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Background: Natural Disasters

The number of natural disasters and the sizes of the populations affected
by such events have been growing (Schultz, Koenig, and Noji (1996) and
Nagurney and Qiang (2009)).

Scientists are warning that we can expect more frequent extreme weather
events in the future.

For instance, tropical cyclones which include hurricanes in the US are
expected to be stronger as a result of global warming (Sheppard (2011) and
Borenstein (2012)).
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Background: Natural Disasters

The amount of damage and loss following a disaster depends on the vulner-
ability of the affected region, and on its ability to respond (and recover) in
a timely manner, also referred to as resilience.

Hence, being prepared against potential disasters leads to reduced vulnera-
bility and a lower number of fatalities.

“During a natural disaster, one has only two options: to become a
victim, or to become a responder” (Alvendia-Quero (2012)).
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Background: Disaster Relief Supply Chains

The complexity of disaster relief supply chains
originates from several inherent factors:

Large demands for relief products,

Level of uncertainty,

Irregularities in the size, the timing, and
the location of relief product demand
patterns,

Disaster-driven supply chains are typically
incident-responsive, and

Develop new networks of relationships
within days or even hours, and have very
short life-cycles.
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Background: Criticality of Time

TIME plays a substantial role in the construction and operation of disaster
relief networks.

FEMA’s key benchmarks in response and recovery:

To meet the survivors initial demands within 72 hours,

To restore basic community functionality within 60 days, and

To return to as normal of a situation within 5 years.
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Muñoz, S., Tirado, G., Vitoriano, B. (2013) Decision aid models and
systems for humanitarian logistics: A survey. In Decision Aid Models
for Disaster Management and Emergencies, Atlantis Computational
Intelligence Systems, vol. 7, Vitoriano, B., Montero, J., Ruan, D.,
Editors, Springer Business + Science Media, New York, 17–44.

Nagurney, Masoumi, and Yu An Integrated Disaster Relief Supply Chain Network Model



Background Model Numerical Example Summary

Mathematical Model

We propose an integrated supply chain network model for disaster relief.

Our mathematical framework is of system-optimization type where the
organization aims to satisfy the uncertain demands subject to the
minimization of total operational costs while the sequences of activities
leading to the ultimate delivery of the relief good are targeted to be
completed within a certain time.
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Figure 1: Network Topology of the Integrated Disaster Relief Supply Chain

G = [N, L]: supply chain network graph,
N: set of nodes,

L: set of links (arcs).
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Mathematical Model

Notations:
Pk : set of paths connecting the origin (node 1) to demand point k ,
P: set of all paths joining the origin node to the destination nodes, and
np: total number of paths in the supply chain.

Total Operational Cost Function

ĉa(fa) = fa × ca(fa), ∀a ∈ L, (1)

where:
fa: flow of the disaster relief product on link a, and
ca(fa): unit operational cost function on link a.
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Probability Distribution of Demand

Pk(Dk) = Pk(dk ≤ Dk) =

∫ Dk

0
Fk(t)dt, k = 1, . . . , nR , (2)

where:
dk : actual value of demand at point k ,
Pk : probability distribution function of demand at point k ,
Fk : probability density function of demand at point k.

Demand Shortage and Surplus

∆−k ≡ max{0, dk − vk}, k = 1, . . . , nR , (3a)

∆+
k ≡ max{0, vk − dk}, k = 1, . . . , nR , (3b)

where:
vk : “projected demand” for the disaster relief item at point k .
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Expected Values of Shortage and Surplus

E (∆−k ) =

∫ ∞
vk

(t − vk)Fk(t)dt, k = 1, . . . , nR , (4a)

E (∆+
k ) =

∫ vk

0
(vk − t)Fk(t)dt, k = 1, . . . , nR . (4b)

Expected Penalty due to Shortage and Surplus

E (λ−k ∆−k + λ+k ∆+
k ) = λ−k E (∆−k ) + λ+k E (∆+

k ), k = 1, . . . , nR , (5)

where:
λ−k : unit penalty associated with the shortage of the relief item at point k,

λ+k : unit penalty associated with the surplus of the relief item at point k.
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Path Flows

xp ≥ 0, ∀p ∈ P. (6)

xp: flow of the disaster relief goods on path p joining node 1 with a demand
node.

Relationship between Path Flows and Projected Demand

vk ≡
∑
p∈Pk

xp, k = 1, . . . , nR . (7)

Relationship between Link Flows and Path Flows

fa =
∑
p∈P

xp δap, ∀a ∈ L. (8)

δap is equal to 1 if link a is contained in path p and is 0, otherwise.
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Capturing Time Aspect in Formulation

Completion Time

τa(fa) = gafa + ha, ∀a ∈ L, (9)

where:
τa: completion time of the activity on link a. Note: ha ≥ 0, and ga ≥ 0.

Completion Time on Paths

τp =
∑
a∈L

τa(fa)δap =
∑
a∈L

(gafa + ha)δap, ∀p ∈ P. (10)

Where:
τp: completion time of the sequence of activities on path p.
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hp =
∑
a∈L

haδap, ∀p ∈ P. (11)

Hence,
τp = hp +

∑
a∈L

gafaδap, ∀p ∈ P. (12)

hp: sum of the uncongested terms has on path p.

Time Targets

τp ≤ Tk , ∀p ∈ Pk ; k = 1, . . . , nR , (13)

Tk : target for the completion time of the activities on paths corresponding
to demand point k determined by the organization’s decision-maker.
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∑
a∈L

gafaδap ≤ Tk − hp, ∀p ∈ Pk ; k = 1, . . . , nR . (14)

Tkp = Tk − hp, ∀p ∈ Pk ; k = 1, . . . , nR . (15)

Tkp: target time for demand point k with respect to path p.∑
a∈L

gafaδap ≤ Tkp, ∀p ∈ Pk ; k = 1, . . . , nR . (16)

Late Delivery (Deviations) with Respect to Target Times∑
a∈L

gafaδap − zp ≤ Tkp, ∀p ∈ Pk ; k = 1, . . . , nR . (17)

zp: amount of deviation with respect to target time Tkp corresponding to
the “late” delivery of product to point k on path p.
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Non-negativity

zp ≥ 0, ∀p ∈ Pk ; k = 1, . . . , nR . (18)

Time Constraint

∑
q∈P

∑
a∈L

gaxqδaqδap − zp ≤ Tkp, ∀p ∈ Pk ; k = 1, . . . , nR . (19)

Ĉp(x) = xp × Cp(x) = xp ×
∑
a∈L

ca(fa)δap, ∀p ∈ P, (20)

Ĉp(x): total operational cost function on path p.
Cp: unit operational cost on path p.
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γk(z): tardiness penalty function corresponding to demand point k .

Optimization Formulation

Minimize
∑
p∈P

Ĉp(x) +

nR∑
k=1

(λ−k E (∆−k ) + λ+k E (∆+
k )) +

nR∑
k=1

γk(z), (21)

subject to: constraints (6), (18), and (19).

Feasible Set

K = {(x , z , ω)|x ∈ R
np
+ , z ∈ R

np
+ , and ω ∈ R

np
+ }, (23)

where x is the vector of path flows, z is the vector of time deviations on
paths, and ω is the vector of Lagrange multipliers corresponding to (19).

Nagurney, Masoumi, and Yu An Integrated Disaster Relief Supply Chain Network Model



Background Model Numerical Example Summary

γk(z): tardiness penalty function corresponding to demand point k .

Optimization Formulation

Minimize
∑
p∈P
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Variational Inequality Formulation

The optimization problem (21), subject to its constraints (6), (18), and (19), is
equivalent to the variational inequality problem: determine the vector of optimal
path flows, the vector of optimal path time deviations, and the vector of optimal
Lagrange multipliers (x∗, z∗, ω∗) ∈ K , such that:

nR∑
k=1

∑
p∈Pk

∂Ĉp(x∗)

∂xp
+ λ+k Pk(

∑
q∈Pk

x∗q ) − λ−k (1− Pk(
∑
q∈Pk

x∗q ))

+
∑
q∈P

∑
a∈L

ω∗qgaδaqδap]× [xp − x∗p ] +

nR∑
k=1

∑
p∈Pk

[
∂γk(z∗)

∂zp
− ω∗p

]
× [zp − z∗p ]

+

nR∑
k=1

∑
p∈Pk

Tkp + z∗p −
∑
q∈P

∑
a∈L

gax∗q δaqδap

× [ωp−ω∗p ] ≥ 0, ∀(x , z , ω) ∈ K ,

(24)
where

∂Ĉp(x)

∂xp
≡

∑
a∈L

∂ĉa(fa)

∂fa
δap, ∀p ∈ Pk ; k = 1, . . . , nR . (25)
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Solution Method and Numerical Examples
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Solution Algorithm

Explicit Formulae for the Euler Method Applied to the Variational
Inequality (24)

At iteration τ + 1:

xτ+1
p = max{0, xτ

p + aτ (λ−k (1− Pk(
∑
q∈Pk

xτ
q ))− λ+k Pk(

∑
q∈Pk

xτ
q )− ∂Ĉp(xτ )

∂xp

−
∑
q∈P

∑
a∈L

ωτ
q gaδaqδap)}, ∀p ∈ Pk ; k = 1, . . . , nR , (31)

zτ+1
p = max{0, zτ

p + aτ (ωτ
p −

∂γk(zτ )

∂zp
)}, ∀p ∈ Pk ; k = 1, . . . , nR , and

(32)

ωτ+1
p = max{0, ωτ

p + aτ (
∑
q∈P

∑
a∈L

gaxτ
q δaqδap − Tkp − zτ

p },

∀p ∈ Pk ; k = 1, . . . , nR . (33)
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A Large Scale Numerical Example
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Figure 2: Network Topology of the Larger Disaster Relief Supply Chain Numerical
Example

Nagurney, Masoumi, and Yu An Integrated Disaster Relief Supply Chain Network Model



Background Model Numerical Example Summary

Unit shortage and surplus penalties at demand points R1 and R2:

λ−R1
= 10, 000, λ+R1

= 100,

λ−R2
= 7, 500, λ+R2

= 150.

Target times of delivery at demand points:

TR1 = 72, TR2 = 70.

Tardiness penalty functions at demand points:

γR1(z) = 3(
∑

p∈PR1

z2
p ), γR2(z) = 3(

∑
p∈PR2

z2
p ).

The Euler method (cf.(31)–(33)) for the solution of variational inequality
(24) was implemented in FORTRAN on a PC at the University of
Massachusetts Amherst. We set the sequence as {aτ} = .1(1, 12 ,

1
2 , . . .),

and the convergence tolerance was 10−6.

Nagurney, Masoumi, and Yu An Integrated Disaster Relief Supply Chain Network Model



Background Model Numerical Example Summary

Unit shortage and surplus penalties at demand points R1 and R2:

λ−R1
= 10, 000, λ+R1

= 100,

λ−R2
= 7, 500, λ+R2

= 150.

Target times of delivery at demand points:

TR1 = 72, TR2 = 70.

Tardiness penalty functions at demand points:

γR1(z) = 3(
∑

p∈PR1

z2
p ), γR2(z) = 3(

∑
p∈PR2

z2
p ).

The Euler method (cf.(31)–(33)) for the solution of variational inequality
(24) was implemented in FORTRAN on a PC at the University of
Massachusetts Amherst. We set the sequence as {aτ} = .1(1, 12 ,

1
2 , . . .),

and the convergence tolerance was 10−6.

Nagurney, Masoumi, and Yu An Integrated Disaster Relief Supply Chain Network Model



Background Model Numerical Example Summary

Table 2: Functions and the Optimal Flows on Links in the Numerical Example
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Table 3: Path Definitions, Target Times, Optimal Path Flows, Time Deviations,
and Lagrange Multipliers for the Numerical Example
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Numerical Example: A Variant

We assumed that the organization will now procure the items locally and,
hence, the time functions associated with the direct procurement links 3
and 4 are now greatly reduced. The remainder of the input data remains as
in the previous example.

As in Table 4, now both the storage links for pre-positioning (links 7 and 8)
and for post-disaster procurement (links 3 and 4) have positive flows.
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Table 4: Numerical Example Variant - Optimal Link Flows
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Summary and Conclusions

A network optimization model was developed for the supply chain manage-
ment of a disaster relief (humanitarian) organization in charge of procure-
ment and distribution of relief items to a geographic region prone to natural
disasters. The model:

allows for the integration of two distinct policies by disaster relief
organizations: (1) pre-positioning the supplies beforehand (2)
procurement of necessary items once the disaster has occurred;

includes penalties associated with shortages/surpluses at the demand
points with respect to the uncertain demand, and

enables prioritizing the demand points based on the population,
geographic location, etc., by assigning different time targets.

Nagurney, Masoumi, and Yu An Integrated Disaster Relief Supply Chain Network Model



Background Model Numerical Example Summary

Summary and Conclusions

A network optimization model was developed for the supply chain manage-
ment of a disaster relief (humanitarian) organization in charge of procure-
ment and distribution of relief items to a geographic region prone to natural
disasters. The model:

allows for the integration of two distinct policies by disaster relief
organizations: (1) pre-positioning the supplies beforehand (2)
procurement of necessary items once the disaster has occurred;

includes penalties associated with shortages/surpluses at the demand
points with respect to the uncertain demand, and

enables prioritizing the demand points based on the population,
geographic location, etc., by assigning different time targets.

Nagurney, Masoumi, and Yu An Integrated Disaster Relief Supply Chain Network Model



Background Model Numerical Example Summary

Summary and Conclusions

A network optimization model was developed for the supply chain manage-
ment of a disaster relief (humanitarian) organization in charge of procure-
ment and distribution of relief items to a geographic region prone to natural
disasters. The model:

allows for the integration of two distinct policies by disaster relief
organizations: (1) pre-positioning the supplies beforehand (2)
procurement of necessary items once the disaster has occurred;

includes penalties associated with shortages/surpluses at the demand
points with respect to the uncertain demand, and

enables prioritizing the demand points based on the population,
geographic location, etc., by assigning different time targets.

Nagurney, Masoumi, and Yu An Integrated Disaster Relief Supply Chain Network Model



Background Model Numerical Example Summary

Summary and Conclusions

A network optimization model was developed for the supply chain manage-
ment of a disaster relief (humanitarian) organization in charge of procure-
ment and distribution of relief items to a geographic region prone to natural
disasters. The model:

allows for the integration of two distinct policies by disaster relief
organizations: (1) pre-positioning the supplies beforehand (2)
procurement of necessary items once the disaster has occurred;

includes penalties associated with shortages/surpluses at the demand
points with respect to the uncertain demand, and

enables prioritizing the demand points based on the population,
geographic location, etc., by assigning different time targets.

Nagurney, Masoumi, and Yu An Integrated Disaster Relief Supply Chain Network Model



Background Model Numerical Example Summary

Thank You!

For more information, see: http://supernet.isenberg.umass.edu
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