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Background

Background: Natural Disasters

The number of natural disasters and the sizes of the populations affected
by such events have been growing (Schultz, Koenig, and Noji (1996) and
Nagurney and Qiang (2009)).
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Background

Background: Natural Disasters

The number of natural disasters and the sizes of the populations affected
by such events have been growing (Schultz, Koenig, and Noji (1996) and
Nagurney and Qiang (2009)).

Scientists are warning that we can expect more frequent extreme weather
events in the future.

For instance, tropical cyclones which include hurricanes in the US are
expected to be stronger as a result of global warming (Sheppard (2011) and
Borenstein (2012)).
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Background: Natural Disasters

The amount of damage and loss following a disaster depends on the vulner-
ability of the affected region, and on its ability to respond (and recover) in
a timely manner, also referred to as resilience.
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Background: Natural Disasters

The amount of damage and loss following a disaster depends on the vulner-
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Hence, being prepared against potential disasters leads to reduced vulnera-
bility and a lower number of fatalities.

Nagurney, Masoumi, and Yu An Integrated Disaster Relief Supply Chain Network Model



Background

Background: Natural Disasters

The amount of damage and loss following a disaster depends on the vulner-
ability of the affected region, and on its ability to respond (and recover) in
a timely manner, also referred to as resilience.

Hence, being prepared against potential disasters leads to reduced vulnera-
bility and a lower number of fatalities.

“During a natural disaster, one has only two options: to become a
victim, or to become a responder” (Alvendia-Quero (2012)).

Nagurney, Masoumi, and Yu An Integrated Disaster Relief Supply Chain Network Model



Background

Background: Disaster Relief Supply Chains

The complexity of disaster relief supply chains
originates from several inherent factors:

o Large demands for relief products,

o Level of uncertainty,

o Irregularities in the size, the timing, and
the location of relief product demand
patterns,

o Disaster-driven supply chains are typically
incident-responsive, and

@ Develop new networks of relationships
within days or even hours, and have very
short life-cycles.
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Background

Background: Criticality of Time

TIME plays a substantial role in the construction and operation of disaster
relief networks.
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Background

Background: Criticality of Time

TIME plays a substantial role in the construction and operation of disaster
relief networks.

FEMA's key benchmarks in response and recovery:

@ To meet the survivors initial demands within 72 hours,
@ To restore basic community functionality within 60 days, and

@ To return to as normal of a situation within 5 years.
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Model

Mathematical Model

We propose an integrated supply chain network model for disaster relief.
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Model
Mathematical Model

We propose an integrated supply chain network model for disaster relief.

Our mathematical framework is of system-optimization type where the
organization aims to satisfy the uncertain demands subject to the
minimization of total operational costs while the sequences of activities
leading to the ultimate delivery of the relief good are targeted to be
completed within a certain time.
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Figure 1. Network Topology of the Integrated Disaster Relief Supply Chain

G =[N, L]: supply chain network graph,
N: set of nodes,
L: set of links (arcs).
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Model
Mathematical Model

Notations:

Py set of paths connecting the origin (node 1) to demand point k,

P: set of all paths joining the origin node to the destination nodes, and
np: total number of paths in the supply chain.
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Model
Mathematical Model

Notations:

Py set of paths connecting the origin (node 1) to demand point k,

P: set of all paths joining the origin node to the destination nodes, and
np: total number of paths in the supply chain.

Total Operational Cost Function

&(fa) = fo X ca(fa), Vae L, (1)

where:
f,: flow of the disaster relief product on link a, and
¢5(f3): unit operational cost function on link a.
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Probability Distribution of Demand

Dy

Pk(Dk):Pk(dk SDk): ]:k(t)dtv k=1,...,ng, (2)
0

where:
dy: actual value of demand at point k,

Py probability distribution function of demand at point k,
Fi: probability density function of demand at point k.
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Probability Distribution of Demand

Dy
Pk(Dk):Pk(dk SDk): ]:k(t)dtv k=1,...,ng, (2)
0

where:

dy: actual value of demand at point k,

Py probability distribution function of demand at point k,
Fi: probability density function of demand at point k.

Demand Shortage and Surplus

A, = max{0, dx — v}, k=1,...,ng, (3a)
A;f = max{0, vx — dk}, k=1,...,ng, (3b)

where:

vi: “projected demand” for the disaster relief item at point k.
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Expected Values of Shortage and Surplus

E(D]) = /Oo(t CVOF(8)dt,  k=1,...,n, (4a)
E(A]) = /ka(vk COF()dt,  k=1,...ng. (4b)
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Expected Values of Shortage and Surplus

E(A;):/ (t— vi)Fe(tdt,  k=1,....ng,

k

Vi
E()) :/ (ve — DFu(t)dt,  k=1,..., .
0

(4a)

(4b)

Expected Penalty due to Shortage and Surplus

EQAAL + MNAD) =M E(A)+XE(A]),  k=1,...,ng,

where:
A, : unit penalty associated with the shortage of the relief item at point k,

Al: unit penalty associated with the surplus of the relief item at point k.
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xp > 0, Vp e P. (6)

xp: flow of the disaster relief goods on path p joining node 1 with a demand
node.
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xp > 0, Vp e P. (6)

xp: flow of the disaster relief goods on path p joining node 1 with a demand
node.

Relationship between Path Flows and Projected Demand

VkEZXp, k:].,...,nR. (7)

Nagurney, Masoumi, and Yu An Integrated Disaster Relief Supply Chain Network Model



xp > 0, Vp e P. (6)

xp: flow of the disaster relief goods on path p joining node 1 with a demand
node.

Relationship between Path Flows and Projected Demand

VkEZXp, k:].,...,nR. (7)

Relationship between Link Flows and Path Flows

o= Xp0ap, Vacl (8)
peEP

0ap is equal to 1 if link a is contained in path p and is 0, otherwise.
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Model
Capturing Time Aspect in Formulation

Completion Time

Ta(f;) = gafa a h:h Va e L7 (9)

where:
T5: completion time of the activity on link a. Note: h, > 0, and g, > 0.
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Model
Capturing Time Aspect in Formulation

Completion Time

Ta(f;) = gafa a hzh Va e L7 (9)

where:
T5: completion time of the activity on link a. Note: h, > 0, and g, > 0.

Completion Time on Paths

Tp = ZTa(fa)éap = Z(gafa + ha)éap, Vp e P. (10)

acl aclL

Where:
Tp: completion time of the sequence of activities on path p.
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ho=> habsp,  VpEP. (11)
acel
Hence,
To=hp+ Y gufadap,  VpEP. (12)
acl

v

hp: sum of the uncongested terms h,s on path p.
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ho=> habsp,  VpEP. (11)
acel
Hence,
To=hp+ > 8afabsp, IpEP. (12)
acl

hp: sum of the uncongested terms h,s on path p.

Tp < Ty, Vpe Py, k=1,... ng, (13)

Ty target for the completion time of the activities on paths corresponding
to demand point k determined by the organization’s decision-maker.
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S gafsbap < T —hp,  VpEPw k=1,...,ng.  (14)
aclL

Tkp: Tk_hpa VpGPk, k:17"'7nR' (15)

Typ: target time for demand point k with respect to path p.

Zgaf;?éap < Tkp, Vpe Py, k=1,...,ng. (16)
acl

v
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Zgafa(sap < Tk_hpy Vp € Pr; k=1,..., ng. (14)
acl

Tkp: Tk_hP7 VpGPk, k:17"'7nR‘ (15)

Typ: target time for demand point k with respect to path p.

Zgaf;?éap < Tkp, Vpe Py, k=1,...,ng. (16)
acl

Zgafaéap_zp < Tkp, Vp e Py, k=1,...,ng. (17)
aelL

zp: amount of deviation with respect to target time T, corresponding to
the “late” delivery of product to point k on path p.
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Non-negativity
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Non-negativity

Time Constraint

Z Zgaxq5aq(53p —2zp < Tkp, Vpe Py, k=1,...,ng. (19)
qeEP acl
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Non-negativity

2z, >0, VpePr, k=1,..., ng. (18)

Time Constraint

Z Zgaxq5aq53p —2zp < Tkp, Vpe Py, k=1,...,ng. (19)
qeP acl

Co(x) = %o X Co(x) = %o X Y _ ca(£)02p, VP EP, (20)
ael

v

a'p(x): total operational cost function on path p.
Cp: unit operational cost on path p.

Nagurney, Masoumi, and Yu An Integrated Disaster Relief Supply Chain Network Model



~k(z): tardiness penalty function corresponding to demand point k.

Minimize Y Co(x) + > (A E(AR) + A E(AD)) + > w(2), (21)
pEP k=1 k=1

subject to: constraints (6), (18), and (19).
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~k(z): tardiness penalty function corresponding to demand point k.

nRr nRr

Minimize Y Co(x) + > (A E(AR) + A E(AD)) + > w(2), (21)
pEP k=1 k=1

subject to: constraints (6), (18), and (19).

Feasible Set

K ={(x,z,w)|x € R,z € RI?, and w € R}, (23)

where x is the vector of path flows, z is the vector of time deviations on
paths, and w is the vector of Lagrange multipliers corresponding to (19).
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Variational Inequality Formulation

The optimization problem (21), subject to its constraints (6), (18), and (19), is
equivalent to the variational inequality problem: determine the vector of optimal
path flows, the vector of optimal path time deviations, and the vector of optimal
Lagrange multipliers (x*, z*,w*) € K, such that:
oE ac
> AP ) = A= P )
k=1 pEPx qEPk qEPk
. I(z . .
+ Z qugaaaq‘sap] X [xp = 5] + Z Z [ Wp} x [zp — z;]
qEP acl k=1 pEPy
nr
+ZZ Tip + 25 — ZZgax . x[wp—w]>0 V(x,z,w) € K,
k=1 pePy qeP ael
(24)
where R
9Co(x) _ <~ 9&:(F) L
8xp = 2 of, 6ap, VpEPk, k = 1,...,I7R. (25)
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Numerical Example

Solution Method and Numerical Examples

American
Red Cross
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Numerical Example
Solution Algorithm

Explicit Formulae for the Applied to the Variational

Inequality (24)

At iteration 7 + 1:
0C,(x™
x;'H = max{O, +a- (A (1 — Pl Z 7-)) = /\+Pk( Z %
q€Pk q€Px P
—Zzw‘lq—ga(saq(sap)}, Vpepk; k = 1,"'anR) (31)
qeP acl
8 T
z;H = max{O T4+ aT(wP — ng ))}, VpePr;, k=1,...,ng, and
(32)
w;“ = max{0,w; + a, Z Zgax 0agOap — -z},
qeEP acl
Vp € P k=1,...,ng. (33)

v
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Numerical Example
A Large Scale Numerical Example

f’l;?kcsuremenz'lrﬁﬂssporta tion f It’z’)@ge Z'Irﬁﬂssporta tion flrr?kcsesyng B’ﬁﬁé’b ution

3 S e o \
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: Demand:
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Organizg Doininican Republic
8 11 1

_________________________

Figure 2: Network Topology of the Larger Disaster Relief Supply Chain Numerical
Example
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Numerical Example

Unit shortage and surplus penalties at demand points Ry and Ry:
A, = 10,000, A% = 100,
Ag, = 7,500, A% = 150.

Target times of delivery at demand points:

Tr, =72, Tg, = 70.

Tardiness penalty functions at demand points:

R(2) =30 2), (@) =3() ).

pGPRl pEPRQ
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Numerical Example

Unit shortage and surplus penalties at demand points Ry and Ry:
- _ + _
Ag, = 10,000, Ag =100,
- _ + _
Ar, = 7,500, A = 150.
Target times of delivery at demand points:

Tr, =72, Tg, = 70.

Tardiness penalty functions at demand points:

R(2) =30 2), (@) =3() ).

PEPR, PEPR,

The Euler method (cf.(31)—(33)) for the solution of variational inequality
(24) was implemented in FORTRAN on a PC at the University of
Massachusetts Amherst. We set the sequence as {a”} = .1(1,3,1,..)),
and the convergence tolerance was 107°.
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Numerical Example

Table 2: Functions and the Optimal Flows on in the Numerical Example
Link Calfa) Ta(fa) fa
1 3fE+2f1 0 19.22
2 22 +2.5f 0 20.02
3 5f3 +4f3 3f3+3 0.00
4 | 45f7+3f4 4fy+2 0.00
5 2 +2f 0 19.22
6 o+ 5f6 0 20.02
7 | 25f2+3f 0 19.22
8 | 3.5f3+2fs 0 20.02
9 T3 +5f0 2fg+ 2 19.22

10 | 4f% +6f10 | 10fin+6 | 0.00
11 [25f3 +4fun | 75/ +5 | 023
12 | 4575 +5f12 | 1.5f12+ 15 | 19.79
13 | 2ff +4fi3 2f13 2 [ 19.22
14 fii+ 31 1.5fi4+1 | 20.02
15 | 4ff+5/1s 3fis+3 | 13.95
16 | 25ff+2fis | 5fis+4 5.98
17 | 3fE+4fi7 | 65f1i7+3 | 0.00
18 | 4fk+4/18 Tfis+5 6.85
19 | 3ff +3/1s 4fio+5 5.68
20 | 35f5+5f0 | 35fn+4 | 749
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Numerical Example

Table 3: Path Definitions, Target Times, , Time Deviations,
and Lagrange Multipliers for the Numerical Example

Path Definition Tip |z, 2 wp
p = (1,5,7,9,13,15) 65 | 13.95 | 53.66 | 321.99
po = (1,5,7,9,13,16) 64 | 5.28 |39.23 | 235.39
ps =(1,5,7,10,13,15) 61 | 0.00 |19.32 | 115.90
ps = (1,5,7,10,13,16) 60 0.00 | 4.83 | 28.99
Pr,: Set of Paths | ps = (2,6,8,11,14, 18) 61 | 0.06 | 18.67 | 112.03
Corresponding to | ps = (2,6.8,12,14,18) | 645 | 6.79 | 43.12 | 258.75
Demand Point Ry | pr = (3,9, 13,15) 62 | 0.00 | 56.66 | 339.99
ps = (3,9,13,16) 61 | 0.00 | 42.23 | 253.39
po = (3,10,13,15) 58 | 0.00 |22.34 | 134.05
pio = (3,10,13,16) 57 | 0.00 | 7.84 | 47.03
pi = (4,11,14,18) 59 | 0.00 |20.71 | 124.24
P12 = (4,12,14,18) 62.5 | 0.00 | 45.24 | 271.46
1o = (1,5.7,0.13.17) | 63 | 0.00 | 13.87 | 83.25
p1a=(1,5,7,10,13,17) 9 | 0.00 | 0.00 0.00
pis=(2,6,8,11,14,19) | 59 | 0.13 | 0.00 0.00
pis = (2,6,8,11,14,20) | 60 | 0.04 | 0.00 0.00
Pyt Set of Paths | pir = (2,6.8,12,14,19) | 62.5 | 555 | 19.01 | 119.44
Corresponding to | pis = (2,6,8,12,14,20) | 635 | 7.45 | 22.40 | 134.43
Demand Point R, | p1o = (3,9,13,17) 60 | 0.00 |16.90 | 101.41
P20 = (3,10,13,17) 56 0.00 | 0.00 0.00
pa1 = (4,11, 14,19) 57 | 0.00 | 0.00 0.00
s = (4,11,14,20) 58 | 0.00 | 0.00 0.00
Pz = (4,12,14,19) 60.5 | 0.00 |21.96 | 131.77
Paq = (4,12, 14,20) 61.5 | 0.00 |24.48 | 146.85
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Numerical Example

Numerical Example: A Variant

We assumed that the organization will now procure the items and,
hence, the time functions associated with the direct procurement links 3
and 4 are now greatly reduced. The remainder of the input data remains as
in the previous example.

As in Table 4, now both the storage links for pre-positioning (links 7 and 8)
and for post-disaster procurement (links 3 and 4) have positive flows.
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Numerical Example

Table 4: Numerical Example Variant - Optimal Link Flows

Link Cq(fa) 7a(/fa) a
1 3fT+2h ] 12.02
: 2f3 +2.5f 0 11.21
3 5f3+4fs Afs+1 7.35
1 | 45f743f1 | Afa+1 | 888
5 72 +2fs 0 12.02
6 2+ 5 0 11.21
7 | 25f2+3f 0 12.02
8 3.5f3 +2fs 0 11.21
9 713+ 5f 2fg +2 19.37

10 | 4f% +6f1w0 10fip+6 | 0.00
11 | 257 +4f11 | 75fu+5 | 0.24
12 | 457 +5f12 | 1.5fi12 + 1.5 | 19.86
13 | 2f5 +4fi3 2fla+2 | 19.37
14 i +3fu 1.5fl4+1 | 20.10
15 | 4fL+5f15 3fis+3 | 14.04
16 | 2.5ff% +2fis | 5fie+4 5.33
17 | 3fL+4fir | 6.5fir+3 | 0.00
18 | 4fk+4fis Tfis+5 6.84
19 | 3f% +3fw0 4fi0+5 5.72
20 | 3.5f5 +5fw | 35fo+4 | 7.53
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Summary
Summary and Conclusions

A network optimization model was developed for the supply chain manage-
ment of a disaster relief (humanitarian) organization in charge of procure-

ment and distribution of relief items to a geographic region prone to natural
disasters. The model:
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Summary
Summary and Conclusions

A network optimization model was developed for the supply chain manage-
ment of a disaster relief (humanitarian) organization in charge of procure-

ment and distribution of relief items to a geographic region prone to natural
disasters. The model:

o allows for the integration of two distinct policies by disaster relief

organizations: (1) pre-positioning the supplies beforehand (2)
procurement of necessary items once the disaster has occurred;
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Summary
Summary and Conclusions

A network optimization model was developed for the supply chain manage-
ment of a disaster relief (humanitarian) organization in charge of procure-
ment and distribution of relief items to a geographic region prone to natural
disasters. The model:

o allows for the integration of two distinct policies by disaster relief
organizations: (1) pre-positioning the supplies beforehand (2)
procurement of necessary items once the disaster has occurred;

@ includes penalties associated with shortages/surpluses at the demand
points with respect to the uncertain demand, and
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Summary
Summary and Conclusions

A network optimization model was developed for the supply chain manage-
ment of a disaster relief (humanitarian) organization in charge of procure-
ment and distribution of relief items to a geographic region

The model:

o allows for the integration of two distinct policies by disaster relief
organizations: (1) pre-positioning the supplies beforehand (2)
procurement of necessary items once the disaster has occurred;

@ includes penalties associated with shortages/surpluses at the demand
points with respect to the uncertain demand, and

@ enables prioritizing the demand points based on the population,
geographic location, etc., by assigning different time targets.
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