

Multiclass, Multicriteria TNE Model to improve transit activity in San Juan Metropolitan Area

Lisandra Garay-Vega SOM 822 May 10, 2004

Project Goals

 Highlight the importance of Multiclass, Multicriteria Network Equilibrium Models

 Describe the Multiclass, Multicriteria TNE Model developed by Nagurney & Dong (2000)

 Describe current and proposed traffic network in the San Juan Metropolitan Area

 Discuss how to apply the model to study this particular network

Multiclass, Multicriteria TNE Models

Allow weighting decision-making criteria

• Travelers consider several criteria to choose their optimal travel path \rightarrow Quandt (1967)

• Uncongested model \rightarrow Dial (1979)

 Congested model, infinite-dimentional VI formulation of multiclass, multicriteria TNE problems, qualitative properties → Dafermos (1981)

Multiclass, Multicriteria TNE Model (Nagurney & Dong 2000)

 Allow weighting decision-making criteria which are class and link dependent

 travel time and travel cost

Deals with demand functions that are not separable

Qualitative analysis

Computational procedures (VI)

Multiclass, Multicriteria TNE Model (Nagurney & Dong 2000)

- *k* = classes of travelers in the network with a class denoted by *i f*_{ai} = flow of class *i* on link *a*
- x_{ip} = nonnegative flow of class i on path p

$$f_a^i = \sum_{p \in P} x_p^i \delta_{ap}, \quad \forall i, \forall a$$

$$f_a = \sum_{i=1}^k f_a^i, \quad \forall a \in L$$

Link Cost Functions

 Assume as given, a travel time function and a travel cost function associated with each link a.

$$t_a = t_a(f) \quad \forall a \in L$$

$$c_a = c_a(f) \quad \forall a \in L$$

Generalized Cost Functions

Generalized cost of class *i* associated with each link *a*,

$$u_a^i = w_{1a}^i t_a + w_{2a}^i c_a \quad \forall i, \forall a$$

Where:

$$t_a = t_a(f) \quad \forall a \in L$$

$$c_a = c_a(f) \quad \forall a \in L$$

 w_{1a}^{i} = weight associated with class *i*'s travel time on link *a* w_{2a}^{i} = weight associated with class *i* 's travel cost on link *a*

Additional Comments

Generalized cost of class *i* associated with traveling on path *p*,

$$v_p^i = \sum_{a \in L} u_a^i(\widetilde{f}) \delta_{ap}, \quad \forall i, \forall p$$

Travel demand of class i traveler between O/D pair w,

$$d_{w}^{i} = \sum_{p \in P_{w}} x_{p}^{i}, \quad \forall i, \forall w$$

Travel disutility associated with class *i* traveler between O/D pair *w*,

$$d_{w}^{i} = d_{w}^{i}(\lambda), \quad \forall i, \forall w$$

Traffic Network Equilibrium Conditions

 $v_p^i(\widetilde{f}^*) \begin{cases} = \lambda_w^{i^*} & if \quad x_p^{i^*} > 0 \\ \geq \lambda_w^{i^*} & if \quad x_p^{i^*} = 0 \end{cases}$

 $d_w^i(\lambda^*) \begin{cases} = \sum_{p \in P_w} x_p^{i^*} & if \quad \lambda_w^{i^*} > 0 \\ \leq \sum_{p \in P_w} x_p^{i^*} & if \quad \lambda_w^{i^*} = 0 \end{cases}$

VI Formulation

$$K \equiv \left\{ (\widetilde{f}, d, \lambda) \middle| \lambda \ge 0 \quad and \quad \exists \widetilde{x} \ge 0 \right\}$$

$$\sum_{i=1}^{k}\sum_{a\in L}\mu_{a}^{i}(\widetilde{f}^{*})\times(f_{a}^{i}-f_{a}^{i^{*}})-\sum_{i=1}^{k}\sum_{w\in W}\mathcal{A}_{w}^{i^{*}}\times(d_{w}^{i}-d_{w}^{i^{*}})+\sum_{i=1}^{k}\sum_{w\in W}(d_{w}^{i^{*}}-d_{w}^{i}(\mathcal{A}^{*}))\times(\mathcal{A}_{w}^{i}-\mathcal{A}_{w}^{i^{*}})\geq 0, \quad \forall (\widetilde{f},d,\lambda)\in K$$

Applying the Model San Juan Metropolitan Area Case Study

San Juan Metropolitan Area

- Area = 400 mi²
- 1.4 million residents (35% of the total population), generate 3.2 million trips a day
- 63% of the jobs are in the metro area
- It is expected an increase of 45% in the number of trips by 2010

Source: Department of Transportation & Public Works

PR-52 Northbound A.M. Peak Hour

Traffic Network Analyzed

Simplified Network

Link Cost Functions

 Generalized cost functions should reflect the two alternatives available to travelers.

Alternative 1: using link c for private vehicle

Alternative 2: using links a and b for transit or HOV

Link Travel Time Functions

$$t_a = t_a(f) \quad \forall a \in L$$

The travel time for Alternative 1 (private vehicle) should include a congested factor and should reflect driver's comfort when compared with Alternative 2.

Travel time functions for Alternative 2 (park & ride) should reflect the time required to park, walk and wait and the higher speed that transit and HOV vehicles can reach.

Link Travel Cost Functions

$$c_a = c_a(f) \quad \forall a \in L$$

The cost functions for Alternative 1 (private vehicle) should include costs such as fuel and tolls

 Travel time functions for Alternative 2 should reflect the cost to park and transit fare

Travelers

For this example, there are 2 classes

 Travelers in class 1 are highly interested in minimize travel time and relatively low interest in travel cost

 Travelers in class 2 are interested in minimize both travel time and travel cost

Travelers

 Members of a class of travelers perceive their generalized cost on a route as a weighting of travel time and travel cost

This can be represented as weight factors as follows:

 w_{1a}^{1} = weight associated with class 1 travel time on link a w_{2a}^{2} = weight associated with class 2 travel cost on link a

Weights

We have three links and two classes. We can specify weight for each link:

Class	Travel Time			Travel Cost		
	Weight on Link a	Weight on Link b	Weight on Link c	Weight on Link a	Weight on Link b	Weight on Link c
1	$w_{1a}^{1} = .75$	$w_{1b}^{1} = 75$	$w_{1c}^{1} = .75$	$w_{2a}^{1} = .25$	$w_{2b}^{1} = .25$	$w_{2c}^{1} = .25$
2	$w_{1a}^{2} = 5$	$w_{1b}^2 = 5$	$w_{1c}^{2} = 5$	$w_{2a}^2 = .5$	$w_{2b}^2 = 5$	$w_{2c}^{2} = .5$

Generalized Cost Functions

$$u_a^i = w_{1a}^i t_a + w_{2a}^i c_a \quad \forall i, \forall a$$

Link	Class 1	Class 2		
a	$u_{a}^{1} = 0.75 t_{a}(f) + 0.25 c_{a}(f)$	$u_a^2 = 0.5 t_a(f) + 0.5 c_a(f)$		
b	$u_{b}^{1} = 0.75 t_{b}(f) + 0.25 c_{b}(f)$	$u_b^2 = 0.5 t_b(f) + 0.5 c_b(f)$		
c	$u_{c}^{1} = 0.75 t_{c}(f) + 0.25 c_{c}(f)$	$u_{c}^{2} = 0.5t_{c}(f) + 0.5c_{c}(f)$		

Conclusions & Recommendations

- The model allow to evaluate a traffic network considering that travelers use several criteria to choose their optimal travel path
- This can be represented by weights that are class and link-dependent
- The model deal with general and not separable demand functions
- Data needed to construct meaningful travel cost and travel time functions
- Information obtained with this model could provide useful insight into the planning process

References

 Nagurney, A. & Dong, J., A Multiclass, multicriteria traffic network equilibrium model with elastic demand. Transportation Research Part B. Vol. 36 pp 445-469, 2002

 Nagurney, A.; Dong, J. & Mokhtarian, P., Traffic Network equilibrium and the environment: a multicriteria decision-making perspective, 2000

Puerto Rico Department of Transportation & Public Works Website. <u>http://www.dtop.gov.pr</u>

Puerto Rico Integrated Transportation Alternative System Website. <u>http://www.ati.gobierno.pr</u>