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Some References on Evolutionary Variational Inequalities

Static Variational Inequalities – Classical References

G. Stampacchia (1964): first theorem of existence and
uniqueness of the solution of variational inequalities;

G. Fichera (1964, 1972): another founder of the variational
inequality theory;

P. Hartman - G. Stampacchia (1966): study of partial
differential equations;

J.L. Lions - G. Stampacchia (1967): second proof of the
same theorem and introduction of evolutionary variational
inequalities;

H. Brezis (1968): study of evolutionary variational
inequalities.
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Some References on Evolutionary Variational Inequalities

Problem in Rn:

K ⊆ Rn, F : K → Rn,

Find x ∈ K such that 〈F (x), y − x〉 ≥ 0 ∀y ∈ K,

where 〈·, ·〉 is the standard inner product on Rn.



Evolutionary Variational Inequalities and the Internet

Some References on Evolutionary Variational Inequalities

Problem in a Banach space E :

K ⊆ E , F : K → E∗,

Find x ∈ K such that 〈F (x), y − x〉 ≥ 0 ∀y ∈ K,

where 〈·, ·〉 : E∗ × E → R is the duality pairing.

M.J. Smith (1979) and S. Dafermos (1980): formulation of a
traffic network equilibrium problem in terms of a
finite-dimensional variational inequality
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Some References on Evolutionary Variational Inequalities

Evolutionary Variational Inequalties

P. Daniele, A. Maugeri, W. Oettli (1998 - 1999): traffic
network equilibrium problem with time-dependent capacity
constraints and demands;

F. Raciti (2001): time-dependent traffic networks with delay;

L. Scrimali (2004): quasi-variational inequalities in
transportation networks;

P. Daniele (2003): spatial price equilibrium problem with
price and bounds depending on time;

P. Daniele (2003): time-dependent financial network
problem;

P. Daniele, S. Giuffre’, S. Pia (2005): financial network
problem with policy interventions;
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Some References on Evolutionary Variational Inequalities

M.G. Cojocaru, P. Daniele, A. Nagurney (2005 - 2006 -
2007): connection between time-dependent variational
inequalities projected dynamical systems;

A. Nagurney, Z. Liu, M.G. Cojocaru, P. Daniele (2007):
dynamic electric power supply chains;

A. Nagurney, D. Parkes, P. Daniele (2007): the Internet,
evolutionary variational inequalities and the time-dependent
Braess paradox;

P. Daniele, S. Giuffre’, G. Idone, A. Maugeri (2007):
infinite-dimensional duality theory;
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Some References on Evolutionary Variational Inequalities

A. Nagurney, Z. Liu (2007): supply chain networks with
time-varying demands;

M.B. Donato, M. Milasi, C. Vitanza (2008): Walrasian price
equilibrium problem with time-dependent data;

A. Nagurney, Q. Qiang (2008): Efficiency measure for
dynamic networks with application to the Internat and
vulnerability analysis.
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Some References on Evolutionary Variational Inequalities

Two books with results on and applications of Evolutionary
Variational Inequalities.
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Some References on Evolutionary Variational Inequalities

Time-dependent Variational Inequality:

K ⊆ L = Lp([0, T ], Rn), F : K → L∗,

Find x ∈ K such that � F (x), y − x �≥ 0 ∀y ∈ K,

where � G, H �=

∫ T

0
〈G(t), H(t)〉dt , G ∈ L∗, H ∈ L.
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Some References on Evolutionary Variational Inequalities

Roughgarden in his (2005) book Selfish Routing and the Price
of Anarchy states that:

A network like the Internet is volatile. Its traffic patterns can
change quickly and dramatically ... The assumption of a static
model is therefore particularly suspect in such networks.
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The Internet as a Dynamic Network

The Internet as a Dynamic Network

G = [N, L] : network;
W : set of origin/destination (O/D) pairs of nodes;
Pw : set of routes joining w ;
P : set of all routes connecting all the O/D pairs;
dk

w (t) : demand between w at time t by job class k ;
xk

r (t) : flow on route r at time t of class k ;
f k
a (t) : flow on link a of class k at time t ;
Ck

r (t) : cost on route r at time t of class k ;
ck

a (f (t)) : cost on a link a of class k at time t .
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The Internet as a Dynamic Network

Conservation of flow equations:

dk
w (t) =

∑
r∈Pw

xk
r (t), ∀w ∈ W ,∀k

f k
a (t) =

∑
r∈P

xk
r (t)δar , ∀a ∈ L

Capacity Constraints:

0 ≤ xk
r (t) ≤ µk

r (t), ∀r ∈ P,∀k
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The Internet as a Dynamic Network

Connection among costs:

Ck
r (x(t)) =

∑
a∈L

ck
a (x(t))δar , ∀r ∈ P,∀k

Feasible Set:

K =

{
x ∈ L2([0, T ] , RKnP ) : 0 ≤ x(t) ≤ µ(t) a.e. in [0, T ];

∑
p∈Pw

xk
p (t) = dk

w (t),∀w ,∀k a.e. in [0, T ]

}
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The Internet as a Dynamic Network

Additional Assumptions:

0 ≤ d(t) ≤ Φµ(t), a.e. on [0, T ] ⇒ K 6= ∅
All classes can use all the routes

Canonical Bilinear Form on L∗ × L :

〈〈G, x〉〉 :=

∫ T

0
〈G(t), x(t)〉dt , G ∈ L∗, x ∈ L
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The Internet as a Dynamic Network

Definition (Dynamic Multiclass Network Equilibrium)

x∗ ∈ K is said to be a dynamic network equilibrium if ∀w ∈ W,
∀r ∈ Pw , ∀k; k = 1, . . . , K , and a.e. on [0, T ]:

Ck
r (x∗(t))− λk∗

w (t)


≤ 0, if xk∗

r (t) = µk
r (t),

= 0, if 0 < xk∗
r (t) < µk

r (t),
≥ 0, if xk∗

r (t) = 0.

Theorem (Variational Formulation)

x∗ ∈ K is an equilibrium flow if and only if it satisfies the
evolutionary variational inequality:∫ T

0
〈C(x∗(t)), x(t)− x∗(t)〉dt ≥ 0, ∀x ∈ K
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The Internet as a Dynamic Network

Preliminary Definitions

C : K → L∗ is said to be
1 pseudomonotone if and only if, ∀x , y ∈ K

〈〈C(x), y − x〉〉 ≥ 0 ⇒ 〈〈C(y), x − y〉〉 ≤ 0;

2 Fan-hemicontinuous if and only if, ∀y ∈ K,
ξ 7→ 〈〈C(ξ), y − ξ〉〉 is upper semicontinuous on K;

3 hemicontinuous along line segments if and only if,
∀x , y ∈ K, ξ 7→ 〈〈C(ξ), y − x〉〉 is upper semicontinuous on
the line segment [x , y ].



Evolutionary Variational Inequalities and the Internet

The Internet as a Dynamic Network

Theorem (Existence)

If C satisfies any of the following conditions:
1 C is Fan-hemicontinuous with respect to the strong

topology on K, and ∃A ⊆ K nonempty, compact, and
∃B ⊆ K compact such that, ∀y ∈ K \ A, ∃x ∈ B with
〈〈C(x), y − x〉〉 < 0;

2 C is Fan-hemicontinuous with respect to the weak topology
on K;

3 C is pseudomonotone and hemicontinuous along line
segments,

then the EVI problem admits a solution in K.
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A Multiclass Numerical Example
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Figure: Network Structure of the Multiclass Numerical Example

Time horizon:

[0, 10]
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A Multiclass Numerical Example

Costs for Class 1 and Class 2:

C1
r1
(x(t)) = 2x1

r1
(t)+x2

r1
(t)+5, C1

r2
(x(t)) = 2x2

r2
(t)+2x1

r2
(t)+10,

C2
r1
(x(t)) = x2

r1
(t) + x1

r1
(t) + 5, C2

r2
(x(t)) = x1

r2
(t) + 2x2

r2
(t) + 5.

Demands for the O/D pair:

d1
w (t) = 10− t , d2

w (t) = t

Upper bounds:

µ1
r1

= µ1
r2

= µ1
r1

= µ2
r2

= ∞
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A Multiclass Numerical Example

Equilibrium Multiclass Route Flows at time t
Flow t = 0 t = 2.5 t = 5 t = 7.5 t = 10
x1∗

r1
(t) 6.25 6.25 5.00 2.50 0.00

x1∗
r2

(t) 3.75 1.25 0.00 0.00 0.00
x2∗

r1
(t) 0.00 0.00 1.6̄6 4.16̄6 6.6̄6

x2∗
r2

(t) 0.00 2.50 3.3̄3 3.3̄3 3.3̄3

Table: Equilibrium Route Flows for the Multiclass Numerical Example
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A Multiclass Numerical Example
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The Time-dependent Braess Paradox
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Figure: The Time-dependent Braess Network Example with
Relevance to the Internet
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The Time-dependent Braess Paradox

Capacities:

µr1(t) = µr2(t) = ∞, ∀t ∈ [0, T ]

Link cost functions:

ca(fa(t)) = 10fa(t) cb(fb(t)) = fb(t) + 50

cc(fc(t)) = fc(t) + 50 cd(fd(t)) = 10fd(t)

Time-varying demand:

dw (t) = t , t ∈ [0, T ]
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The Time-dependent Braess Paradox

Remark

At time t = 6, dw (6) = 6, and it is easy to verify that the
equilibrium route flows at time t = 6 are:

x∗r1
(6) = 3, x∗r2

(6) = 3,

the equilibrium link flows are:

f ∗a (6) = 3, f ∗b (6) = 3, f ∗c (6) = 3, f ∗d (6) = 3,

with associated equilibrium route costs:

Cr1(6) = ca(6) + cc(6) = 83, Cr2 = cb(6) + cd(6) = 83.

This is the solution to the classical (static) Braess (1968)
network without the route addition.
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The Time-dependent Braess Paradox

EVI for the Dynamic Network Equilibrium Problem

Route costs in terms of route flows:

fa(t) = fc(t) = xr1(t), fb(t) = fd(t) = xr2(t)

⇓

Cr1(t) = 11xr1(t) + 50, Cr2(t) = 11xr2(t) + 50

Route conservation of flow equations:

dw (t) = t = xr1(t) + xr2(t),

⇓

xr2(t) = t − xr1(t)
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The Time-dependent Braess Paradox

EVI Problem

Find x∗ ∈ K :∫ T

0
(11x∗r1

(t) + 50)× (xr1(t)− x∗r1
(t)) + (11x∗r2

(t) + 50)

×(xr2(t)− x∗r2
(t))dt ≥ 0, ∀x ∈ K

m∫ T

0
(22x∗r1

(t)− 11t)× (xr1(t)− x∗r1
(t))dt ≥ 0, ∀x ∈ K
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The Time-dependent Braess Paradox

Equilibrium Flows:

x∗r1
(t) =

t
2

x∗r2
(t) =

t
2

Equilibrium route costs:

Cr1(x
∗
r1
(t)) = 5

1
2

t + 50 = Cr2(x
∗
r2
(t)) = 5

1
2

t + 50
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The Time-dependent Braess Paradox

Cost on the new link “e”:

ce(fe(t)) = fe(t) + 10, t ∈ [0, T ]

Remark

For t = 6, equilibrium flows: x∗r1
(6) = x∗r2

(6) = x∗r3
(6) = 2,

equilibrium link flows:

f ∗a (6) = 4, f ∗b (6) = 2, f ∗c (6) = 2, f ∗e (6) = 2, f ∗d (6) = 4,

equilibrium route costs:

Cr1(6) = Cr2(6) = Cr3(6) = 92.
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The Time-dependent Braess Paradox

New EVI Problem

Find x∗ ∈ K :∫ T

0
(11x∗r1

(t) + 10x∗r3
(t) + 50)× (xr1(t)− x∗r1

(t))

+(11x∗r2
(t) + 10x∗r3

(t) + 50)× (xr2(t)− x∗r2
(t))

+(10x∗r1
(t)+21x∗r3

(t)+10x∗r2
(t)+10)×(xr3−x∗r3

(t))dt ≥ 0, ∀x ∈ K

m∫ T

0
(13x∗r1

(t)−11t+40)×((xr1(t)+xr2(t))−2x∗r1
(t))dt ≥ 0, ∀x ∈ K
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The Time-dependent Braess Paradox

Equilibrium Distribution

for dw (t) = t ∈
[
0, t1 = 3

7
11

]
(Regime I):

x∗r1
(t) = x∗r2

(t) = 0, x∗r3
(t) = dw (t) = t ;

for dw (t) = t ∈
(

t1 = 3
7
11

, 8
8
9

]
(Regime II):

x∗r1
(t) = x∗r2

(t) =
11
13

t − 40
13

, x∗r3
(t) = − 9

16
t +

43
8

.

for dw (t) = t ∈
(

t2 = 8
8
9
, T < ∞

]
(Regime III):

x∗r1
(t) = x∗r2

(t) =
dr1(t)

2
=

t
2
, x∗r3

(t) = 0.



Evolutionary Variational Inequalities and the Internet

The Time-dependent Braess Paradox
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The Efficiency Measure for Dynamic Networks Modeled as Evolutionary Variational Inequalities

Efficiency Measure

Nagurney and Qiang (2008) proposed an efficiency measure
for dynamic networks, modeled as evolutionary variational
inequalities, denoted by E(G, d , T ).

Definition (Dynamic Network Efficiency: Continuous Time
Version)

The network efficiency for the network G with time-varying
demand d for t ∈ [0, T ], denoted by E(G, d , T ), is defined as
follows:

E(G, d , T ) =

∫ T
0 [

∑
w∈W

dw (t)
λw (t) ]/nW dt

T
.
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The Efficiency Measure for Dynamic Networks Modeled as Evolutionary Variational Inequalities

The dynamic network efficiency measure E defined above is
actually the average demand to price ratio over time.

It measures the overall (economic) functionality of the network
with time-varying demands.

When the network topology G, the demand pattern over time
and the time span are given, a network is considered to be
more efficient if it can satisfy higher demands at lower costs
over time.
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The Efficiency Measure for Dynamic Networks Modeled as Evolutionary Variational Inequalities

The network efficiency measure above can be easily adapted
to dynamic networks in which the demands change at discrete
points in time, as we now demonstrate. Let d1

w , d2
w , ..., dH

w
denote demands for O/D pair w in H discrete time intervals,
given, respectively, by: [t0, t1], (t1, t2], ..., (tH−1, tH ], where
tH ≡ T .

We assume that the demand is constant in each such time
interval for each O/D pair. Moreover, we denote the
corresponding minimal costs for each O/D pair w at the H
different time intervals by: λ1

w , λ2
w , ..., λH

w . The demand vector d ,
in this special discrete case, is a vector in RnW×H . The dynamic
network efficiency measure in this case is as follows.
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The Efficiency Measure for Dynamic Networks Modeled as Evolutionary Variational Inequalities

Definition (Dynamic Network Efficiency: Discrete Time Version)

The network efficiency for the network (G, d) over H discrete
time intervals: [t0, t1], (t1, t2], ..., (tH−1, tH ], where tH ≡ T , and
with the respective constant demands: d1

w , d2
w , ..., dH

w for all
w ∈ W is defined as:

E(G, d , tH = T ) =

∑H
i=1[(

∑
w∈W

d i
w

λi
w
)(ti − ti−1)/nW ]

tH
.
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The Efficiency Measure for Dynamic Networks Modeled as Evolutionary Variational Inequalities

We now provide the relationship between the dynamic network
efficiency measure and the network efficiency measure
proposed by Nagurney and Qiang (2007a,b) for static
transportation (or congested) networks with fixed demands.

Theorem

Assume that dw (t) = dw , for all O/D pairs w ∈ W and for
t ∈ [0, T ]. Then, the dynamic network efficiency measure
collapses to the Nagurney and Qiang (2007a, b) measure:

E =
1

nW

∑
w∈W

dw

λw
.
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The Efficiency Measure for Dynamic Networks Modeled as Evolutionary Variational Inequalities

The importance of a network component in the dynamic
network case is the same as that defined in Nagurney and
Qiang (2007a, b), but with the static efficiency measure now
replaced by the dynamic network efficiency measure in the
continuous case and by the discrete version in the discrete
case. Hence, we have the following:

Definition (Importance of a Network Component)

The importance of network component g of network G with
demand d over time horizon T is defined as follows:

I(g, d , T ) =
E(G, d , T )− E(G − g, d , T )

E(G, d , T )

where E(G − g, d , T ) is the dynamic network efficiency after
component g is removed.
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The Efficiency Measure for Dynamic Networks Modeled as Evolutionary Variational Inequalities

In studying the importance of a network component, the
elimination of a link is treated in the above measure by
removing that link while the removal of a node is managed by
removing the links entering and exiting that node.

In the case that the removal results in no path/route connecting
an O/D pair, we simply assign the demand for that O/D pair to
an abstract path with a cost of infinity.

Thus, our measure is well-defined even in the case of
disconnected networks; see also Nagurney and Qiang (2007a,
b). Additional theoretical properties of the static measure can
be found in Qiang and Nagurney (2008).
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Identification of the Importance of Nodes and Links and their Rankings for the Time-dependent Braess Network

An Application to the Time-dependent Braess
Network

We now apply the above proposed dynamic network measure
to the time-dependent Braess example (cf. Nagurney and
Qiang (2008), Nagurney, Parkes, and Daniele (2007),
Nagurney (2006), and, also, Pas and Principio (1997)).
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Identification of the Importance of Nodes and Links and their Rankings for the Time-dependent Braess Network

Network Efficiency of the Dynamic Braess Network
and Importance Rankings of Nodes and Links Over
the Time Horizon

Let us now consider the dynamic Braess network (with three
paths) in for t ∈ [0, 10]. As shown in Nagurney, Parkes, and
Daniele (2007) and recalled above, different routes (and links)
are used in different demand ranges. Therefore, it is interesting
and relevant to study the network efficiency and the importance
of the network components over the time horizon.

The network efficiency E(G, d , 10) for this dynamic network is
0.5793. The importance and the rankings of the links and the
nodes are summarized in the Tables below.
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Identification of the Importance of Nodes and Links and their Rankings for the Time-dependent Braess Network

Table: Importance and Ranking of Links in the Dynamic Braess
Network

Link Importance Value Importance Ranking
a 0.2604 1
b 0.1784 2
c 0.1784 2
d 0.2604 1
e -0.1341 3



Evolutionary Variational Inequalities and the Internet

Identification of the Importance of Nodes and Links and their Rankings for the Time-dependent Braess Network

Table: Importance and Ranking of Nodes in the Dynamic Braess
Network

Node Importance Value Importance Ranking
1 1.0000 1
2 0.2604 2
3 0.2604 2
4 1.0000 1
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Identification of the Importance of Nodes and Links and their Rankings for the Time-dependent Braess Network

From the above analysis, it is clear which nodes and links are
more important in the dynamic Braess network, and, hence,
should, in effect, be better protected and secured, in practice,
since their elimination results in a more significant drop in
network efficiency or performance.

Indeed, link e after t = 88
9 is never used and in the range

t ∈ [3 7
11 , 88

9 ] increases the cost, so the fact that link e has a
negative importance value makes sense; over time, its removal
would, on the average, improve the network efficiency! This
analysis also has implications for network design since, over
the time horizon, adding/building link e does not make sense.
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For further reading, please see:

A. Nagurney, D. Parkes, P. Daniele, “The Internet, evolutionary
variational inequalities, and the time-dependent Braess
paradox,” Computational Management Science 4 (2007),
355-375.

A. Nagurney, Q. Qiang, “An efficiency measure for dynamic
networks with application to the Internet and vulnerability
analysis,” Netnomics 9 (2008), 1-20.

A. Nagurney, Q. Qiang, Fragile Networks; Identifying
Vulnerabilities and Synergies in an Uncertain World, John
Wiley & Sons, Hoboken, New Jersey (2009).
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Thank you!
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