Investment with Linear Programming

Xuan Huang

Investment 101

- Return capital gain or loss.
- **Risk** No free lunch!
- Securities bond, stock, etc.

• Mutual fund Portfolio – risk diversification; don't put all your eggs in one basket.

LP application in Investment

- Portfolio Management
 - Mutual fund portfolio optimization
 - Bond portfolio improvement
- Asset and Liability Management (ALM)

Portfolio Optimization

• W.F. Sharpe, 1967.

• H. Konno and H. Yamazaki, 1991.

• M.R. Young, 1998.

Portfolio Optimization

x_j - decision variables, j = 1,2...n
R_j - rate of return. r_{jt}, t = 1,2...T; E(R_j) = r_j = tr_{jt}/T

- Expected return: E($_{j}R_{j}x_{j}$) = $_{j}r_{j}x_{j}$
- Risk of Return: Var($_{i}R_{i}x_{i}$)

minimize $f(x_1, \dots, x_n) = Var\left(\sum_{j=1}^n R_j x_j\right)$

subject to $\sum_{i=1}^{n} r_{j} x_{j} \ge \rho M_{0}$

 $\sum_{j=1}^{n} x_j = M_0$ $x_i \geq 0$ j = 1, ..., n

minimize
$$f(x_1, ..., x_n) = Var\left(\sum_{j=1}^n R_j x_j\right)$$

subject to
$$\sum_{j=1}^{n} r_j x_j \ge \rho M_0$$

$$\sum_{j=1}^{n} x_j = M_0$$

$$x_j \ge 0 \qquad \qquad j = 1, \dots, n$$

minimize
$$f(x_1, ..., x_n) = Var\left(\sum_{j=1}^n R_j x_j\right)$$

$$\sum_{j=1}^{n} r_j x_j \ge \rho M_0$$

$$\sum_{j=1}^{n} x_j = M_0$$
$$x_j \ge 0$$

$$j = 1, ..., n$$

minimize
$$f(x_1,...,x_n) = Var\left(\sum_{j=1}^n R_j x_j\right)$$

subject to
$$\sum_{j=1}^{n} r_j x_j \ge \rho M_0$$

$$\sum_{j=1}^{n} x_j = M_0$$

$$x_j \ge 0 \qquad \qquad j = 1, \dots, n$$

Sharpe remarked (1971)... -If the essence of the portfolio analysis problem could be adequately captured in a form for linear programming methods, the prospect for practical application would be greatly enhanced.

minimize $\sum_{t=1}^{T} \left| \sum_{j=1}^{n} a_{jt} x_{j} \right| / T$

subject to

minimize $\sum_{t=1}^{T} \left| \sum_{j=1}^{n} a_{jt} x_{j} \right| / T$

subject to

minimize |x|subject to

minimize $\sum_{t=1}^{T} \left| \sum_{j=1}^{n} a_{jt} x_{j} \right| / T$

subject to

 $\begin{array}{c|c} y \\ minimize & |x| \\ subject to \dots \\ & & \dots \end{array}$

minimize $\sum_{t=1}^{T} \left| \sum_{j=1}^{n} a_{jt} x_{j} \right| / T$

subject to

minimize |x|subject to minimize y subject to $-y \le x \le y$

• At t, expected return of the portfolio is $_{j}r_{jt}x_{j}$

0

 \bigcirc

0

• Maximize $(\min_{t} jr_{jt}x_{j})$

0

 \bigcirc

0

 \bigcirc

maximize $\min_{t} \sum_{j=1}^{n} r_{jt} x_{j}$

subject to

Sharpe's Improvement of the model

- Modify the objective function to
 - Z=(1-)Return- Risk
- Adding more constraints with industry consideration.

Reference

- H. Konno and H. Yamazaki, 1991.
 - "Mean-Absolute Deviation Portfolio
 Optimization Model and its Application to Tokyo Stock Market".
- W.F. Sharpe, 1967.
 - "A linear Programming Algorithm for Mutual Fund Portfolio Selection".
- M.R. Young, 1998.
 - "A Minimax Portfolio Selection Rule with Linear Programming Solution".

Thank you!