \(a \in L^1\).
Table 1: Total Cost Functions and Solution for Example 5

<table>
<thead>
<tr>
<th>Link a</th>
<th>$\hat{c}_a(f_a)$</th>
<th>$\hat{\pi}_a(u_a)$</th>
<th>f^*_a</th>
<th>u^*_a</th>
<th>ω^*_a</th>
<th>γ^*_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$f_1^2 + 2f_1$</td>
<td>$.5u_1^2 + u_1$</td>
<td>1.34</td>
<td>1.34</td>
<td>2.34</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>$.5f_2^2 + f_2$</td>
<td>$.5u_2^2 + u_2$</td>
<td>2.47</td>
<td>2.47</td>
<td>3.47</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>$.5f_3^2 + f_3$</td>
<td>$.5u_3^2 + u_3$</td>
<td>2.05</td>
<td>2.05</td>
<td>3.05</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>$1.5f_4^2 + 2f_4$</td>
<td>$.5u_4^2 + u_4$</td>
<td>0.61</td>
<td>0.61</td>
<td>1.61</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>$f_5^2 + 3f_5$</td>
<td>$.5u_5^2 + u_5$</td>
<td>0.73</td>
<td>0.73</td>
<td>1.73</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>$f_6^2 + 2f_6$</td>
<td>$.5u_6^2 + u_6$</td>
<td>0.83</td>
<td>0.83</td>
<td>1.83</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>$.5f_7^2 + 2f_7$</td>
<td>$.5u_7^2 + u_7$</td>
<td>1.64</td>
<td>1.64</td>
<td>2.64</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>$.5f_8^2 + 2f_8$</td>
<td>$.5u_8^2 + u_8$</td>
<td>1.67</td>
<td>1.67</td>
<td>2.67</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>$f_9^2 + 5f_9$</td>
<td>$.5u_9^2 + u_9$</td>
<td>0.37</td>
<td>0.37</td>
<td>1.37</td>
<td>–</td>
</tr>
<tr>
<td>10</td>
<td>$.5f_{10}^2 + 2f_{10}$</td>
<td>$.5u_{10}^2 + u_{10}$</td>
<td>3.11</td>
<td>3.11</td>
<td>4.11</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>$f_{11}^2 + f_{11}$</td>
<td>$.5u_{11}^2 + u_{11}$</td>
<td>2.75</td>
<td>2.75</td>
<td>3.75</td>
<td>–</td>
</tr>
<tr>
<td>12</td>
<td>$.5f_{12}^2 + 2f_{12}$</td>
<td>$.5u_{12}^2 + u_{12}$</td>
<td>0.04</td>
<td>0.04</td>
<td>1.04</td>
<td>–</td>
</tr>
<tr>
<td>13</td>
<td>$.5f_{13}^2 + 5f_{13}$</td>
<td>$.5u_{13}^2 + u_{13}$</td>
<td>0.00</td>
<td>0.00</td>
<td>0.45</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 2: **Total Cost Functions and Solution for Example 5 (continued)**

<table>
<thead>
<tr>
<th>Link a</th>
<th>(\hat{c}_a(f_a))</th>
<th>(\hat{\pi}_a(u_a))</th>
<th>(f_a^*)</th>
<th>(u_a^*)</th>
<th>(\omega_a^*)</th>
<th>(\gamma_a^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>(f_{14}^2)</td>
<td>(.5u_{14}^2 + u_{14})</td>
<td>3.07</td>
<td>3.07</td>
<td>4.07</td>
<td>–</td>
</tr>
<tr>
<td>15</td>
<td>(f_{15}^2 + 2f_{15})</td>
<td>(.5u_{15}^2 + u_{15})</td>
<td>0.00</td>
<td>0.00</td>
<td>0.45</td>
<td>–</td>
</tr>
<tr>
<td>16</td>
<td>(.5f_{16}^2 + 3f_{16})</td>
<td>(.5u_{16}^2 + u_{16})</td>
<td>0.00</td>
<td>0.00</td>
<td>0.45</td>
<td>–</td>
</tr>
<tr>
<td>17</td>
<td>(.5f_{17}^2 + 2f_{17})</td>
<td>(.5u_{17}^2 + u_{17})</td>
<td>2.75</td>
<td>2.75</td>
<td>3.75</td>
<td>–</td>
</tr>
<tr>
<td>18</td>
<td>(10f_{18})</td>
<td>–</td>
<td>5.00</td>
<td>–</td>
<td>–</td>
<td>14.77</td>
</tr>
<tr>
<td>19</td>
<td>(12f_{19})</td>
<td>–</td>
<td>10.00</td>
<td>–</td>
<td>–</td>
<td>13.00</td>
</tr>
<tr>
<td>20</td>
<td>(15f_{20})</td>
<td>–</td>
<td>5.00</td>
<td>–</td>
<td>–</td>
<td>16.96</td>
</tr>
</tbody>
</table>

Note that the optimal supply chain network design for Example 5 is, hence, as the initial topology but with links 13, 15, and 16 removed since those links have zero capacities and associated flows. Note that the organization took advantage of outsourcing to the full capacity available.
Example 6

Example 6 had the identical data to that in Example 5 except that we now assumed that the organization had capacities on its supply chain network activities where $\bar{u}_a = 10$, for all $a \in L^1$.

Table 3: Total Cost Functions and Solution for Example 6

<table>
<thead>
<tr>
<th>Link a</th>
<th>$\hat{c}_a(f_a)$</th>
<th>$\hat{\pi}_a(u_a)$</th>
<th>f^*_a</th>
<th>u^*_a</th>
<th>ω^*_a</th>
<th>γ^*_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$f_1^2 + 2f_1$</td>
<td>$.5u_1^2 + u_1$</td>
<td>1.84</td>
<td>0.00</td>
<td>0.00</td>
<td>$-$</td>
</tr>
<tr>
<td>2</td>
<td>$.5f_2^2 + f_2$</td>
<td>$.5u_2^2 + u_2$</td>
<td>4.51</td>
<td>0.00</td>
<td>0.00</td>
<td>$-$</td>
</tr>
<tr>
<td>3</td>
<td>$.5f_3^2 + f_3$</td>
<td>$.5u_3^2 + u_3$</td>
<td>3.85</td>
<td>0.00</td>
<td>0.00</td>
<td>$-$</td>
</tr>
<tr>
<td>4</td>
<td>$1.5f_4^2 + 2f_4$</td>
<td>$.5u_4^2 + u_4$</td>
<td>0.88</td>
<td>0.00</td>
<td>0.00</td>
<td>$-$</td>
</tr>
<tr>
<td>5</td>
<td>$f_5^2 + 3f_5$</td>
<td>$.5u_5^2 + u_5$</td>
<td>0.97</td>
<td>0.00</td>
<td>0.00</td>
<td>$-$</td>
</tr>
<tr>
<td>6</td>
<td>$f_6^2 + 2f_6$</td>
<td>$.5u_6^2 + u_6$</td>
<td>1.40</td>
<td>0.00</td>
<td>0.00</td>
<td>$-$</td>
</tr>
<tr>
<td>7</td>
<td>$.5f_7^2 + 2f_7$</td>
<td>$.5u_7^2 + u_7$</td>
<td>3.11</td>
<td>0.00</td>
<td>0.00</td>
<td>$-$</td>
</tr>
<tr>
<td>8</td>
<td>$.5f_8^2 + 2f_8$</td>
<td>$.5u_8^2 + u_8$</td>
<td>3.47</td>
<td>0.00</td>
<td>0.00</td>
<td>$-$</td>
</tr>
<tr>
<td>9</td>
<td>$f_9^2 + 5f_9$</td>
<td>$.5u_9^2 + u_9$</td>
<td>0.38</td>
<td>0.00</td>
<td>0.00</td>
<td>$-$</td>
</tr>
</tbody>
</table>
Table 4: Total Cost Functions and Solution for Example 6 (continued)

<table>
<thead>
<tr>
<th>Link</th>
<th>(\hat{c}_a(f_a))</th>
<th>(\hat{\pi}_a(u_a))</th>
<th>(f^*_a)</th>
<th>(u^*_a)</th>
<th>(\omega^*_a)</th>
<th>(\gamma^*_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(.5f_{10}^2 + 2f_{10})</td>
<td>(.5u_{10}^2 + u_{10})</td>
<td>5.75</td>
<td>0.00</td>
<td>0.00</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>(f_{11}^2 + f_{11})</td>
<td>(.5u_{11}^2 + u_{11})</td>
<td>4.46</td>
<td>0.00</td>
<td>0.00</td>
<td>–</td>
</tr>
<tr>
<td>12</td>
<td>(.5f_{12}^2 + 2f_{12})</td>
<td>(.5u_{12}^2 + u_{12})</td>
<td>0.82</td>
<td>0.00</td>
<td>0.00</td>
<td>–</td>
</tr>
<tr>
<td>13</td>
<td>(.5f_{13}^2 + 5f_{13})</td>
<td>(.5u_{13}^2 + u_{13})</td>
<td>0.52</td>
<td>0.00</td>
<td>0.00</td>
<td>–</td>
</tr>
<tr>
<td>14</td>
<td>(f_{14}^2)</td>
<td>(.5u_{14}^2 + u_{14})</td>
<td>4.41</td>
<td>0.00</td>
<td>0.00</td>
<td>–</td>
</tr>
<tr>
<td>15</td>
<td>(f_{15}^2 + 2f_{15})</td>
<td>(.5u_{15}^2 + u_{15})</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>–</td>
</tr>
<tr>
<td>16</td>
<td>(.5f_{16}^2 + 3f_{16})</td>
<td>(.5u_{16}^2 + u_{16})</td>
<td>0.05</td>
<td>0.00</td>
<td>0.00</td>
<td>–</td>
</tr>
<tr>
<td>17</td>
<td>(.5f_{17}^2 + 2f_{17})</td>
<td>(.5u_{17}^2 + u_{17})</td>
<td>4.41</td>
<td>0.00</td>
<td>0.00</td>
<td>–</td>
</tr>
<tr>
<td>18</td>
<td>(10f_{18})</td>
<td>–</td>
<td>5.00</td>
<td>–</td>
<td>–</td>
<td>10.89</td>
</tr>
<tr>
<td>19</td>
<td>(12f_{19})</td>
<td>–</td>
<td>10.00</td>
<td>–</td>
<td>–</td>
<td>11.59</td>
</tr>
<tr>
<td>20</td>
<td>(15f_{20})</td>
<td>–</td>
<td>5.00</td>
<td>–</td>
<td>–</td>
<td>11.96</td>
</tr>
</tbody>
</table>

Note that links 13 and 16 now have positive associated flows although at very low levels.
Example 7 had the same data as Example 6 except that we changed the probability distributions so that we now had:

\[
P_1\left(\sum_{p \in P_{w_1}} x_p\right) = \frac{\sum_{p \in P_{w_1}} x_p}{110},
\]

\[
P_2\left(\sum_{p \in P_{w_2}} x_p\right) = \frac{\sum_{p \in P_{w_2}} x_p}{120},
\]

\[
P_3\left(\sum_{p \in P_{w_3}} x_p\right) = \frac{\sum_{p \in P_{w_3}} x_p}{130}.
\]
Table 5: Total Cost Functions and Solution for Example 7

<table>
<thead>
<tr>
<th>Link a</th>
<th>$\hat{c}_a(f_a)$</th>
<th>$\hat{\pi}_a(u_a)$</th>
<th>f_a^*</th>
<th>u_a^*</th>
<th>ω_a^*</th>
<th>γ_a^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$f_1^2 + 2f_1$</td>
<td>$.5u_1^2 + u_1$</td>
<td>4.23</td>
<td>0.00</td>
<td>0.00</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>$.5f_2^2 + f_2$</td>
<td>$.5u_2^2 + u_2$</td>
<td>9.06</td>
<td>0.00</td>
<td>0.00</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>$.5f_3^2 + f_3$</td>
<td>$.5u_3^2 + u_3$</td>
<td>8.61</td>
<td>0.00</td>
<td>0.00</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>$1.5f_4^2 + 2f_4$</td>
<td>$.5u_4^2 + u_4$</td>
<td>2.05</td>
<td>0.00</td>
<td>0.00</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>$f_5^2 + 3f_5$</td>
<td>$.5u_5^2 + u_5$</td>
<td>2.18</td>
<td>0.00</td>
<td>0.00</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>$f_6^2 + 2f_6$</td>
<td>$.5u_6^2 + u_6$</td>
<td>3.28</td>
<td>0.00</td>
<td>0.00</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>$.5f_7^2 + 2f_7$</td>
<td>$.5u_7^2 + u_7$</td>
<td>5.77</td>
<td>0.00</td>
<td>0.00</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>$.5f_8^2 + 2f_8$</td>
<td>$.5u_8^2 + u_8$</td>
<td>7.01</td>
<td>0.00</td>
<td>0.00</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>$f_9^2 + 5f_9$</td>
<td>$.5u_9^2 + u_9$</td>
<td>1.61</td>
<td>0.00</td>
<td>0.00</td>
<td>–</td>
</tr>
<tr>
<td>10</td>
<td>$.5f_{10}^2 + 2f_{10}$</td>
<td>$.5u_{10}^2 + u_{10}$</td>
<td>12.34</td>
<td>2.34</td>
<td>3.34</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>$f_{11}^2 + f_{11}$</td>
<td>$.5u_{11}^2 + u_{11}$</td>
<td>9.56</td>
<td>0.00</td>
<td>0.00</td>
<td>–</td>
</tr>
<tr>
<td>12</td>
<td>$.5f_{12}^2 + 2f_{12}$</td>
<td>$.5u_{12}^2 + u_{12}$</td>
<td>5.82</td>
<td>0.00</td>
<td>0.00</td>
<td>–</td>
</tr>
<tr>
<td>13</td>
<td>$.5f_{13}^2 + 5f_{13}$</td>
<td>$.5u_{13}^2 + u_{13}$</td>
<td>2.38</td>
<td>0.00</td>
<td>0.00</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 6: Total Cost Functions and Solution for Example 7 (continued)

<table>
<thead>
<tr>
<th>Link a</th>
<th>$\hat{c}_a(f_a)$</th>
<th>$\hat{\pi}_a(u_a)$</th>
<th>f_a^*</th>
<th>u_a^*</th>
<th>ω_a^*</th>
<th>γ_a^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>f_{14}^2</td>
<td>$0.5u_{14}^2 + u_{14}$</td>
<td>4.14</td>
<td>0.00</td>
<td>0.00</td>
<td>–</td>
</tr>
<tr>
<td>15</td>
<td>$f_{15}^2 + 2f_{15}$</td>
<td>$0.5u_{15}^2 + u_{15}$</td>
<td>2.09</td>
<td>0.00</td>
<td>0.00</td>
<td>–</td>
</tr>
<tr>
<td>16</td>
<td>$0.5f_{16}^2 + 3f_{16}$</td>
<td>$0.5u_{16}^2 + u_{16}$</td>
<td>2.75</td>
<td>0.00</td>
<td>0.00</td>
<td>–</td>
</tr>
<tr>
<td>17</td>
<td>$0.5f_{17}^2 + 2f_{17}$</td>
<td>$0.5u_{17}^2 + u_{17}$</td>
<td>4.72</td>
<td>0.00</td>
<td>0.00</td>
<td>–</td>
</tr>
<tr>
<td>18</td>
<td>$10f_{18}$</td>
<td>–</td>
<td>5.00</td>
<td>–</td>
<td>–</td>
<td>34.13</td>
</tr>
<tr>
<td>19</td>
<td>$12f_{19}$</td>
<td>–</td>
<td>10.00</td>
<td>–</td>
<td>–</td>
<td>31.70</td>
</tr>
<tr>
<td>20</td>
<td>$15f_{20}$</td>
<td>–</td>
<td>5.00</td>
<td>–</td>
<td>–</td>
<td>29.66</td>
</tr>
</tbody>
</table>

The optimal supply chain network design for Example 7 has the initial topology since there are now positive flows on all the links. It is also interesting to note that there is a significant increase in production volumes by the organization at its manufacturing plants.
We developed an integrated framework for the design of supply chain networks for critical products with outsourcing. The model utilizes cost minimization within a system-optimization perspective as the primary objective and captures rigorously the uncertainty associated with the demand for critical products at the various demand points. The supply chain network design model allows for the investment of enhanced link capacities and the investigation of whether the product should be outsourced or produced in-house. The framework can be applied in numerous situations in which the goal is to produce and deliver a critical product at minimal cost so as to satisfy the demand at various demand points, as closely as possible, given associated penalties for under-supply (and, if also relevant, for over-supply, which we expect to be lower than the former).