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Some Background and Motivation
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Some Background and Motivation

The COVID-19 pandemic, declared by the World Health
Organization on March 11, 2020, has impacted supply chains,
commerce, and trade, employment and work, healthcare,
transportation, education, and social activities worldwide.

The pandemic is a disaster not limited in time and location.

Economies and societies have undergone significant transformations in this
pandemic, with effects that will linger and will be long studied.

The toll, in terms of lives lost, illnesses, and disruptions, has been
immense.
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Some Background and Motivation

The Operation Research community has been deeply engaged in the
pandemic in research, education, as well as outreach, including
speaking with the media, in order to inform the broader community
and even to influence policy.

In this tutorial, I hope to provide you with some of the methodological
fundamentals, as well as a plethora of applications that have been inspired
to address issues and challenges in the pandemic.

The focus here is on game theory because the pandemic has
revealed intense competition among various stakeholders and
decision-makers, from the local, regional, and national levels to the
global arena, as well as opportunities for cooperation.

The tutorial paper, on which this presentation is based, has
additional results and many references.
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Methodology - Variational Inequalities
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Variational Inequalities

Dafermos (1980) identified that the traffic network equilibrium conditions,

as formulated by Smith (1979), were a variational inequality (VI) problem.

This unveiled the theory for the formulation, analysis, and computation of

solutions to numerous equilibrium problems in Operations Research,

economics, engineering, and other disciplines.

The paper, available for free download, S. Dafermos (1980), “Traffic Equilibrium
and Variational Inequalities,” Transportation Science 14(1), pp 42-54,

was selected by the Editors as one of the 12 most impactful papers in 50 years!
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Background

To-date, problems which have been formulated and studied as
variational inequality (VI) problems include:

• traffic network equilibrium problems
• spatial price equilibrium problems
• oligopolistic market equilibrium problems
• financial equilibrium problems
• migration equilibrium problems, as well as
• environmental network and ecology problems,
• knowledge network problems,
• electric power generation and distribution networks,
• supply chain network equilibrium problems, and even
• the Internet!
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Many of the VI Problems Arise in Network Systems
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Variational Inequality Theory

Variational inequality theory provides us with a tool for:

• formulating a variety of equilibrium problems;
• qualitatively analyzing the problems in terms of existence and uniqueness
of solutions, stability and sensitivity analysis, and
• providing us with algorithms with accompanying convergence analysis for
computational purposes.

It contains, as special cases, such well-known problems in
mathematical programming as: systems of nonlinear equations,
optimization problems, complementarity problems, and is also
related to fixed point problems.
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Variational Inequality Theory

Definition 2.1: Finite-Dimensional Variational Inequality
Problem

The finite-dimensional variational inequality problem, VI(F ,K), is to
determine a vector X ∗ ∈ K ⊂ RN , such that

〈F (X ∗),X − X ∗〉 ≥ 0, ∀X ∈ K, (2.1a)

where F is a given continuous function from K to RN , K is a given closed
convex set, and 〈·, ·〉 denotes the inner product in N-dimensional Euclidean
space. In (2.1a), F (X )≡(F1(X ),F2(X ), . . . ,FN(X ))T , and
X ≡ (X1,X2, . . . ,XN)T .

(2.1a) is equivalent to

N∑
i=1

Fi (X
∗) · (Xi − X ∗

i ) ≥ 0, ∀X ∈ K. (2.1b)
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Geometric Interpretation of VI(F ,K) and a Projected
Dynamical System

As shown by Dupuis and Nagurney (1993), there is associated with a VI
problem, a projected dynamical system, which provides a natural
underlying dynamics until an equilibrium state is achieved, under
appropriate conditions. In particular, F (X ∗) is “orthogonal” to the feasible
set K at the point X ∗.
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To model the dynamic behavior of complex network systems,
including supply chains, we utilize projected dynamical systems (PDSs)
advanced by Dupuis and Nagurney (1993) in the Annals of Operations
Research and by Nagurney and Zhang (1996) in our book Projected
Dynamical Systems and Variational Inequalities with Applications.

Such nonclassical dynamical systems are being used for

evolutionary games (Sandholm (2005, 2011)),

ecological predator-prey networks (Nagurney and Nagurney (2011a, b)),

even neuroscience (Girard et al. (2008),

dynamic spectrum model for cognitive radio networks (Setoodeh,
Haykin, and Moghadam (2012)),

Future Internet Architectures (Saberi, Nagurney, and Wolf (2014); see
also Nagurney et al. (2015)).
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Variational Inequality Theory

Proposition 2.1: Formulation of a Constrained Optimization Problem
as a Variational Inequality

Let X ∗ be a solution to the optimization problem:

Minimize f (X ) (2.2)

subject to:
X ∈ K,

where f is continuously differentiable and K is closed and convex. Then
X ∗ is a solution of the variational inequality problem:

〈∇f (X ∗),X − X ∗〉 ≥ 0, ∀X ∈ K, (2.3)

where ∇f (X ) is the gradient vector of f with respect to X ; that is,

∇f (X )≡(∂f (X )
∂X1

, . . . , ∂f (X )
∂XN

)T .
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Variational Inequality Theory

Proposition 2.2: Formulation of an Unconstrained Optimization
Problem as a Variational Inequality

If f (X ) is a convex function and X ∗ is a solution to VI(∇f ,K), then X ∗ is
a solution to the optimization problem (2.2). In the case that the feasible
set K = RN , then the unconstrained optimization problem is also a
variational inequality problem.
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Variational Inequality Theory

The variational inequality problem can be reformulated as an optimization
problem under certain symmetry conditions. Several definitions are now
recalled, followed by a theorem presenting the above relationship.

Definition 2.2: Positive Semi-Definiteness and Definiteness

An N × N matrix M(X ), whose elements mij(X ); i , j = 1, ...,N, are
functions defined on the set T ⊂ RN , is said to be positive-semidefinite on
T if

vTM(X )v ≥ 0, ∀v ∈ RN , X ∈ T . (2.4)

It is said to be positive-definite on T if

vTM(X )v > 0, ∀v 6= 0, v ∈ RN , X ∈ T . (2.5)

Finally, it is said to be strongly positive-definite on T if

vTM(X )v ≥ α‖v‖2, for some α > 0, ∀v ∈ RN , X ∈ T . (2.6)
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Variational Inequality Theory

Theorem 2.1: Reformulation of a Variational Inequality Problem as an
Optimization Problem Under Symmetry Assumption

Assume that F (X ) is continuously differentiable on K and that the
Jacobian matrix

∇F (X ) =


∂F1
∂X1

. . . ∂F1
∂XN

... . . .
...

∂FN
∂X1

. . . ∂FN
∂XN

 (2.7)

is symmetric and positive-semidefinite. Then there is a real-valued convex
function f : K 7−→ R1 satisfying

∇f (X ) = F (X ) (2.8)

with X ∗ the solution of VI(F ,K) also being the solution of the
mathematical programming problem:
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Variational Inequality Theory

Minimize f (X )

subject to:
X ∈ K,

where f (X ) =
∫

F (X )Tdx, and
∫

is a line integral.

Hence, the variational inequality is a more general problem
formulation than an optimization problem formulation, since it can
also handle a function F (X ) with an asymmetric Jacobian.

This enriches the breadth of applications that can be rigorously handled in
different disciplines. Next, certain qualitative properties associated with
variational inequality problems are presented.
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Qualitative Properties

Existence of a solution to a variational inequality problem follows from
continuity of the function F (X ) that enters the variational inequality,
provided that the feasible set K is compact as stated in Theorem 2.2.

Theorem 2.2: Existence of a Solution

If K is a compact convex set and F (X ) is continuous on K, then the
variational inequality problem admits at least one solution X ∗.

Theorem 2.3: Existence of a Solution Using a Coercivity Condition

Suppose that F (X ) satisfies the coercivity condition

〈F (X )− F (X0),X − X0〉
‖X − X0‖

→ ∞ (2.9)

as ‖X‖ → ∞ for X ∈ K and for some X0 ∈ K. Then VI(F ,K) has a
solution.
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Important Definitions

Definition 2.3: Monotonicity

F (X ) is monotone on K if

〈F (X 1)− F (X 2),X 1 − X 2〉 ≥ 0, ∀X 1,X 2 ∈ K. (2.10)

Definition 2.4: Strict Monotonicity

F (X ) is strictly monotone on K if

〈F (X 1)− F (X 2),X 1 − X 2〉 > 0, ∀X 1,X 2 ∈ K, X 1 6= X 2. (2.11)
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Important Definitions

Definition 2.5: Strong Monotonicity

F (X ) is strongly monotone on K if

〈F (X 1)− F (X 2),X 1 − X 2〉 ≥ α‖X 1 − X 2‖2, ∀X 1,X 2 ∈ K, (2.12)

where α > 0.

Definition 2.6: Lipschitz Continuity

F (X ) is Lipschitz continuous on K if there exists an L > 0, such that

〈F (X 1)− F (X 2),X 1 − X 2〉 ≤ L‖X 1 − X 2‖2, ∀X 1,X 2 ∈ K, (2.13)

where L is known as the Lipschitz constant.
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Qualitative Properties

Theorem 2.4: Uniqueness of a Solution Under Strict Monotonicity

Suppose that F (X ) is strictly monotone on K. Then the solution to the
VI(F ,K) problem is unique, if one exists.

Theorem 2.5: Existence and Uniqueness Under Strong Monotonicity

Suppose that F (X ) is strongly monotone on K. Then there exists precisely
one solution X ∗ to VI(F ,K).

Note that, according to Theorem 2.5, strong monotonicity of the function
F guarantees both existence and uniqueness of a solution, in the case of
an unbounded feasible set K. If the feasible set K is compact, that is,
closed and bounded, the continuity of F guarantees the existence of a
solution. The strict monotonicity of F is then sufficient to guarantee the
uniqueness of a solution, provided that it exists.
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Relationships Between VIs and Game Theory

Nash (1950, 1951) developed noncooperative game theory,
involving multiple players, each of whom acts in her own interest.

Consider a game with m players, each player i having, without loss of
generality, a strategy vector Xi = {Xi1, ...,Xin} selected from a closed,
convex set Ki ⊂ Rn. Each player i seeks to maximize her utility function,
Ui : K → R, where K=K1 × K2 × · · · × Km ⊂ Rmn. The utility of player i ,
Ui , depends not only on her own strategy vector, Xi , but also on the
strategy vectors of the other players, (X1, . . . ,Xi−1,Xi+1, . . . ,Xm). An
equilibrium is achieved if no one can increase her utility by unilaterally
altering the value of her strategy vector.
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Nash Equilibrium

Definition 2.7: Nash Equilibrium

A Nash equilibrium is a strategy vector

X ∗ = (X ∗
1 , . . . ,X ∗

m) ∈ K, (2.14)

where
Ui (X

∗
i , X̂ ∗

i ) ≥ Ui (Xi , X̂
∗
i ), ∀Xi ∈ Ki ,∀i , (2.15)

and X̂ ∗
i = (X ∗

1 , . . . ,X ∗
i−1,X

∗
i+1, . . . ,X

∗
m).
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The Relationships between VIs and Game Theory

It has been shown by Hartman and Stampacchia (1966) and Gabay and
Moulin (1980) that, given continuously differentiable and concave utility
functions, Ui , ∀i , the Nash equilibrium problem can be formulated as a
variational inequality problem defined on K.

Theorem 2.6: Variational Inequality Formulation of Nash Equilibrium

Under the assumption that each utility function Ui is continuously
differentiable and concave, X ∗ is a Nash equilibrium if and only if X ∗ ∈ K
is a solution of the variational inequality

〈F (X ∗),X − X ∗〉 ≥ 0, X ∈ K, (2.16)

where F (X ) ≡ (−∇X1U1(X ), . . . ,−∇XmUm(X ))T , and

∇Xi
Ui (X ) = (∂Ui (X )

∂Xi1
, . . . , ∂Ui (X )

∂Xin
).

The conditions for existence and uniqueness of a Nash equilibrium
can be readily obtained from the previous Theorems.
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Generalized Nash Equilibrium

We now turn to a discussion of Generalized Nash Equilibrium (GNE) in
which the constraints underlying the players’ strategies also depend on the
strategies of their rivals.

Definition 2.10: Generalized Nash Equilibrium

A strategy vector X ∗ ∈ K ≡
∏m

i=1 Ki ,X
∗ ∈ S, constitutes a Generalized

Nash Equilibrium if for each player i ; i = 1, ...,m :

Ui (X
∗
i , X̂ ∗

i ) ≥ Ui (Xi , X̂ ∗
i ), ∀Xi ∈ Ki ,∀X ∈ S, (2.17)

where
X̂ ∗

i ≡ (X ∗
1 , . . . ,X ∗

i−1,X
∗
i+1, . . . ,X

∗
m),

Ki is the feasible set of individual player i and S is the feasible set
consisting of the shared constraints.

Anna Nagurney Game Theory and the COVID-19 Pandemic



Generalized Nash Equilibrium

Definition 2.11: Variational Equilibrium

A strategy vector X ∗ is said to be a variational equilibrium of the above
Generalized Nash Equilibrium game if X ∗ ∈ K, where K ≡ K ∩ S, is a
solution of the variational inequality:

−
m∑

i=1

〈∇Xi
Ûi (X

∗),Xi − X ∗
i 〉 ≥ 0, ∀X ∈ K. (2.18)

Bensoussan (1974) formulated the GNE problem as a quasivariational inequality.

GNE problems are challenging to solve as quasivariational inequality problems

since the state-of-the-art in terms of algorithms is not as advanced as that for

variational inequality problems. Kulkarni and Shanbhag (2012) provide sufficient

conditions to establish the theory of a Variational Equilibrium as a refinement of

the GNE, which is highly relevant to applications in the COVID-19 pandemic.
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An Algorithm

There are many algorithms for the computation of solutions to
variational inequality problems, including those based on the general
iterative schemes of Dafermos (1983) and Dupuis and Nagurney
(1993).

In this tutorial, we use the modified projection method of Korpelevich
(1977), which requires only Lipschitz continuity and monotonicity of F (X )
for convergence, provided a solution exists.

We especially are interested in algorithms that resolve the
variational inequality problem into subproblems that can be solved
easily and exactly in closed form.
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Geometric Interpretation of a Projection
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An Algorithm

The modified projection method, with τ denoting an iteration counter, is
presented below.
Step 0: Initialization
Set X 0 ∈ K. Let τ = 1 and let β be a scalar such that 0 < β ≤ 1

L , where
L is the Lipschitz continuity constant (cf. (2.13)).
Step 1: Computation
Compute X̄ τ by solving the variational inequality subproblem:

〈X̄ τ + βF (X τ−1)− X τ−1,X − X̄ τ 〉 ≥ 0, ∀X ∈ K. (2.19)

Step 2: Adaptation
Compute X τ by solving the variational inequality subproblem:

〈X τ + βF (X̄ τ )− X τ−1,X − X τ 〉 ≥ 0, ∀X ∈ K. (2.20)

Step 3: Convergence Verification
If max |X τ

l −X τ−1
l | ≤ ε, for all l , with ε > 0, a prespecified tolerance, then

stop; else, set τ := τ + 1, and go to Step 1.
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Convergence

Theorem 2.11: Convergence of the Modified Projection Method

If F (X ) is monotone and Lipschitz continuous (and a solution exists), the
modified projection algorithm converges to a solution of variational
inequality (2.1a).
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Commercial Supply Chains

and the

Inclusion of Labor
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Some Motivation - Food Supply Chains

Food is essential to our health and well-being. During the
COVID-19 pandemic, the associated supply chains suffered major
disruptions.
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Food Supply Chain Disruptions Due to COVID-19

The COVID-19 pandemic impacted food supply chains in a
dramatic and sustained manner.

Infections at three of the nation’s largest meat processors were
significant in 2020. At Tysons Foods, the largest meat processor in
the US, the number of Tyson employees with the coronavirus
exploded from less than 1,600 in April 2020 to more than 7,000
by May 25, 2020.

Millions of farm animals had to be culled because of the
shutdown of several big meat processing plants. Enhanced cleaning,
redesign, and emphasis on social distancing was slowing down the
processing, causing additional delays.

Shortages of many types of meats, even organic chicken, were
experienced, with price increases.
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Food Supply Chain Disruptions Due to COVID-19

Fresh produce (oranges, potatoes, strawberries, etc.) on some
farms, had to be discarded because of lack of timely processing
capabilities at food processing plants.

Labor needed to pick ripened produce was less available due to
migrant labor restrictions, illnesses, etc.

With the closures of schools, restaurants, businesses, etc., during part
of the pandemic outlets for perishable food changed dramatically.
Distribution channels were being reinvisioned and redesigned.

Food insecurity was rising nationally.
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Food Supply Chain Disruptions Due to COVID-19
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Game Theory Supply Chain Network Model with Labor

This part of the tutorial is based on the paper, “Supply Chain Game
Theory Network Modeling Under Labor Constraints: Applications to
the Covid-19 Pandemic,” A. Nagurney, European Journal of Operational
Research, 293(3), (2021), pp. 880-891, in which a game theory model for
supply chains with labor was constructed, under three different sets of
constraints, building on our previous work.
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Game Theory Supply Chain Network Model with Labor
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Game Theory Supply Chain Network Model Notation

Table: Game Theory Supply Chain Network Model Notation

Notation Definition

Li The set of links in firm i ’s supply chain network, with L being all the links.
G = [N , L] the graph of the supply chain network consisting of all nodes N and all links L.

P i
k set of paths in firm i ’s supply chain network terminating in demand market k;

∀i, k.

P i set of all n
Pi paths of firm i ; i = 1, . . . , m.

P set of all nP paths in the supply chain network economy.

xp ; p ∈ P i
k nonnegative flow on path p originating at firm node i and terminating at k; ∀i, k.

Group firm i ’s path flows into vector x i ∈ R
n
Pi

+ . Then group all firms’ path flows

into vector x ∈ R
nP
+ .

fa nonnegative flow of the product on link a, ∀a ∈ L. Group all link flows into vector

f ∈ R
nL
+ .

la labor on link a (usually denoted in person hours).
αa positive factor relating input of labor to output of product flow on link a, ∀a ∈ L.

l̄a bound on the availability of labor on link a, ∀a ∈ L
dik demand for the product of firm i at demand market k; ∀i, k. Group {dik} elements

for firm i into vector d i ∈ R
nR
+ and all demands into vector d ∈ R

m×nR
+ .

ĉa(f ) total operational cost associated with link a, ∀a ∈ L.
πa cost of a unit of labor on link a, ∀a.

ρik (d) demand price function for the product of firm i at demand market k; ∀i, k.
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Game Theory Supply Chain Network Model with Labor

For each firm i ; i = 1, . . . ,m, we must have that:∑
p∈P i

k

xp = dik , k = 1, . . . , nR . (3.1)

The path flows must be nonnegative; that is, for each firm i ; i = 1, . . . ,m:

xp ≥ 0, ∀p ∈ P i . (3.2)

The link flows of each firm i ; i = 1, . . . ,m, are related to the path flows as:

fa =
∑
p∈P

xpδap, ∀a ∈ Li , (3.3)

where δap = 1, if link a is contained in path p, and 0, otherwise.
We now discuss how labor is related to product flow. We assume a linear
production function:

fa = αala, ∀a ∈ Li , i = 1, . . . ,m. (3.4)
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Game Theory Supply Chain Network Model with Labor

The utility function of firm i , U i ; i = 1, . . . ,m, is the profit, given by the
difference between its revenue and its total costs:

U i =

nR∑
k=1

ρik(d)dik −
∑
a∈Li

ĉa(f )−
∑
a∈Li

πala. (3.5a)

The functions Ui ; i = 1, . . . ,m, are assumed to be concave, with the
demand price functions being monotone decreasing and continuously
differentiable and the total link cost functions being convex and also
continuously differentiable.

The Optimization Problem of Each Firm

The optimization problem of each firm i ; i = 1, . . . ,m, is:

Maximize

nR∑
k=1

ρik(d)dik −
∑
a∈Li

ĉa(f )−
∑
a∈Li

πala, (3.5b)

subject to: (3.1), (3.2), (3.3), and (3.4).
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Game Theory Supply Chain Network Model with Labor

A Bound on Labor on Each Supply Chain Network Link

The additional constraints on the fundamental model are:

la ≤ l̄a, ∀a ∈ L. (3.6)
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Game Theory Supply Chain Network Model with Labor

Recall that x i denotes the vector of strategies, which are the path flows,
for each firm i ; i = 1, . . . ,m. We can redefine the utility/profit functions
Ũ i (x) ≡ U i ; i = 1 . . . , m and group the profits of all the firms into an
m-dimensional vector Ũ, such that

Ũ = Ũ(x). (3.7)

Objective function (3.5b), in lieu of the above, can now be expressed as:

Maximize Ũ i (x) =

nR∑
k=1

ρ̃ik(x)
∑
p∈P i

k

xp −
∑
a∈Li

c̃a(x)−
∑
a∈Li

πa

αa

∑
p∈P

xpδap.

(3.8)
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Supply Chain Nash Equilibrium Conditions

Each firm competes noncooperatively until the following equilibrium
is achieved.

Definition 3.1: Supply Chain Network Nash Equilibrium

A path flow pattern x∗ ∈ K is a supply chain network Nash Equilibrium if
for each firm i; i = 1, . . . ,m:

Ũ i (x i∗, x̂ i∗) ≥ Ũ i (x i , x̂ i∗), ∀x i ∈ Ki , (3.9)

where x̂ i∗ ≡ (x1∗, . . . , x i−1∗, x i+1∗, . . . , xm∗), the feasible set Ki for firm i:

Ki ≡ {x i |x i ∈ R
n

Pi

+ ,
P

p∈Pi xpδap

αa
≤ l̄a,∀a ∈ Li}, for i = 1, . . . ,m, and

K ≡
∏m

i=1 Ki ..
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Variational Inequality Formulations

Applying the classical theory of Nash equilibria and variational inequalities,
under our imposed assumptions on the underlying functions, it follows that
(cf. Gabay and Moulin (1980) and Nagurney (1999)) the solution to the
above Nash Equilibrium problem (see Nash (1950, 1951)) coincides with
the solution of the variational inequality problem: determine x∗ ∈ K , such
that

−
m∑

i=1

〈∇x i Ũ i (x∗), x i − x i∗〉 ≥ 0, ∀x ∈ K , (3.10)

where 〈·, ·〉 represents the inner product in the corresponding Euclidean
space, which here is of dimension nP , and ∇x i Ũ i (x) is the gradient of
Ũ i (x) with respect to x i .

We introduce Lagrange multipliers λa associated with constraint (3.6), ∀a ∈ L and group the Lagrange multipliers for each firm

i ’s network Li into the vector λi . Group all such vectors for firms into vector λ ∈ R
nL
+ . Define feasible sets:

K1
i ≡ {(x i , λi )|(x i , λi ) ∈ R

n
Pi +n

Li
+ }; i = 1, . . . , m, and K1 ≡

Qm
i=1 K1

i .
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Variational Inequality Formulations

Theorem 3.1: Alternative VI of Nash Equilibrium
The supply chain network Nash Equilibrium satisfying the Definition 3.1 is equivalent to the solution of the variational
inequality: determine vectors of path flows and Lagrange multipliers, (x∗, λ∗) ∈ K1, where:

mX
i=1

nRX
k=1

X
p∈Pi

k

2664 ∂C̃p(x∗)

∂xp
+

X
a∈Li

λ∗a
αa

δap +
X
a∈Li

πa

αa
δap − ρ̃ik (x∗)−

nRX
l=1

∂ρ̃il (x
∗)

∂xp

X
q∈Pi

l

x∗q

3775 × [xp − x∗p ]

+
X
a∈L

"
l̄a −

P
p∈P x∗p δap

αa

#
×

ˆ
λa − λ

∗
a

˜
≥ 0, ∀(x, λ) ∈ K1; (3.11)

where for each path p; p ∈ P i
k ; i = 1, . . . , m; k = 1, . . . , nR :

∂C̃p(x)

∂xp
≡

X
a∈Li

X
b∈Li

∂ĉb(f )

∂fa
δap , (3.12a)

∂ρ̃ik (x)

∂xp
≡

∂ρil (d)

∂dik

. (3.12b)
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Application of the Modified Projection Method

Realization of the Modified Projection Method Computation Step
(2.19) for VI (3.11)

Specifically, at iteration τ , we compute each of the path flows x̄τ
p , ∀P i

k , ∀i , ∀k,
according to:

x̄τ
p = max{0, xτ−1

p − β(
∂C̃p(x

τ−1)

∂xp
+

∑
a∈Li

λτ−1
a

αa
δap +

∑
a∈Li

πa

αa
δap

−ρ̃ik(x
τ−1)−

nR∑
l=1

∂ρ̃il(x
τ−1)

∂xp

∑
q∈P i

l

xτ−1
q )} (3.13)

and each of the Lagrange multipliers λ̄τ
a , ∀a ∈ L, according to:

λ̄τ
a = max{0, λτ−1

a − β(̄la −
∑

p∈P xτ−1
p δap

αa
)}. (3.14)
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Application of the Modified Projection Method

Realization of the Modified Projection Method Computation Step
(2.20) for VI (3.11)

At iteration τ , we compute each of the path flows xτ
p , ∀P i

k , ∀i , ∀k, according to:

xτ
p = max{0, xτ−1

p − β(
∂C̃p(x̄

τ )

∂xp
+

∑
a∈Li

λ̄τ
a

αa
δap +

∑
a∈Li

πa

αa
δap − ρ̃ik(x̄

τ )

−
nR∑
l=1

∂ρ̃il(x̄
τ )

∂xp

∑
q∈P i

l

x̄τ
q )} (3.15)

and each of the Lagrange multipliers λτ
a , ∀a ∈ L, according to:

λτ
a = max{0, λτ−1

a − β(̄la −
∑

p∈P x̄τ
p δap

αa
)}. (3.16)
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Numerical Experiments

Our numerical examples are based on disruptions in migrant labor in
the blueberry supply chain in the Northeast of the US in the
summer of 2020.

The numerical examples investigate:

• Modifications in demand price functions;
• Disruptions in labor on a supply chain network link,
with additional numerical examples presented in the paper version of this
tutorial.

Anna Nagurney Game Theory and the COVID-19 Pandemic



Numerical Examples

Examples 3.1, 3.2, and 3.3 have the supply chain network topology given
below. There are two competing food firms (blueberry farms), each with
two production locations, and with a single distribution center. There are
two demand markets.
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Figure: The Supply Chain Network Topology for the Numerical Examples
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Example 3.1 - Baseline Example

The total operational cost functions for Food Firm 1 on its supply chain network
L1 are:

ĉa(f ) = .0006f 2
a , ĉb(f ) = .0007f 2

b , ĉc(f ) = .001f 2
c , ĉd(f ) = .001f 2

d ,

ĉe(f ) = .002f 2
e , ĉf (f ) = .005f 2

f , ĉg (f ) = .005f 2
g .

Also, the total operational costs associated with Food Firm 2’s supply chain
network L2 are:

ĉh(f ) = .00075f 2
h , ĉi (f ) = .0008f 2

i , ĉj(f ) = .0005f 2
j , ĉk(f ) = .0005f 2

k ,

ĉl(f ) = .0015f 2
l , ĉm(f ) = .01f 2

m, ĉn(f ) = .01f 2
n .

The costs for labor (wages) for Food Firm 1 are:

πa = 10, πb = 10, πc = 15, πd = 15, πe = 20, πf = 17, πg = 18,

and for Food Firm 2:

πh = 11, πi = 22, πj = 15, πk = 15, πl = 18, πm = 18, πn = 18.
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Example 3.1 - Baseline Example

The link labor productivity factors for the first firm are:

αa = 24, αb = 25, αc = 100, αd = 100, αe = 50, αf = 100, αg = 100,

and for the second firm:

αh = 23, αi = 24, αj = 100, αk = 100, αl = 70, αm = 100, αn = 100.

The bounds on labor for the first firm are:

l̄a = 10, l̄b = 200, l̄c = 300, l̄d = 300, l̄e = 100, l̄f = 120, l̄g = 120,

and for the second firm:

l̄h = 800, l̄i = 90, l̄j = 200, l̄k = 200, l̄l = 300, l̄m = 100, l̄n = 100.

Observe that the labor availability on link a is low. This is done in order to

capture a disruption to labor in the pandemic.
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Example 3.1 - Baseline Example

The demand price functions for Food Firm 1 are:

ρ11(d) = −.0001d11− .00005d21+6, ρ12(d) = −.0002d12− .0001d22+8.

The demand price functions for Food Firm 2 are:

ρ21(d) = −.0003d21 + 7, ρ22(d) = −.0002d22 + 7.

The paths are: p1 = (a, c , e, f ), p2 = (b, d , e, f ), p3 = (a, c , e, g), path
p4 = (b, d , e, g), p5 = (h, j , l ,m), p6 = (i , k, l ,m), p7 = (h, j , l , n), and
p8 = (i , k, l , n).
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Example 3.1 - Baseline Example

The modified projection method converges to the path flow equilibrium
pattern reported in Table 2; see also the equilibrium link labor values
reported in Table 3. All the Lagrange multipliers are equal to 0.00 except
for λ∗a = 4.925 with the labor equilibrium value on link a equal to its upper
bound of 10.00.

The product prices at equilibrium are:

ρ11 = 5.97, ρ12 = 7.91, ρ21 = 6.94, ρ22 = 6.96,

with equilibrium demands of:

d∗11 = 172.07, d∗12 = 359.15, ρ21 = 195.94, ρ22 = 197.86.

The profit of Food Firm 1 is: 1,671.80 and the profit of Food Firm 2 is:
1,145.06.
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Example 3.2 – Modification of Demand Price Functions

Example 3.2 has the same data as Example 3.1 except that we modify the
demand price functions for the second firm to include a cross term, so that:

ρ21(d) = −.0003d21− .0001d11 +6, ρ22(d) = −.0002d22− .0001d12 +7.

The computed equilibrium path flows are reported in Table 2, with the
computed equilibrium link labor values given in Table 3.

The Lagrange multipliers are all equal to 0.00 except for λ∗a = 4.93.
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Example 3.2 – Modification of Demand Price Functions

The product prices at equilibrium are now:

ρ11 = 5.97, ρ12 = 7.91, ρ21 = 6.92, ρ22 = 6.92,

with the equilibrium demands:

d∗11 = 172.07, d∗12 = 359.16, d∗21 = 195.48, d∗22 = 196.48.

The profit for Food Firm 1 is: 1,671.86 and the profit for Food Firm
2 is: 1,134.61. The profit for Food Firm 1 rises ever so slightly,
whereas that for Food Firm 2 decreases.
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Example 3.3 – Disruptions in Storage Facilities

Example 3.3 has the same data as Example 3.2 except that we now
consider a sizable disruption in terms of the spread of COVID-19 at the
distribution centers of both food firms with the bounds on labor
corresponding to the associated respective links being reduced to:

l̄e = 5, l̄l = 5.

The computed equilibrium path flows for this example are reported in
Table 2 with Table 3 having the computed equilibrium link labor values for
this example, as well.

All computed equilibrium Lagrange multipliers are now equal to 0 except
for those associated with the distribution center links, since the equilibrium
labor values attain the imposed upper bounds onn links e and l , with the
respective equilibrium Lagrange multiplier values being:

λ∗e = 157.2138, λ∗l = 43.6537.
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Example 3.3 – Disruptions of Labor in Storage Facilities

The product prices at equilibrium are now:

ρ11 = 5.99, ρ12 = 7.94, ρ21 = 6.94, ρ22 = 6.94,

with the equilibrium demands:

d∗11 = 30.03, d∗12 = 219.96, d∗21 = 174.61, d∗22 = 175.39.

The profit for Food Firm 1 is now dramatically reduced to 1,218.74
and the profit for Food Firm 2 also declines, but by a much smaller
amount, to 1,126.73.
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Equilibrium Path Flows

Table: Equilibrium Product Path Flows for Examples 3.1 Through 3.3

Equilibrium Product Path Flows Ex. 3.1 Ex. 3.2 Ex. 3.3

x∗p1
73.23 73.22 15.65

x∗p2
98.85 98.85 14.38

x∗p3
166.77 166.78 110.60

x∗p4
192.38 192.38 109.35

x∗p5
142.85 142.62 131.97

x∗p6
53.08 52.86 42.63

x∗p7
143.81 143.12 132.36

x∗p8
54.04 53.36 43.02
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Equilibrium Link Labor Values

Table: Equilibrium Link Labor Values for Examples 3.1 Through 3.3

Equilibrium Link Labor Values Ex. 3.1 Ex. 3.2 Ex. 3.3
l∗a 10.00 10.00 5.26
l∗b 11.65 11.65 4.95
l∗c 2.40 2.40 1.26
l∗d 2.91 2.91 1.24
l∗e 10.62 10.62 5.00
l∗f 1.72 1.72 0.30
l∗g 3.59 3.59 2.20

l∗h 12.46 12.42 11.49
l∗i 4.46 4.43 3.57
l∗j 2.87 2.86 2.64

l∗k 1.07 1.06 0.86
l∗l 5.63 5.60 5.00
l∗m 1.96 1.95 1.75
l∗n 1.98 1.96 1.75
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Farmers should do everything possible to secure the health of
workers at their production/harvesting and other facilities, so that
the blueberries can be harvested in a timely manner and so that
profits do not suffer. Keeping workers healthy, through appropriate
measures, impacts the bottom line!
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Some Additional Research

In a recent paper of ours, “Wage-Dependent Labor and Supply Chain
Networks,” we retained the link productivity factors, so that:

fa = αala, ∀a ∈ L,

but had labor being wage-dependent, that is:

la = γaπa,∀a ∈ L.

We introduced a supply chain network game theory model without wage
bounds on links and one with wage bounds on links:

πa ≤ π̄a, ∀a ∈ L.
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Some Additional Research

The numerical results therein clearly reveal the importance of a holistic
approach to supply chain network modeling since decisions made by a
specific firm can have unexpected impacts on other competing firms in the
supply chain network economy.

Our results strongly suggest that having wages and labor equilibrate
without any wage ceilings can be beneficial for an individual firm
and also for firms engaged in competition.
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Disaster Relief Supply Chains – Competition for
Medical Supplies
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Some Motivation

The COVID-19 pandemic is a healthcare disaster in which we have
seen intense competition for medical supplies.
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Where Are the PPEs?

Results of a survey of healthcare workers reported in The Washington
Post, May 20, 2020.
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Some Motivation

China has historically produced half of the world’s face masks, but with the
coronavirus originating in Wuhan, China, the country dedicated the majority
of the supply for their own citizens.

Countries, such as Germany, even banned the export of PPEs.

The intense competition for PPEs led to a dramatic increase in the price.

The price of N95 masks grew from $0.38 to $5.75 each (a 1,413% increase)
(Diaz, Sands, and Alesci (2020) and Berklan (2020)).

Isolation protective gowns experienced a price increase from $0.25 to $5.00
(a 1900% increase).

The price of reusable face shields going from $0.50 to $4.00 (a 700%
increase).
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This part of the tutorial is based on the paper, “Competition for
Medical Supplies Under Stochastic Demand in the Covid-19
Pandemic: A Generalized Nash Equilibrium Framework,” A.
Nagurney, M. Salarpour, J. Dong, and P. Dutta, In: Nonlinear Analysis
and Global Optimization, T.M. Rassias and P.M. Pardalos, Editors,
Springer Nature Switzerland AG, 2021, pp 331-356.
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Background

The competitive game theory network model for medical supplies is
inspired by the COVID-19 pandemic.

It features salient characteristics of the realities of this pandemic in terms of
competition among organizations/institutions for supplies under limited
capacities globally as well as uncertain demands.

The model includes general transportation costs.

Since organizations, notably, healthcare ones, compete with one another for
the limited supplies, given the prices and their associated logistical costs as
well as the expected loss due to possible shortages or surpluses, the model is
a Generalized Nash Equilibrium (GNE) model.

In the case of GNE models not only do the objective functions of the players
in the game depend on the strategies of the other players but the feasible
sets do as well.
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Relevance to a Plethora of Medical Supplies
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The Generalized Nash Equilibrium Network Model for
Medical Supplies under Stochastic Demand

The network consists of m supply locations for the medical supplies, with a
typical supply point denoted by i , and n locations that are demand points,
with a typical demand point denoted by j .
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Figure: The Network Structure of the Competitive Game Theory Model for
Medical Supplies
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The Generalized Nash Equilibrium Network Model for
Medical Supplies under Stochastic Demand

Anna Nagurney Game Theory and the COVID-19 Pandemic



The Generalized Nash Equilibrium Network Model for
Medical Supplies under Stochastic Demand

Stochastic Demand

Since dj denotes the actual (uncertain) demand at destination point j , we
have:

Pj(Dj) = Pj(dj ≤ Dj) =

∫ Dj

0
Fj(t)dt, j = 1, . . . , n, (4.1)

where Pj and Fj denote the probability distribution function, and the
probability density function of demand at point j , respectively. vj is the
“projected demand” for the medical item at demand point j ; j = 1, . . . , n.
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The Generalized Nash Equilibrium Network Model for
Medical Supplies under Stochastic Demand

Note that vj is the “projected demand” for the medical item at demand
point j ; j = 1, . . . , n.

Shortage and Surplus

The amounts of shortage and surplus at demand point j are calculated,
respectively, according to:

∆−
j ≡ max{0, dj − vj}, j = 1, . . . , n, (4.2a)

∆+
j ≡ max{0, vj − dj}, j = 1, . . . , n. (4.2b)

The expected values of shortage and surplus at each demand point are, hence:

E (∆−
j ) =

∫ ∞

vj

(t − vj)Fj(t)dt, j = 1, . . . , n, (4.3a)

E (∆+
j ) =

∫ vj

0

(vj − t)Fj(t)dt, j = 1, . . . , n. (4.3b)
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The Generalized Nash Equilibrium Network Model for
Medical Supplies under Stochastic Demand

Expected Penalties

The expected penalty incurred by demand point j due to the shortage and
surplus of the medical item is equal to:

E (λ−j ∆−
j + λ+

j ∆+
j ) = λ−j E (∆−

j ) + λ+
j E (∆+

j ), j = 1, . . . , n. (4.4)

Projected Demand

The projected demand at demand point j , vj , is equal to the sum of flows
of the medical item to j , that is:

vj ≡
m∑

i=1

qij , j = 1, . . . , n. (4.5)
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The Generalized Nash Equilibrium Network Model for
Medical Supplies under Stochastic Demand

Objective Function

The objective function of each demand point j is, hence, given by:

Minimize
m∑

i=1

ρiqij +
m∑

i=1

cij(q) + λ−j E (∆−
j ) + λ+

j E (∆+
j ) (4.6)

Constraints
n∑

j=1

qij ≤ Si , i = 1, . . . ,m, (4.7)

qij ≥ 0, i = 1, . . . ,m. (4.8)
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The Generalized Nash Equilibrium Network Model for
Medical Supplies under Stochastic Demand

We assume that the total generalized transportation cost functions
are continuously differentiable and convex.

In our model, the transportation costs can, in general, depend upon
the vector of medical item flows since there is competition for freight
service provision in the pandemic.

In the paper, we present some preliminaries that allow us to express
the partial derivatives of the expected total shortage and discarding
costs of the medical items at the demand points only in terms of the
medical item flow variables.

We prove that the third term in the Objective Function (4.6) is also
convex.
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The Generalized Nash Equilibrium Network Model for
Medical Supplies under Stochastic Demand

Feasible Set

We define the feasible sets Kj ≡ {qj ≥ 0}; j = 1, . . . , n. We define

K ≡
∏I

i=1 Ki . We also define the feasible set S ≡ {q|q satisfying (4.7))},
which consists of the shared constraints.

Definition 4.1: Generalized Nash Equilibrium for Medical Items

A vector of medical items q∗ ∈ K ∩ S is a Generalized Nash Equilibrium if
for each demand point j ; j = 1, . . . , n:

DUj(q
∗
j , q̂

∗
j ) ≤ DUj(qj , q̂

∗
j ), ∀qj ∈ Kj ∩ S, (4.9)

where q̂∗j ≡ (q∗1 , . . . , q
∗
j−1, q

∗
j+1, . . . , q

∗
n).

Anna Nagurney Game Theory and the COVID-19 Pandemic



The Generalized Nash Equilibrium Network Model for
Medical Supplies under Stochastic Demand

According to (4.9), an equilibrium is established if no demand point
has any incentive to unilaterally change its vector of medical item
purchases/shipments.

In our model not only does the objective function of a demand point
depend not only on the vector of strategies of its own strategies and
on those of the other demand points, but the feasible set does as well.

This model is not a Nash (1950, 1951) model, but, rather, it is a
Generalized Nash Equilibrium model.

We define the feasible set K ≡ K ∩ S.

Our model captures the reality of the intense competitive landscape
in the COVID-19 pandemic.
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The Generalized Nash Equilibrium Network Model for
Medical Supplies under Stochastic Demand

Definition 4.2: Variational Equilibrium

A vector of medical items q∗ ∈ K is a Variational Equilibrium of the above
Generalized Nash Equilibrium problem if it is a solution to the following
variational inequality:

n∑
j=1

m∑
i=1

∂DUj(q
∗)

qij
× (qij − q∗ij) ≥ 0, ∀q ∈ K, (4.10)

where 〈·, ·〉 denotes the inner product in mn-dimensional Euclidean space.

In expanded form, the variational inequality in (10) is: determine q∗ ∈ K such
that

n∑
j=1

m∑
i=1

[
ρi +

m∑
l=1

∂clj(q
∗)

∂qij
+ λ+

j Pj(
m∑

l=1

q∗lj )− λ−j (1− Pj(
m∑

l=1

q∗lj ))

]
×

[
qij − q∗ij

]
≥ 0, ∀q ∈ K.

(4.11)
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The Generalized Nash Equilibrium Network Model for
Medical Supplies under Stochastic Demand

Standard Form

We know that finite-dimensional variational inequality problem, VI(F ,K),
is to determine a vector X ∗ ∈ K ⊂ RN , such that

〈F (X ∗),X − X ∗〉 ≥ 0, ∀X ∈ K, (4.12)

where F is a given continuous function from K to RN , and K is a given
closed, convex set.

We let X ≡ q and F (X ) be the vector with elements: {∂DUj (q
∗)

qij
}, ∀j , i

with K as originally defined and N = mn. Then, clearly, variational
inequality (4.11) can be put into standard form (4.12).
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The Generalized Nash Equilibrium Network Model for
Medical Supplies under Stochastic Demand

We associate a nonnegative Lagrange multiplier µi with constraint (4.7), for each
supply location i = 1, . . . ,m. We group all the Lagrange multipliers into the
vector µ ∈ Rm

+ . We define the feasible set K2 ≡ {(q, µ)|q ≥ 0, µ ≥ 0}.

Then, using arguments as in Nagurney, Salarpour, and Daniele (2019), an
alternative variational inequality for (4.11) is: determine (q∗, µ∗) ∈ K2 such that

n∑
j=1

m∑
i=1

[
ρi +

m∑
l=1

∂clj(q
∗)

∂qij
+ λ+

j Pj(
m∑

l=1

q∗lj )− λ−j (1− Pj(
m∑

l=1

q∗lj ) + µ∗i

]
×

[
qij − q∗ij

]

+
m∑

i=1

Si −
n∑

j=1

q∗ij

× [µi − µ∗i ] ≥ 0, ∀(q, µ) ∈ K2. (4.13)
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The Generalized Nash Equilibrium Network Model for
Medical Supplies under Stochastic Demand

Variational inequality (4.13) can also be put into standard form (4.12) if
we define X ≡ (q, µ) and F (X ) ≡ (F 1(X ),F 2(X )) where F 1(X ) has as its
(i , j)-th component:

ρi +
∑m

l=1
∂clj (q)

∂qij
+ λ+

j Pj(
m∑

l=1

qlj)− λ−j (1− Pj(
m∑

l=1

qlj) + µi ; i = 1, . . . ,m;

j = 1, . . . , n, and the i-th component of F 2(X ) is Si −
∑n

j=1 qij , for

i = 1, . . . ,m. Furthermore, K ≡ K2 and N = mn + m.
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Algorithm - Realization of the Modified Projection Method

Explicit Formula for the Medical Item Flows for Step 1

Determine q̄τ
ij for each i , j at Step 1 iteration τ according to:

q̄τ
ij = max{0, qτ−1

ij + β(−ρi −
m∑

l=1

∂clj(q
τ−1)

∂qij
− λ+

j Pj(
m∑

l=1

qτ−1
lj )+

λ−j (1− Pj(
m∑

l=1

qτ−1
lj ))− µτ−1

i )}. (4.14)

Explicit Formula for the Lagrange Multiplier for Step 1

Determine µ̄τ
i for each i at Step 1 iteration τ according to:

µ̄τ
i = max{0, µτ−1

i + β(−Si +
n∑

j=1

qτ−1
ij )}. (4.15)

Step 2 of the modified projection method can be easily derived (see the second part of this tutorial).
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Numerical Examples

The numerical examples (with additional ones reported in Nagurney et al.
(2021)) are focused on the procurement of N95 masks but in the scenario
of increasing demand among smaller healthcare organizations in the form
of medical practices. The qijs are in units since these medical practices are
small relative to hospitals, etc.
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Numerical Examples

Example 4.1: One Supply Point and Two Demand Points
The supply chain network topology for this example is given in the Figure.
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Figure: Supply Chain Network Topology for Example 4.1
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Numerical Example 4.1: One Supply Point and Two
Demand Points

We assume a uniform probability distribution in the range [100, 1000] at
the first demand point. The probability distribution at the second demand
point has the same lower and upper bounds as in the first demand point.
The additional data are, for the first demand point:

ρ1 = 2, S1 = 1000, c11(q) = .005q2
11+.01q11, λ−1 = 1000, λ+

1 = 10,

and for the second demand point:

c12(q) = .01q2
12 + .02, λ−2 = 1000, λ+

2 = 10.

The modified projection method converges to the following equilibrium
solution:

q∗11 = 502.20, q∗12 = 497.80, µ∗1 = 541.61.

The available supply of 1000 N95 masks is exhausted between the
two demand points, and the associated Lagrange multiplier µ∗1 is
positive. The equilibrium conditions hold with excellent accuracy.
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Example 4.2: Two Supply Points and Two Demand Points

In Example 4.2, we consider the impacts of the addition of a second supply
point to Example 4.1. The supply chain network topology is now as in the
Figure.
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Figure: Supply Chain Network Topology for Example 4.2
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Example 4.2: Two Supply Points and Two Demand Points

The data are as in Example 4.1 with the following additions:

S2 = 500, ρ2 = 3, c21(q) = .015q2
21 + .03, c22(q) = .02q2

22 + .04q22.

The modified projection method converges to the equilibrium solution:

q∗11 = 526.31, q∗12 = 473.69, q∗21 = 225.57, q∗22 = 274.43,

µ∗1 = 261.17, µ∗2 = 258.65.

With the addition of a new supply point for medical supplies, both
demand points gain significantly in terms of the volume of N95
masks that each procures. Furthermore, the supplies of the medical
item at each supply point are fully sold out. Hence, both
equilibrium Lagrange multipliers are positive.
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Example 4.3: Two Supply Points and Three Demand
Points

Example 4.3 is constructed from Example 4.2 with Demand Point 3 added,
as depicted in the Figure.
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Figure: Supply Chain Network Topology for Example 4.3
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Example 4.3: Two Supply Points and Three Demand
Points

Example 4.3 has the same data as Example 4.2 but with the addition of
data for Demand Point 3 as follows:

c13(q) = .01q2
13 + .02q13, c23(q) = .015q2

23 + .03q23, λ−3 = 1000, λ+
3 = 10.

The probability distribution for the N95 masks associated with Demand
Point 3 is uniform with a lower bound of 200 and an upper bound of 1000.

The modified projection method converges to the equilibrium solution:

q∗11 = 360.11, q∗12 = 318.83, q∗13 = 321.06,

q∗21 = 122.29, q∗22 = 161.10, q∗23 = 216.62, µ∗1 = 565.25, µ∗2 = 564.16.

Note that, with increasing competition for the N95 masks with
another demand point, both Demand Points 1 and 2 experience
decreases in procurement of supplies. The two supply points again
fully sell out of their N95 masks and the associated equilibrium
Lagrange multipliers are both positive.
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Example 4.4: Two Supply Points and Four Demand Points

In Example 4.4, yet another demand point is added to the supply chain
network topology of Example 4.3. Smaller medical practices are
increasingly concerned about being able to secure the much needed PPEs
to protect the health of their employees and the viability of their practices.
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Figure: Supply Chain Network Topology for Example 4.4
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Example 4.4: Two Supply Points and Four Demand Points

The data for this example are the same as those for Example 4.3, and the
probability distribution structure for the demand at Demand Point 4 is the
same, with the following additional data for the new Demand Point 4:

c14(q) = .015q2
14+.03q14, c24(q) = .025q2

24+.05q24, λ−4 = 1000, λ+
4 = 10.

The modified projection method converges to:

q∗11 = 260.73, q∗12 = 229.36, q∗13 = 251.22, q∗14 = 258.69, q∗21 = 79.57,

q∗22 = 109.17, q∗23 = 160.46, q∗24 = 150.81, µ∗1 = 725.71, µ∗2 = 724.91.

The suppliers of the N95 sell out their supplies. However, the
demand points lose in terms of supply procurement for their
organizations with the increased demand and competition from yet
another demand point.
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Some Comments and Insights

The obtained numerical results are consistent with what is being
observed in practice and the results also provide managerial insights.

• The numerical results confirm that more supply points with sufficient
supplies are needed to guarantee that organizations are not deprived of
critical supplies due to competition.

• As a result of this competition and limited local availability, in particular,
in the case of supplies such as masks, ventilators, and even coronavirus
test kits, we are seeing multiple countries now setting up local production
sites with even some companies switching from their usual product
manufacturing to the production of much needed medical supplies,
including PPEs.

• This model can be applied to study the network economics of a
spectrum of medical items, both in the near term, and in the longer term,
as in the case of vaccines as well as COVID-19 therapeutics.
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Cooperation in Disaster Relief
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Cooperation in Disaster Relief

In the previous parts of this tutorial, the focus of the modeling parts was
on noncooperative game theory and supply chain network models inspired
by the COVID-19 pandemic.

We now turn to cooperation among organizations in a disaster setting.

The COVID-19 pandemic is a healthcare disaster and is exacerbating the

challenges associated with disaster management of other disasters,

including those fueled by climate change.
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Cooperation in Disaster Relief

Opportunities for cooperation among organizations engaged in
disaster response may exist in their supply chains from procurement
to storage and even in the case of transportation and distribution.

Plus, cooperation among organizations may reduce materiel convergence
and release resources, including personnel, for more important life-saving
tasks.

There is also great promise in the COVID-19 pandemic of enhanced
partnerships and these even may be between private companies, including
pharmaceutical ones.

Lessons learned from disaster management are, hence, potentially
of great benefit to pandemic preparedness, response, and even
recovery.
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The Goal Here

This part of the tutorial is based on the paper, “Quantifying Supply
Chain Network Synergy for Humanitarian Organizations,” A.
Nagurney and Q. Qiang, IBM Journal of Research and Development,
64(1/2), 2020, pp. 12:1-12:16.

The models capture the uncertainties associated with costs and demands.

A mean-variance approach is used to include risk associated with
the uncertainties, along with a synergy measure for the
determination of the potential strategic advantages of cooperation
among organizations for disaster management.
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The Multiproduct Supply Chain Network Models

The Case without Horizontal Cooperation Multiproduct Supply
Chain Network Model

We first formulate the multiproduct decision-making optimization
problems faced by m organizations without horizontal cooperation. This
model is Case 0. Each organization is represented as a network of its
supply chain activities, as depicted in the next Figure.

Each organization i ; i = 1, . . . ,m, has available ni
M procurement facilities,

ni
S storage facilities, and serves ni

D disaster areas.

Let Gi = [Ni , Li ] denote the graph consisting of nodes [Ni ] and directed
links [Li ] representing the supply chain activities associated with each
organization i ; i = 1, . . . ,m.

Let L0 denote the links: L1 ∪ L2 ∪ · · · Lm as in the Figure. Each
organization is involved in the procurement, transportation, storage, and
distribution of J products, with a typical product denoted by j .
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Case Without Cooperation
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Case Without Cooperation

The notation and discussion below build upon those for the previous
model.

Demands for the products are assumed to be random and are associated
with each product, and each demand point.

Let d j
ik denote the random variable representing the actual demand for

product j and let v j
ik denote the projected random demand for product j ;

j = 1, . . . , J, at demand point D i
k for i = 1, . . . ,m; k = 1, . . . , ni

D .

In addition, the probability density function of the actual demand for
product j is F j

ik(t) at disaster area D i
k ; i = 1, . . . ,m; k = 1, . . . , ni

D .
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The Multiproduct Supply Chain Network Models

Hence, we can define the cumulative probability distribution function of

d j
ik as P j

ik(v j
ik) = P j

ik(d j
ik ≤ v j

ik) =
∫ v j

ik
0 F j

ik(t)d(t).

Following Masoumi, Yu, and Nagurney (2017) and Dong, Zhang, and
Nagurney (2004), we also define the supply shortage and surplus for
product j ; j = 1, . . . , J, at disaster area D i

k ; i = 1, . . . ,m; k = 1, . . . , ni
D ,

as
∆j−

ik ≡ ∆j−
ik (v j

ik) ≡ max{0, d j
ik − v j

ik} (5.1a)

∆j+
ik ≡ ∆j+

ik (v j
ik) ≡ max{0, v j

ik − d j
ik}. (5.1b)
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The Multiproduct Supply Chain Network Models

The expected value of the shortage ∆j−
ik , denoted by E (∆j−

ik ), and of the

surplus ∆j+
ik , denoted by E (∆j+

ik ), for j = 1, . . . , J; D i
k ; i = 1, . . . ,m;

k = 1, . . . , ni
D , are

E (∆j−
ik ) =

∫ ∞

v j
ik

(t − v j
ik)F j

ik(t)d(t), E (∆j+
ik ) =

∫ v j
ik

0
(v j

ik − t)F j
ik(t)d(t).

(5.2)

The penalty associated with the shortage and the surplus of the demand
for product j ; j = 1, . . . , J, at the disaster area D i

k is denoted by λj−
ik and

λj+
ik , respectively, where i = 1, . . . ,m; k = 1, . . . , ni

D .
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Case Without Cooperation

A path consists of a sequence of links originating at a node i ; i = 1, . . . ,m,
corresponding to supply chain activities of: procurement, transportation,
storage, and distribution of the products to the disaster area nodes.

Let x j
p denote the nonnegative flow of product j on path p. Let P0

D i
k

denote the set of all paths joining an origin node i with (destination)
disaster area node D i

k .

The conservation of flow equations are: for each organization
i ; i = 1, . . . ,m, each product j ; j = 1, . . . , J, and each disaster area
D i

k ; k = 1, . . . , ni
D :∑

p∈P0

Di
k

x j
p = v j

ik , i = 1, ...,m; j = 1, . . . , J; k = 1, . . . , ni
D . (5.3)
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Case Without Cooperation

Links are denoted by a, b, etc. Let f j
a denote the flow of product j on link

a.

We also have the following conservation of flow equations:

f j
a =

∑
p∈P0

x j
pδap, j = 1 . . . , J; ∀a ∈ L0, (5.4)

where δap = 1 if link a is contained in path p and δap = 0, otherwise.

P0 denotes the set of all paths in the Figure, that is,
P0 = ∪i=1,...,I ;k=1,...,ni

D
P0

D i
k
. The path flows must be nonnegative, that is,

x j
p ≥ 0, j = 1, . . . , J; ∀p ∈ P0. (5.5)

The path flows are grouped into the vector x .
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Case Without Cooperation

There is a total cost associated with each product j ; j = 1, . . . , J, and
each link of the network of each organization i ; i = 1, . . . ,m.

The total cost on a link a associated with product j is denoted by ĉ j
a. The

total costs can be influenced by uncertainty factors.

The total cost on link a, ĉ j
a, takes the form:

ĉ j
a = ĉ j

a(f
1
a , . . . , f J

a , ωj
a), j = 1, . . . , J; ∀a ∈ Li ,∀i , (5.6)

where ωj
a is a random variable associated with various disaster events,

which have an impact on the total cost of link a, ∀a, and product j ;
j = 1, . . . , J. It is assumed that the distribution of the ωj

as is known.
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Case Without Cooperation

The Optimization Problem of Each Organization

Each organization i ; i = 1, . . . ,m seeks to determine the link flows and the
projected random demands that solve the following optimization problem:

Minimize

E (
J∑

j=1

∑
a∈Li

ĉ j
a(f

1
a , . . . , f J

a , ωj
a)) + ξi (V (

J∑
j=1

∑
a∈Li

ĉ j
a(f

1
a , . . . , f J

a , ωj
a)))

+
J∑

j=1

ni
D∑

k=1

(
λj−

ik E (∆j−
ik ) + λj+

ik E (∆j+
ik )

) (5.7)

subject to: (5.3) – (5.5) and the following capacity constraints:

J∑
j=1

γj f
j
a ≤ ua, ∀a ∈ Li , (5.8)

where γj in (5.8) is the volume taken up by product j and ua is the capacity of a.
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Case Without Cooperation

The total operational costs and the variances in (5.7) are assumed to be

convex. We know that
∑ni

D
k=1

(
λj−

ik E (∆j−
ik ) + λj+

ik E (∆j+
ik )

)
is also convex

(see, also, Nagurney, Masoumi, and Yu (2012)). We know then that the
objective function (5.7) is convex for each i ; i = 1, . . . ,m. Also, the
individual terms in (5.7) are continuously differentiable.

Under the above imposed assumptions, the optimization problem is a
convex optimization problem and, clearly, the feasible set underlying the
problem represented by the constraints (5.3) – (5.5) and (5.8) is
non-empty, so it follows from the standard theory of nonlinear
programming that an optimal solution exists.
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Case Without Cooperation

The objective function (5.7) is referred to as the total generalized cost
TGC 0

i for i = 1, . . . ,m. We associate the Lagrange multiplier ηa with
constraint (5.8) for each a ∈ L0 with ηa ≥ 0,∀a ∈ L0 and we denote the
associated optimal Lagrange multiplier by η∗a ,∀a ∈ L0. We group the link
flows into the vector f , the projected demands into the vector v , and the
Lagrange multipliers into the vector η.

Let K0 denote the set where
K0 ≡ {(f , v , η)|∃x such that (5.3)− (5.5) and η ≥ 0 hold}.

Since we are considering Case 0, we denote the solution of variational
inequality (VI) (5.9) below as (f 0∗, v0∗, η0∗) and we refer to the
corresponding vectors of variables with superscripts of 0. We now state a
theorem, due to Nagurney and Qiang (2020).
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Case Without Cooperation

Theorem 5.1: VI Formulation of Case 0: No Cooperation

The vector (f 0∗, v0∗, η0∗) ∈ K0 is an optimal solution to (5.7), for all
organizations i ; i = 1, . . . ,m, subject to their constraints (5.3)–(5.5) and (5.8), if
and only if it satisfies the variational inequality problem:

m∑
i=1

J∑
j=1

∑
a∈Li

[
∂E (

∑J
l=1

∑
a∈Li

ĉ l
a(f

1∗
a , . . . , f J∗

a , ωl
a))

∂f j
a

+ξi

∂V (
∑J

l=1

∑
a∈Li

ĉ l
a(f

1∗
a , . . . , f J∗

a , ωl
a))

∂f j
a

+ γjη
∗
a ]× [f j

a − f j∗
a ]

+
m∑

i=1

J∑
j=1

ni
D∑

k=1

[
λj+

ik P
j
ik(v

j∗
ik )− λj−

ik (1− P j
ik(v

j∗
ik )

]
× [v j

ik − v j∗
ik ]

+
∑
a∈L0

[ua −
J∑

j=1

γj f
j∗
a ]× [ηa − η∗a ] ≥ 0, ∀(f 0, v0, η0) ∈ K0. (5.9)
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Case with Cooperation

We now formulate the case with horizontal cooperation of the
multiproduct supply chain network model, referred to as Case 1.

The next Figure represents the supply chain network topology for Case 1.

There is a supersource node 0, which represents the “teaming/merging” in
terms of cooperation of the organizations in terms of their supply chain
networks with additional links connecting node 0 to nodes 1 through m.
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Case with Cooperation
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Case with Cooperation

The optimization problem in Case 1 is also concerned with cost and risk
minimization.

We refer to the network in the latest Figure, underlying this integration, as
G 1 = [N1, L1] where N1 ≡ N0∪ node 0 and L1 ≡ L0∪ the additional links
as in the Figure and we associate total cost functions as in (5.6) with the
new links, for each product j .

If the total cost functions on the cooperation links connecting node 0 to
node 1 through node m are set equal to zero, this means that the
cooperation is costless in terms of the integrated supply chain network of
the organizations.
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Case with Cooperation

A path p now originates at node 0 and ends in one of the bottom disaster
nodes. Let x j

p, under the cooperation network configuration given in the
Figure, denote the flow of product j on path p joining (origin) node 0 with
a disaster area node.

Then, the following conservation of flow equations must hold for each
i , j , k: ∑

p∈P1

Di
k

x j
p = v j

ik , (5.10)

where P1
D i

k
denotes the set of paths connecting node 0 with disaster area

node D i
k in the Figure. Because of cooperation, the disaster areas can

obtain each product j from any procurement facility, and any storage
facility. The set of paths P1 ≡ ∪i=1,m;k=1,...,ni

D
P1

D i
k
.
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Case with Cooperation

As previously, let f j
a denote the flow of product j on link a.

We must also have the following conservation of flow equations satisfied:

f j
a =

∑
p∈P1

x j
pδap, j = 1, . . . , J; ∀a ∈ L1. (5.11)

In addition, the path flows must be nonnegative for each product j :

x j
p ≥ 0, j = 1, . . . , J; ∀p ∈ P1. (5.12)

The supply chain network activities have nonnegative capacities, denoted
as ua, ∀a ∈ L1, with γj representing the volume factor for product j . The
following constraints must, hence, hold:

J∑
j=1

γj f
j
a ≤ ua, ∀a ∈ L1, (5.13)

where ξ is the associated risk aversion factor of the teamed organizations
under cooperation.
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Case with Cooperation

The Optimization Problem for Cooperation

Minimize E (
J∑

j=1

∑
a∈L1

ĉ j
a(f

1
a , . . . , f J

a , ωj
a)) + ξ

V (
J∑

j=1

∑
a∈L1

ĉ j
a(f

1
a , . . . , f J

a , ωj
a))



+
m∑

i=1

J∑
j=1

ni
D∑

k=1

(
λj−

ik E (∆j−
ik ) + λj+

ik E (∆j+
ik )

)
(5.14)

subject: (5.10) – (5.13).

The solution to the optimization problem (5.14) subject to the constraints
can also be obtained as a solution to a VI problem, similar to (5.9), where
now links a ∈ L1. The vectors f , v , and η keep their prior definitions, but
are re-dimensioned accordingly and superscripted with 1. Instead of the
feasible set K0 we now have
K1 ≡ {(f , v , η)|∃x such that (5.10)− (5.12) hold and η ≥ 0}.
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Case with Cooperation

We denote the solution to the VI problem (5.15) governing Case 1 by
(f 1∗, v1∗ , η1∗) and the vectors of corresponding variables as (f 1, v1, η1).

Theorem 5.2: VI Formulation of Case 1: Cooperation

The vector (f 1∗, v1∗, η1∗) ∈ K1 is an optimal solution to (5.14), subject to
constraints (5.10)–(5.13), if and only if it satisfies the variational inequality
problem:

J∑
j=1

∑
a∈L1

∂E (
∑J

l=1

∑
a∈L1 ĉ l

a(f
1
a , . . . , f J

a , ωl
a))

∂f j
a

+ξ
∂V (

∑J
l=1

∑
a∈L1 ĉ l

a(f
1∗
a , . . . , f J∗

a , ωl
a))

∂f j
a

+γjη
∗
a

×[f j
a − f j∗

a ] +
m∑

i=1

J∑
j=1

ni
D∑

k=1

[
λj+

ik P
j
ik(v

j∗
ik )− λj−

ik (1− P j
ik(v

j∗
ik )

]
× [v j

ik − v j∗
ik ]

+
∑
a∈L1

[ua −
J∑

j=1

γj f
j∗
a ]× [ηa − η∗a ] ≥ 0, ∀(f 1, v1, η1) ∈ K1. (5.15)
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Total Generalized Cost Definitions

Definition 5.1: Total Generalized Costs at the Optimal Solutions to
the Supply Chain Network Problems without and with Cooperation

Let TGC 0∗ denote the total generalized cost:∑m
i=1 TGC 0

i =E (
∑J

j=1

∑
a∈L0 ĉ j

a(f
1
a , . . . , f J

a , ωj
a)) +∑m

i=1 ξi

[
V (

∑J
j=1

∑
a∈Li

ĉ j
a(f

1
a , . . . , f J

a , ωj
a))

]
+

∑m
i=1

∑J
j=1

∑ni
D

k=1

(
λj−

ik E (∆j−
ik ) +

λj+
ik E (∆j+

ik )
)
, evaluated at the optimal solution (f 0∗, v0∗, η0∗) to (5.9).

Also, let TGC 1∗ =

E (
∑J

j=1

∑
a∈L1 ĉ j

a(f
1
a , . . . , f J

a , ωj
a)) + ξ

[
V (

∑J
j=1

∑
a∈L1 ĉ j

a(f
1
a , . . . , f J

a , ωj
a))

]
+

∑m
i=1

∑J
j=1

∑ni
D

k=1

(
λj−

ik E (∆j−
ik )+λj+

ik E (∆j+
ik )

)
, denote the total generalized cost

evaluated at the solution (f 1∗, v1∗, η1∗) to (5.15).
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Synergy Quantification

We denote the synergy by STGC . It is the percentage difference between
the total generalized cost without vs. with the horizontal cooperation
(evaluated at the respective optimal solutions):

STGC ≡ [
TGC 0∗ − TGC 1∗

TGC 0∗ ]× 100%. (5.16)

Observe from (5.16) that the lower the total generalized cost
TGC 1∗, the higher the synergy associated with the supply chain
network cooperation and, therefore, the greater the total cost
savings resulting from the cooperation.
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Synergy Quantification

The total generalized costs include not only the monetary costs, but
also the risks and uncertainties involved in the supply chain as well
as the associated penalties of shortages and surpluses.

In specific disaster relief operations, including in the pandemic, one
may evaluate the integration of supply chain networks with only a
subset of the links connecting the original supply chain networks.
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A Theoretical Result

We now recall an interesting theorem, due also to Nagurney and Qiang
(2020), which reveals that, under certain assumptions related to the total
operational costs associated with the supply chain integration and risk
factors, the associated synergy can never be negative.

Theorem 5.3

If the total generalized cost functions associated with the cooperation links
from node 0 to nodes 1 through m for each product are identically equal
to zero, and if the risk aversion factors ξi ; i = 1, . . . ,m, are all equal and
set to ξ, then the associated synergy, STGC , can never be negative.
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VI in Path Flows

Because of the conservation of flow equations (5.10) and (5.11), and
constraints (5.12) and (5.13), we can construct a variational inequality
formulation equivalent to the one in (5.15), but in path flows, rather than
in links flows (the same holds for a path flow version of VI (5.9)). The
alternative variational inequality enables a nice application of the modified
projection method.

We group the path flows into the vector x ∈ RnP1 , where nP1 is the
number of paths in P1. We let nL1 denote the number of links in L1.

We define the feasible set K2 ≡ {(x , η)|x ≥ 0, η ≥ 0}.
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VI in Path Flows

VI in Path Flows

A vector of path flows and Lagrange multipliers (x∗, η∗) ∈ K2 is an
optimal solution to problem (5.14) subject to (5.10) – (5.13) if and only if
it satisfies the variational inequality:

J∑
j=1

∑
p∈P1

∂TGC 1(x∗)

∂x j
p

+ γj

∑
a∈L1

η∗aδap

×
[
x j
p − x j∗

p

]

+
∑
a∈L1

ua −
J∑

j=1

γj

∑
p∈P1

x j∗
p δap

× [ηa − η∗a ] ≥ 0, ∀(x , η) ∈ K2. (5.17)
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Numerical Examples

The numerical examples are inspired, in part, by ongoing refugee/migrant
crises as in Central America and Mexico, which are ongoing and have been
exacerbated in the COVID-19 pandemic.

Slow-onset, ongoing disasters are providing huge challenges for
various organizations, including humanitarian ones, and
governments, to provide the necessary food, water, medicines, etc.,
to the needy in a variety of shelters.

The numerical examples are stylized but reflect real-world features.
Furthermore, as in the case of the refugee/migrant crisis emanating from
Central America, numerous organizations are involved in providing
assistance and, hence, it is valuable to be able to assess possible synergies
since the demand is so great. Using carefully calibrated historical data and
information, the models can be used to assist the organizations on how to
cooperate in terms of the delivery of relief products in a cost-effective
manner.
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Migration Routes

Source: National Geographic via IOM UN Migration Blog - 2015 data
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Motivation and Some Background

Vivid depictions of people fleeing their origin locations permeate the
news, whether attempting to escape the great strife and suffering in Syria;
the violence in parts of Central America, the economic collapse of
Venezuela, and even flooding in parts of Asia as well as droughts in parts
of Africa. And we have seen the news about refugees from Afghanistan.
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Motivation and Some Background

At times, refugees will travel in extremely dangerous conditions to
escape the dire circumstances at their origin nodes.

In 2015, the UN Refugee Agency reported a maritime refugee crisis with, in the

first half of that year, 137,000 refugees crossing the Mediterranean Sea to Europe,

via very risky transport modes, and with many more unsuccessfully attempting

such a passage. 800 died in the largest refugee shipwreck on record that April.
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Figure: Pre-Cooperation Supply Chain Network Topology for the Numerical
Examples
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Numerical Examples

In the paper version of this tutorial a series of numerical examples,
with complete input and output data are reported.

• We find that the relief item flows to the demand points are all greater
than the lower value of the interval of the respective probability
distribution and the volume is higher under cooperation than before.
Hence, victims benefit from the cooperation of organizations.

• Also, we find that the generalized total synergy that can be achieved is
substantial, as high as 99% in several of the examples.

This work quantifies the benefits to both organizations and victims
of cooperation among organizations involved in disaster relief.
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Impacting Policy Through Operations Research

Anna Nagurney Game Theory and the COVID-19 Pandemic



Writing OpEds
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Coverage by the Media
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Writing OpEds in the Pandemic

On March 11, 2020 the WHO declared the pandemic. On March 12 my article on

blood supply chains in The Conversation appeared and, on March 24 my article in

INFORMS Analytics Coronavirus Chronicles.
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Writing OpEds in the Pandemic

On August 4, 2020, I published an article in The Conversation,

“The Raging Competition for Medical Supplies is not a Game, but
Game Theory Can Help.”

On September 18, 2020, I published another article in The Conversation,

“Keeping Coronavirus Vaccines at Subzero Temperatures During
Distribution Will Be Hard, but Likely Key to Ending Pandemic.”
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Writing OpEds in the Pandemic

On January 8, 2021, my article,

“Vaccine Delays Reveal Unexpected Weak Link in Supply Chains: A
Shortage of Workers,” appeared in The Conversation.

On April 5, 2021, I published the article,

“Today’s Global Economy Runs on Standardized Containers, as the
Ever Given Fiasco Illustrates,” also in The Conversation.
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Some of the Media Coverage of Our Work During the
Pandemic
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Impacting Policy Through Operations Research

On April 22, 2020, a letter from California Attorney General Xavier
Becerra to the Admiral Brett Giroir, the Assistant Secretary of the US
Department of Health & Human Services, and signed by US Attorney
Generals of 21 other states, requested updates, because of the pandemic
blood shortages, to blood donation policies that discriminate.

My article on blood supply chains in The Conversation, which was
reprinted in LiveScience, was the first reference and was cited on
the first page.
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Impacting Policy Through Operations Research
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Impacting Policy Through Operations Research

Xavier Becerra, previously California’s Attorney General, is now
President Joe Biden’s Health and Human Services Secretary!
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Thank You!

For more information: https://supernet.isenberg.umass.edu/
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