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Outline of Tutorial

Part 1: Overview of Variational Inequalities and Game Theory

• Motivation Including Transportation Networks
• Variational Inequality Fundamentals
• Variational Inequality Formulations of Traffic Network Equilibrium
• Nash Equilibrium and Oligopolies
• Summary.

Part 2: Game Theory Network Models for Disaster Relief and
Perishable Product Supply Chains

• Background and Motivation
• Game Theory Model for Post-Disaster Humanitarian Relief
• Algorithms
• A Case Study on Hurricane Katrina
• An Extension of the Model and Application to Tornadoes in Western
Massachusetts
• Supply Chain Networks from Healthcare to Food

• Summary and Conclusions.
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Outline of Tutorial

Part 3: Cybercrime, Financial Networks, Cybersecurity, and a
Future Internet

• Cybercrime
• A Predictive Network Economic Model of Cybercrime
• Cybersecurity Investments
• Nash Equilibrium, Nash Bargaining, System-Optimization
• Network Vulnerability
• A Retail Case Study

• Envisioning a New Kind of Internet – ChoiceNet.
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Motivation Including Transportation Networks
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I Work on the Modeling of Network Systems
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Much of My Recent Research Has Been on Supply Chains
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Some of My Books
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On the Shoulders of Giants - Academic Genealogy
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Professor Stella Dafermos

Dr. Stella Dafermos was the only female professor in either
Engineering or Applied Mathematics at Brown University, when I
became her first PhD student.

Stella was the second female to have received a PhD in OR
and that was from Johns Hopkins University.
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Characteristics of Many Networks Today

large-scale nature and complexity of network topology;

congestion, which leads to nonlinearities;

alternative behavior of users of the networks, which may
lead to paradoxical phenomena;

possibly conflicting criteria associated with optimization;

interactions among the underlying networks themselves,
such as the Internet with electric power networks, financial
networks, and transportation and logistical networks;

recognition of their fragility and vulnerability;

policies surrounding networks today may have major impacts
not only economically, but also socially, politically, and
security-wise.
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In this tutorial we will be covering a variety of nonlinear network
flow problems. The concept of network equilibrium owes much to
the study of congested transportation networks, so we will
begin with this topic, since this area of application has also driven
many methodological advances, including advances in variational
inequality theory.

Interestingly, the topic of congestion and its management was even
a major issue in Roman times.
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The Study of Congested Transportation Networks Must
Capture the Behavior of Users
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Two fundamental principles of travel behavior, due to Wardrop
(1952), with terms coined by Dafermos and Sparrow (1969).

User-optimized (U-O) (network equilibrium) Problem – each
user determines his/her cost minimizing route of travel between an
origin/destination, until an equilibrium is reached, in which no user
can decrease his/her cost of travel by unilateral action (in the
sense of Nash).

System-optimized (S-O) Problem – users are allocated among
the routes so as to minimize the total cost in the system, where
the total cost is equal to the sum over all the links of the link’s
user cost times its flow.

The U-O problems, under certain simplifying assumptions, possess
optimization reformulations. But now we can handle cost
asymmetries, multiple modes of transport, and different
classes of travelers, without such assumptions, because of
variational inequality theory.
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Decentralized (Selfish) versus Centralized (Unselfish)
Behavior
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Behavior on Congested Networks

Decision-makers select their cost-minimizing routes.

System-Optimized

Centralized Unselfish S–O

vs. vs. vs.��
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Decentralized Selfish U–O

User-Optimized

Flows are routed so as to minimize the total
cost to society.
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First Rigorous Formulation of U-O (Decentralized) and
S-O (Centralized) Behavior

In 1956, Yale University Press published Studies in the
Economics of Transportation by Beckmann, McGuire, and
Winsten.
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The U-O Conditions

Definition: U-O or Network Equilibrium – Fixed Demands

A path flow pattern x∗, with nonnegative path flows and O/D pair
demand satisfaction, is said to be U-O or in equilibrium, if the
following condition holds for each O/D pair w ∈ W and each path
p ∈ Pw :

Cp(x
∗)

{
= λw , if x∗p > 0,
≥ λw , if x∗p = 0.
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The S-O Conditions

Definition: S-O Conditions

A path flow pattern x with nonnegative path flows and O/D pair
demand satisfaction, is said to be S-O, if for each O/D pair
w ∈ W and each path p ∈ Pw :

Ĉ ′
p(x)

{
= µw , if xp > 0,
≥ µw , if xp = 0,

where Ĉ ′
p(x)=

∑
a∈L

∂ĉa(fa)
∂fa

δap, and µw is a Lagrange multiplier.
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We celebrated the 50th anniversary of its publication at the 2005 INFORMS
Meeting, San Francisco. (Professor Nagurney with Professors Beckmann, McGuire

and Boyce)
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Importance of Capturing Behavior on Networks - The
Braess (1968) Paradox and User-Optimizing (U-O)
Behavior

Assume a network with a single
O/D pair (1,4). There are 2
paths available to travelers:
p1 = (a, c) and p2 = (b, d).

For a travel demand of 6, the
equilibrium path flows are
x∗p1

= x∗p2
= 3 and

The equilibrium path travel
cost is
Cp1 = Cp2 = 83.
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ca(fa) = 10fa, cb(fb) = fb + 50,

cc(fc) = fc +50, cd(fd) = 10fd .
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Adding a Link Increases Travel Cost for All!

Adding a new link creates a new
path p3 = (a, e, d).

The original flow distribution
pattern is no longer an
equilibrium pattern, since at this
level of flow the cost on path
p3,Cp3 = 70.

The new equilibrium flow pattern
network is
x∗p1

= x∗p2
= x∗p3

= 2.

The equilibrium path travel
cost: Cp1 = Cp2 = Cp3 = 92.
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ce(fe) = fe + 10
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The 1968 Braess article has been translated from German to
English: “On a Paradox of Traffic Planning,” D. Braess, A.
Nagurney, and T. Wakolbinger, Transportation Science 39 (2005),
pp 446-450.
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The Braess Paradox Around the World

1969 - Stuttgart, Germany - The
traffic worsened until a newly
built road was closed.

1990 - Earth Day - New York
City - 42nd Street was closed and
traffic flow improved.

2002 - Seoul, Korea - A 6 lane
road built over the
Cheonggyecheon River that
carried 160,000 cars per day and
was perpetually jammed was torn
down to improve traffic flow.
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Interview on Broadway for America Revealed on March 15,
2011
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Under S-O behavior, the total cost in the network is
minimized, and the new route p3, under the same
demand, would not be used.

The Braess paradox never occurs in S-O
networks.
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Recall the Braess network with the added link e.

What happens as the demand changes?
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The U-O Solution of the Braess Network with Added Link (Path)
and Time-Varying Demands Solved as an Evolutionary Variational
Inequality (A. Nagurney, P. Daniele, and D. Parkes, Computational
Management Science 4 (2007), pp 355-375).
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In Demand Regime I, Only the New Path is Used.
In Demand Regime II, the travel demand lies in the range [2.58,
8.89], and the Addition of a New Link (Path) Makes
Everyone Worse Off!
In Demand Regime III, when the travel demand exceeds 8.89, Only
the Original Paths are Used!
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The new path is never used, under U-O behavior, when the
demand exceeds 8.89, even when the demand goes out to
infinity!
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Other Networks that Behave like Traffic Networks

The Internet and electric power networks and even supply chains!
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Variational Inequality Fundamentals
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Variational Inequalities

Dafermos (1980) identified that the traffic network equilibrium

conditions, as formulated by Smith (1979)), were a VI problem.

This unveiled the theory for the formulation, analysis, and

computation of solutions to numerous equilibrium problems in OR,

economics, engineering, and other disciplines.

The paper, available for free download, S. Dafermos (1980), “Traffic
Equilibrium and Variational Inequalities,” Transportation Science 14(1),
pp 42-54,

was selected by the Editors as one of the 12 most impactful in 50 years!
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Background

To-date, problems which have been formulated and studied
as variational inequality problems include:

• traffic network equilibrium problems
• spatial price equilibrium problems
• oligopolistic market equilibrium problems
• financial equilibrium problems
• migration equilibrium problems, as well as
• environmental network and ecology problems,
• knowledge network problems,
• electric power generation and distribution networks,
• supply chain network equilibrium problems, and even
• the Internet!
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Observe that many of the applications explored to-date that have
been formulated, studied, and solved as variational inequality
problems are, in fact, network problems.

In addition, as we shall see, many of the advances in
variational inequality theory have been spurred by needs in
practice!
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Variational Inequality Theory

Variational inequality (VI) theory provides us with a tool for:

• formulating a variety of equilibrium problems;

• qualitatively analyzing the problems in terms of existence and
uniqueness of solutions, stability and sensitivity analysis, and

• providing us with algorithms with accompanying convergence
analysis for computational purposes.

It contains, as special cases, such well-known problems in
mathematical programming as: systems of nonlinear
equations, optimization problems, complementarity problems,
and is also related to fixed point problems.
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The Variational Inequality Problem

Definition: Variational Inequality Problem

The finite - dimensional variational inequality problem, VI(F ,K),
is to determine a vector X ∗ ∈ K ⊂ RN , such that

F (X ∗)T · (X − X ∗) ≥ 0, ∀X ∈ K,

or, equivalently,

〈F (X ∗),X − X ∗〉 ≥ 0, ∀X ∈ K (1)

where F is a given continuous function from K to RN , K is a given
closed convex set, and 〈·, ·〉 denotes the inner product in
N-dimensional Euclidean space, as does “·”.

Here we assume that all vectors are column vectors, except where
noted.
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The Variational Inequality Problem

Another equivalent way of writing (1) is:

N∑
i=1

Fi (X
∗)× (Xi − X ∗

i ) ≥ 0, ∀X ∈ K. (2)

K is the feasible set, X ∗ is the vector of solution values of the
variables, and F is sometimes referred to as the function that
enters the variational inequality.
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Geometric Interpretation of VI(F ,K) and a Projected
Dynamical System

As shown by Dupuis and Nagurney (1993), there is associated with
a VI problem, a projected dynamical system, which provides a
natural underlying dynamics until an equilibrium state is achieved,
under appropriate conditions. In particular, F (X ∗) is “orthogonal”
to the feasible set K at the point X ∗.
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To model the dynamic behavior of complex network systems,
including supply chains, we utilize projected dynamical systems
(PDSs) advanced by Dupuis and Nagurney (1993) in the Annals of
Operations Research and by Nagurney and Zhang (1996) in our
book Projected Dynamical Systems and Variational Inequalities
with Applications.

Such nonclassical dynamical systems are now being used in

evolutionary games (Sandholm (2005, 2011)),

ecological predator-prey networks (Nagurney and Nagurney
(2011a, b)),

even neuroscience (Girard et al. (2008),

dynamic spectrum model for cognitive radio networks
(Setoodeh, Haykin, and Moghadam (2012)),

Future Internet Architectures (Saberi, Nagurney, and Wolf
(2014); see also Nagurney et al. (2015)).
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Some Books on VIs

D. Kinderlehrer and G. Stampacchia (1980), An Intrduction to
Variational Inequalities and Their Applications, Academic Press, NY.

A. Nagurney (1999), Network Economics: A Variational Inequality
Approach, second and revised edition, Kluwer Academic Publishers,
Dordrecht, The Netherlands; first edition published in 1993.

A. Nagurney and D. Zhang (1996), Projected Dynamical Systems
and Variational Inequalities with Applications, Kluwer Academic
Publishers, Boston, Massachusetts.

M. Patriksson (1999), Nonlinear Programming and Variational
Inequality Problems A Unified Approach, Kluwer Academic
Publishers, Dordrecht, The Netherlands.

P. Daniele (2006), Dynamic Networks And Evolutionary Variational
Inequalities, Edward Elgar Publishing, Cheltenham, England.

A. Nagurney (2006), Supply Chain Network Economics: Dynamics
of Prices, Flows, and Profits, Edward Elgar Publishing, Cheltenham,
England.

Professor Anna Nagurney EURO - Tutorial on Game Theory and Variational Inequalities



Optimization Problems

An optimization problem is characterized by its specific
objective function that is to be maximized or minimized,
depending upon the problem and, in the case of a
constrained problem, a given set of constraints.

Possible objective functions include expressions representing profits,
costs, market share, portfolio risk, etc. Possible constraints include
those that represent limited budgets or resources, nonnegativity
constraints on variables, conservation equations, etc. Typically, an
optimization problem consists of a single objective function.
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Optimization Problems

Both unconstrained and constrained optimization problems can
be formulated as VI problems.

Proposition

Let X ∗ be a solution to the optimization problem:

Minimize f (X ) (3)

subject to: X ∈ K,

where f is continuously differentiable and K is closed and convex.
Then X ∗ is a solution of the variational inequality problem:

〈∇f (X ∗),X − X ∗〉 ≥ 0, ∀X ∈ K. (4)
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Optimization Problems

Proposition

If f (X ) is a convex function and X ∗ is a solution to VI(∇f ,K),
then X ∗ is a solution to the optimization problem (3).

If the feasible set K = RN , then the unconstrained
optimization problem is also a variational inequality problem.
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Relationship Between Optimization Problems and VIs

On the other hand, in the case where a certain symmetry condition
holds, the variational inequality problem can be reformulated as an
optimization problem.

In other words, in the case that the variational inequality
formulation of the equilibrium conditions underlying a specific
problem is characterized by a function with a symmetric Jacobian,
then the solution of the equilibrium conditions and the solution of
a particular optimization problem are one and the same. We first
introduce the following definition and then fix this relationship in a
theorem.
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Relationship Between Optimization Problems and VIs

Theorem

Assume that F (X ) is continuously differentiable on K and that the
Jacobian matrix

∇F (X ) =


∂F1
∂X1

· · · ∂F1
∂XN

...
...

∂FN
∂X1

· · · ∂FN
∂XN

 (5)

is symmetric and positive-semidefinite. Then there is a real-valued
convex function f : K 7→ R1 satisfying ∇f (X ) = F (X ) with X ∗ the
solution of VI(F ,K) also being the solution of:

Minimize f (X ) (6)

subject to: X ∈ K.
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Hence, although the VI problem encompasses the
optimization problem, a VI problem can be reformulated as a
convex optimization problem, only when the symmetry
condition and the positive-semidefiniteness condition hold.

The VI, therefore, is the more general problem in that it can
also handle a function F (X ) with an asymmetric Jacobian.

Consequently, variational inequality theory allows for the
modeling, analysis, and solution of multimodal traffic
network equilibrium problems, multicommodity spatial price
equilibrium problems, general economic equilibrium problems,
and numerous competitive supply chain network equilibrium
problems since one no longer has to make a “symmetry”
assumption of F (X ).
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Fixed Point Problems

The relationship between the VI problem and a fixed point problem
can be made through the use of a projection operator. First, the
projection operator is defined.

Lemma

Let K be a closed convex set in Rn. Then for each x ∈ RN , there
is a unique point y ∈ K, such that

‖x − y‖ ≤ ‖x − z‖, ∀z ∈ K ,

and y is known as the orthogonal projection of X on the set K
with respect to the Euclidean norm, that is,

y = PKX = arg min
z∈K

‖X − z‖.
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Projection Operator

A property of the projection operator which is useful both in
qualitative analysis of equilibria and their computation is now
presented.

Corollary

Let K be a closed convex set. Then the projection operator PK is
nonexpansive, that is,

‖PKX − PKX ′‖ ≤ ‖X − X ′‖, ∀X ,X ′ ∈ RN .
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Geometric Interpretation of Projection
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Additional Geometric Interpretation
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Relationship Between Fixed Point Problems and VIs

The relationship between a VI and a fixed point problem is
as follows.

Theorem

Assume that K is closed and convex. Then X ∗ ∈ K is a solution of
the variational inequality problem VI(F ,K) if and only if for any
γ > 0, X ∗ is a fixed point of the map

PK(I − γF ) : K 7→ K,

that is,
X ∗ = PK(X ∗ − γF (X ∗)).
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Basic Existence and Uniqueness Results

VI theory is also a powerful tool in the qualitative analysis of
equilibria. We now provide conditions for existence and
uniqueness of solutions to VI(F ,K) are provided.

Existence of a solution to a VI problem follows from continuity of
the function F entering the variational inequality, provided that the
feasible set K is compact. Indeed, we have the following:

Theorem: Existence Under Compactness and Continuity

If K is a compact convex set and F (X ) is continuous on K, then
the variational inequality problem admits at least one solution X ∗.
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Basic Existence and Uniqueness Results

Qualitative properties of existence and uniqueness become
easily obtainable under certain monotonicity conditions.

Definition: Monotonicity

F (X ) is monotone on K if

〈F (X 1)− F (X 2),X 1 − X 2〉 ≥ 0, ∀X 1,X 2 ∈ K.

Definition: Strict Monotonicity

F (X ) is strictly monotone on K if

〈F (X 1)− F (X 2),X 1 − X 2〉 > 0, ∀X 1,X 2 ∈ K, X 1 6= X 2.
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Basic Existence and Uniqueness Results

Definition: Strong Monotonicity

F (X ) is strongly monotone on K if for some α > 0

〈F (X 1)− F (X 2),X 1 − X 2〉 ≥ α‖X 1 − X 2‖2
, ∀X 1,X 2 ∈ K.

Definition: Lipschitz Continuity

F (X ) is Lipschitz continuous on K if there exists an L > 0, such
that

‖F (X 1)− F (X 2)‖ ≤ L‖X 1 − X 2‖, ∀X 1,X 2 ∈ K.
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Basic Existence and Uniqueness Results

A uniqueness result is presented in the subsequent theorem.

Theorem: Uniqueness

Suppose that F (X ) is strictly monotone on K. Then the solution
is unique, if one exists.
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More on Monotonicity

Monotonicity is closely related to positive-definiteness.

Theorem

Suppose that F (X ) is continuously differentiable on K and the
Jacobian matrix

∇F (X ) =


∂F1
∂X1

· · · ∂F1
∂XN

...
...

∂FN
∂X1

· · · ∂FN
∂XN

 ,

which need not be symmetric, is positive-semidefinite
(positive-definite). Then F (X ) is monotone (strictly monotone).
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More on Monotonicity

Proposition

Assume that F (X ) is continuously differentiable on K and that
∇F (X ) is strongly positive-definite. Then F (X ) is strongly
monotone.
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One obtains a stronger result in the special case where F (X ) is
linear.

Corollary

Suppose that F (X ) = MX + b, where M is an N ×N matrix and b
is a constant vector in RN . The function F is monotone if and
only if M is positive-semidefinite. F is strongly monotone if and
only if M is positive-definite.
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A Strong Result

The following theorem provides a condition under which both
existence and uniqueness of the solution to the variational
inequality problem are guaranteed. Here no assumption on the
compactness of the feasible set K is made.

Theorem: Existence and Uniqueness

Assume that F (X ) is strongly monotone. Then there exists
precisely one solution X ∗ to VI(F ,K).

Professor Anna Nagurney EURO - Tutorial on Game Theory and Variational Inequalities



Hence, in the case of an unbounded feasible set K, strong
monotonicity of the function F guarantees both existence and
uniqueness. If K is compact, then existence is guaranteed if F is
continuous, and only the strict monotonicity condition needs to
hold for uniqueness to be guaranteed.
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A Contraction

Assume now that F (X ) is both strongly monotone and Lipschitz
continuous. Then the projection PK [X − γF (X )] is a contraction
with respect to X , that is, we have the following:

Theorem

Fix 0 < γ ≤ α
L2 where α and L are the constants appearing,

respectively, in the strong monotonicity and the Lipschitz
continuity condition definitions. Then

‖PK(X − γF (X ))− PK(y − γF (y))‖ ≤ β‖X − y‖

for all X , y ∈ K, where

(1− γα)
1
2 ≤ β < 1.
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An immediate consequence of the Theorem and the Banach
Fixed Point Theorem is:

Corollary

The operator PK(X − γF (X )) has a unique fixed point X ∗.
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Variational Inequality Formulations of Traffic
Network Equilibrium

Professor Anna Nagurney EURO - Tutorial on Game Theory and Variational Inequalities



Variational Inequality Formulations of Traffic Network
Equilibrium

Theorem: Path Flow Formulation

A vector of path flows x∗ ∈ K 1, where
K 1 ≡ {x |x ≥ 0, and

∑
p∈Pw

xp = dw ,∀w} is a Traffic Network
Equilibrium (U-O pattern) if and only if it satisfies the VI problem:∑

w

∑
p∈Pw

Cp(x
∗)× (xp − x∗p ) ≥ 0, ∀x ∈ K 1.
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Variational Inequality Formulations of Traffic Network
Equilibrium

Theorem: Link Flow Formulation

A vector of link flows f ∗ ∈ K 2, where
K 2 ≡ {∃x |x ≥ 0, and

∑
p∈Pw

xp = dw ,∀w , fa =
∑

p∈P xpδap,∀a}
is a Traffic Network Equilibrium (U-O pattern) if and only if it
satisfies the VI problem:∑

a∈L

ca(f
∗)× (fa − f ∗a ) ≥ 0, ∀f ∈ K 2.
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Nash Equilibrium and Oligopolies

Professor Anna Nagurney EURO - Tutorial on Game Theory and Variational Inequalities



Nash Equilibrium and Oligopolies

Oligopoly theory dates to Cournot (1838), who investigated
competition between two producers, the so-called duopoly
problem, and is credited with being the first to study
noncooperative behavior.

In an oligopoly, it is assumed that there are several firms, which
produce a product and the price of the product depends on the
quantity produced.

Examples of oligopolies include large firms in computer,
automobile, chemical or mineral extraction industries, among
others.
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Nash Equilibrium

Nash (1950, 1951) subsequently generalized Cournot’s concept of
an equilibrium for a behavioral model consisting of n agents or
players, each acting in his/her own self-interest, which has come to
be called a noncooperative game.

The Nobel Laureate John F. Nash
www.search.tvnz.co.nz
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Nash Equilibrium

Specifically, consider m players, each player i having at his/her
disposal a strategy vector Xi = {Xi1, . . . ,Xin} selected from a
closed, convex set Ki ⊂ Rn, with a utility function Ui : K 7→ R1,
where K = K1×K2×. . .×Km ⊂ Rmn.

Rationality Postulate

The rationality postulate is that each player i selects a strategy
vector Xi ∈ Ki that maximizes his/her utility level
Ui (X1, . . . ,Xi−1,Xi ,Xi+1, . . . ,Xm) given the decisions (Xj)j 6=i of
the other players.
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Nash Equilibrium

In this framework one then has:

Definition: Nash Equilibrium

A Nash equilibrium is a strategy vector

X ∗ = (X ∗
1 , . . . ,X ∗

m) ∈ K ,

such that

Ui (X
∗
i , X̂ ∗

i ) ≥ Ui (Xi , X̂
∗
i ), ∀Xi ∈ Ki ,∀i , (7)

where X̂ ∗
i = (X ∗

1 , . . . ,X ∗
i−1,X

∗
i+1, . . . ,X

∗
m).
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Variational Inequality Formulation of Nash Equilibrium

It has been shown (cf. Hartman and Stampacchia (1966) and
Gabay and Moulin (1980)) that Nash equilibria satisfy variational
inequalities. In the present context, under the assumption that
each Ui is continuously differentiable on K and concave with
respect to Xi , one has

Theorem: Variational Inequality Formulation of Nash
Equilibrium

Under the previous assumptions, X ∗ is a Nash equilibrium if and
only if X ∗ ∈ K is a solution of the variational inequality

〈F (X ∗),X − X ∗〉 ≥ 0, ∀X ∈ K , (8)

where F (X ) ≡ (−∇X1U1(X ), . . . ,−∇XmUm(X )) is a row vector

and where ∇Xi
Ui (X ) = (∂Ui (X )

∂Xi1
, . . . , ∂Ui (X )

∂Xin
).
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Variational Inequality Formulation of Nash Equilibrium

Proof: Since Ui is a continuously differentiable function and
concave with respect to Xi , the equilibrium condition (7), for a
fixed i , is equivalent to the variational inequality problem

−〈∇Xi
Ui (X

∗),Xi − X ∗
i 〉 ≥ 0, ∀xi ∈ Ki , (9)

which, by summing over all players i , yields (8). �
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Qualitative Properties

If the feasible set K is compact, then existence is guaranteed under
the assumption that each Ui is continuously differentiable. Rosen
(1965) proved existence under similar conditions. Karamardian
(1969), on the other hand, relaxed the assumption of compactness
of K and provided a proof of existence and uniqueness of Nash
equilibria under the strong monotonicity condition.

As shown by Gabay and Moulin (1980), the imposition of a
coercivity condition on F (X ) will guarantee existence of a Nash
equilibrium X ∗ even if the feasible set is no longer compact.
Moreover, if F (X ) satisfies the strict monotonicity condition,
uniqueness of X ∗ is guaranteed, provided that the equilibrium
exists.
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Classical Oligopoly Problems

We now consider the classical oligopoly problem in which there are
m producers involved in the production of a homogeneous
commodity. The quantity produced by firm i is denoted by qi , with
the production quantities grouped into a column vector q ∈ Rm.
Let fi denote the cost of producing the commodity by firm i , and
let p denote the demand price associated with the good. Assume
that

fi = fi (qi ), (10)

p = p(
m∑

i=1

qi ). (11)

The profit for firm i , ui , can then be expressed as

ui (q) = p(
m∑

i=1

qi )qi − fi (qi ). (12)
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Variational Inequality Formulation of Nash Equilibrium

Assuming that the competitive mechanism is one of
noncooperative behavior, in view of the Theorem, one can write
down the following Theorem.

Theorem: Variational Inequality Formulation of Classical
Cournot-Nash Oligopolistic Market Equilibrium

Assume that the profit function ui (q) is concave with respect to qi ,
and that ui (q) is continuously differentiable. Then q∗ ∈ Rm

+ is a
Nash equilibrium if and only if it satisfies the variational inequality

m∑
i=1

[
∂fi (q

∗
i )

∂qi
−

∂p(
∑m

i=1 q∗i )

∂qi
q∗i − p(

m∑
i=1

q∗i )

]
× [qi − q∗i ] ≥ 0,

∀q ∈ Rm
+ . (13)
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An Equivalence

We now establish the equivalence between the classical oligopoly
model and a network equilibrium model. For a graphic depiction,
see the Figure below.

m

m

1

0

R 	U

1 2 · · · m

∂f1(q1)
∂q1

− ∂p(
Pm

i=1 qi )
∂q1

q1
∂fm(qm)

∂qm
− ∂p(

Pm
i=1 qi )

∂qm
qm

p(
∑m

i=1 qi )

Figure: Network equilibrium representation of an oligopoly model
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An Equivalence

Let 0 be the origin node and 1 the destination node. Construct m
links connecting 0 to 1. The cost on a link i is then given by:[

∂fi (qi )

∂qi
−

∂p(
∑m

i=1 qi )

∂qi
qi

]
,

and the inverse demand associated with the origin/destination
(O/D) pair (0, 1) is given by p(

∑m
i=1 qi ). The flow on link i

corresponds to qi and the demand associated with the O/D pair to∑m
i=1 qi .

Hence, the classical oligopoly model is isomorphic to a
network equilibrium model with a single O/D pair, m paths
corresponding to the m links, and with elastic demand.

Indeed, there are a remarkable number of problems that are
isomorphic to traffic network equilibrium problems.
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Summary

In this part of the tutorial, the fundamental qualitative tools
for the formulation and analysis of finite-dimensional
variational inequalities have been provided.

In subsequent parts of this tutorial, we will describe algorithms and
a plethora of applications of variational inequalities and game
theory models.
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Part 2: Game Theory Network Models for Disaster Relief
and Perishable Product Supply Chains

Outline

Background and Motivation

Game Theory Model for Post-Disaster Humanitarian Relief

Algorithms

A Case Study on Hurricane Katrina

An Extension of the Model and Application to Tornadoes in
Western Massachusetts

Supply Chain Networks from Healthcare to Food

Summary and Conclusions
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Background and Motivation

Professor Anna Nagurney EURO - Tutorial on Game Theory and Variational Inequalities



Network Models Are Also Very Useful in Disaster Relief
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Network Models for Healthcare Supply Chains
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Examples of Some Disasters

• The biggest blackout in North America, August 14, 2003;

• Two significant power outages in September 2003 – one in the
UK and the other in Italy and Switzerland;

• The Indonesian tsunami (and earthquake), December 26, 2004;

• Hurricane Katrina, August 23, 2005;

• The Sichuan earthquake on May 12, 2008;

• The Haiti earthquake that struck on January 12, 2010 and the
Chilean one on February 27, 2010;

• The triple disaster in Japan on March 11, 2011;

• Superstorm Sandy, October 29, 2012;

• Hurricanes Harvey, Irma, and Maria that struck in 2017.
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Hurricane Katrina, Fukushima, and Superstorm Sandy
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2017 Set a Record for Losses from Natural Disasters

Hurricane Harvey, which made landfall in Texas in August 2017,
was the most costly disaster of 2017, causing losses of $85 billion.
The New York Times reports that, together with Hurricanes Irma
(hitting Florida) and Maria (devastating Puerto Rico), the 2017
hurricane season caused the most damage ever, with losses
reaching $215 billion.

Plus, the damage from wildfires in California drove insured
losses to about $8 billion.
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Billion Dollar Disasters in the United States in 2017
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Challenges Associated with Disaster Relief

• Timely delivery of relief items is challenged by damaged and
destroyed infrastructure (transportation,
telecommunications, hospitals, etc.).

• Shipments of the wrong supplies create congestion and
materiel convergence (sometimes referred to as the second
disaster).

• • Within three weeks following the 2010 earthquake in Haiti,
1,000 NGOs were operating in Haiti. News media attention of
insufficient water supplies resulted in immense donations to the
Dominican Red Cross to assist its island neighbor. Port-au-Price
was saturated with both cargo and gifts-in-kind.

• • After the Fukushima disaster, there were too many blankets
and items of clothing shipped and even broken bicycles.

• • After Katrina, even tuxedos were delivered to victims.
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Challenges Associated with Disaster Relief
The NGO Balancing Act and Driving Forces

Better coordination among NGOs is needed.

According to Charity Navigator, there are 1.4 million registered NGOs in

the US. $410 billion in donations given to US nonprofits and charities in

2017.
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Need for Game Theory Network Models for Disaster Relief

There is a need to develop appropriate analytical tools that
can assist NGOs, as well as governments, in the modeling of
complex interactions in disaster relief to improve outcomes.
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Optimization Models and Disaster Relief

Numerous studies have focused on optimization
frameworks in the context of disaster relief:

Haghani and Oh (1996) - Ozdamar et al. (2004) - Yi and
Kumar (2007) - Yi and Ozdamar (2007) - Tzeng et al. (2007)
- Balcik, Beamon, and Smilowitz (2008) - Nair and
Miller-Hooks (2009) - Balcik et al. (2010) - Nagurney et al.
(2012) - Vogiatzis, Walteros, and Pardalos (2013) - Vogiatzis
and Pardalos (2016) - Nagurney and Nagurney (2016).

See the survey of optimization models in emergency logistics
by Caunhye, Nie, and Pokharel (2012).

Additional references on models in humanitarian logistics can
be found in Duran et al. (2013) and in the survey by Ortuno
et al. (2013).
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Time in Disaster Relief
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Network Topology of the Integrated Disaster Relief Supply Chain

A. Nagurney, A. H. Masoumi, and M. Yu, “An Integrated Disaster Relief

Supply Chain Network Model with Time Targets and Demand

Uncertainty.” In: Regional Science Matters: Studies Dedicated to Walter

Isard, P. Nijkamp, A. Rose, and K. Kourtit, Editors, Springer

International Publishing Switzerland (2015), pp 287-318.
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Game Theory Model for
Post-Disaster Humanitarian Relief
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Game Theory and Disaster Relief

Although there have been quite a few optimization models
developed for disaster relief there are very few game theory
models.
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Game Theory and Disaster Relief

We developed the first Generalized Nash Equilibrium (GNE)
model for post-disaster humanitarian relief, which contains
both a financial component and a supply chain component.
The Generalized Nash Equilibrium problem is a generalization of
the Nash Equilibrium problem (cf. Nash (1950, 1951)).

“A Generalized Nash Equilibrium Network Model for Post-Disaster
Humanitarian Relief,” A. Nagurney, E. Alvarez Flores, and C.
Soylu, Transportation Research E 95 (2016), pp 1-18.
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Some Literature

Our disaster relief game theory framework entails
competition for donors as well as media exposure plus supply
chain aspects. We now highlight some of the related literature on
these topics.

• Natsios (1995) contends that the cheapest way for relief
organizations to fundraise is to provide early relief in highly visible
areas.

• Balcik et al. (2010) note that the media is a critical factor
affecting relief operations with NGOs seeking visibility to attract
more resources from donors. They also review the challenges in
coordinating humanitarian relief chains and describe the current
and emerging coordination practices in disaster relief.
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Some Literature

• Olsen and Carstensen (2003) confirmed the frequently repeated
argument that media coverage is critical in relation to emergency
relief allocation in a number of cases that they analyzed.

• Van Wassenhove (2006) also emphasizes the role of the media in
humanitarian logistics and states that following appeals in the
media, humanitarian organizations are often flooded with
unsolicited donations that can create bottlenecks in the supply
chain.

• Zhuang, Saxton, and Wu (2014) develop a model that reveals
the amount of charitable contributions made by donors is positively
dependent on the amount of disclosure by the NGOs. They also
emphasize that there is a dearth of existing game-theoretic
research on nonprofit organizations. Our model attempts to
help to fill this void.
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Game Theory and Disaster Relief

Toyasaki and Wakolbinger (2014) constructed the first models of
financial flows that captured the strategic interaction
between donors and humanitarian organizations using game
theory and also included earmarked donations.

Muggy and Stamm (2014), in turn, provide an excellent review
of game theory in humanitarian operations and emphasize that
there are many untapped research opportunities for modeling in
this area.

Additional references to disaster relief and humanitarian logistics
can be found in our papers.
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The Network Structure of the Model
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Figure: The Network Structure of the Game Theory Model
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The Game Theory Model

We assume that each NGO i has, at its disposal, an amount si of
the relief item that it can allocate post-disaster. Hence, we have
the following conservation of flow equation, which must hold for
each i ; i = 1, . . . ,m:

n∑
j=1

qij ≤ si . (1)

In addition, we know that the product flows for each i ;
i = 1, . . . ,m, must be nonnegative, that is:

qij ≥ 0, j = 1, . . . , n. (2)

Each NGO i encumbers a cost, cij , associated with shipping the
relief items to location j , denoted by cij , where we assume that

cij = cij(qij), j = 1, . . . n, (3)

with these cost functions being strictly convex and continuously
differentiable.
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The Game Theory Model

Each NGO i ; i = 1, . . . ,m, derives satisfaction or utility associated
with providing the relief items to j ; j = 1, . . . , n, with its utility
over all demand points given by

∑n
j=1 γijqij . Here γij is a positive

factor representing a measure of satisfaction/utility that NGO i
acquires through its supply chain activities to demand point j .

Each NGO i ; i = 1, . . . ,m, associates a positive weight ωi with∑n
j=1 γijqij , which provides a monetization of, in effect, this

component of the objective function.
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The Game Theory Model

Finally, each NGO i ; i = 1, . . . ,m, based on the media attention
and the visibility of NGOs at location j ; j = 1, . . . , n, acquires
funds from donors given by the expression

βi

n∑
j=1

Pj(q), (4)

where Pj(q) represents the financial funds in donation dollars due
to visibility of all NGOs at location j . Hence, βi is a parameter
that reflects the proportion of total donations collected for the
disaster at demand point j that is received by NGO i .

Expression (4), therefore, represents the financial flow on the
link joining node D with node NGO i .
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The Game Theory Model

Each NGO i seeks to maximize its utility with the utility
corresponding to the financial gains associated with the visibility
through media of the relief item flow allocations, βi

∑n
j=1 Pj(q),

plus the utility associated with the supply chain aspect of delivery
of the relief items, ωi

∑n
j=1 γijqij −

∑n
j=1 cij(qij).

The optimization problem faced by NGO i ; i = 1, . . . ,m, is

Maximize βi

n∑
j=1

Pj(q) + ωi

n∑
j=1

γijqij −
n∑

j=1

cij(qij) (5)

subject to constraints (1) and (2).
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The Game Theory Model

We also have that, at each demand point j ; j = 1, . . . , n:

m∑
i=1

qij ≥ d j , (6)

and
m∑

i=1

qij ≤ d̄j , (7)

where d j denotes a lower bound for the amount of the relief items

needed at demand point j and d̄j denotes an upper bound on the
amount of the relief items needed post the disaster at demand
point j .
We assume that

m∑
i=1

si ≥
n∑

j=1

d j , (8)

so that the supply resources of the NGOs are sufficient to meet the
minimum financial resource needs.
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The Game Theory Model

Each NGO i ; i = 1, . . . ,m, seeks to determine its optimal vector of
relief items or strategies, q∗i , that maximizes objective function (5),
subject to constraints (1), (2), and (6), (7).

Because of the structure of the objective functions of the NGOs,
based on a result of Li and Lin (2013), rather than having to
formulate the GNE problem as a quasivariational inequality, we
have an optimization reformulation.
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The Game Theory Model

Theorem: Optimization Formulation of the Generalized Nash
Equilibrium Model of Financial Flow of Funds

The above Generalized Nash Equilibrium problem, with each
NGO’s objective function (5) rewritten as:

Minimize − βi

n∑
j=1

Pj(q)− ωi

n∑
j=1

γijqij +
n∑

j=1

cij(qij) (9)

and subject to constraints (1) and (2), with common constraints
(6) and (7), is equivalent to the solution of the following
optimization problem:

Minimize −
n∑

j=1

Pj(q)−
m∑

i=1

n∑
j=1

ωiγij

βi
qij +

m∑
i=1

n∑
j=1

1

βi
cij(qij) (10)

subject to constraints: (1), (2), (6), and (7).
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The Game Theory Model

We associate Lagrange multipliers λ∗k , ∀k, with the supply
constraints; Lagrange multipliers: λ1

l
∗
, ∀l , for the lower bound

demand constraints, and Lagrange multipliers: λ2
l
∗
, ∀k, for the

upper bound demand constraints, and we group these multipliers,
respectively, into the vectors: λ∗ ∈ Rm

+ , λ1∗ ∈ Rn
+, and λ2∗ ∈ Rn

+.
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The Game Theory Model

The Variational Inequality (VI) Formulation

The solution to the optimization problem: (q∗, λ∗, λ1∗, λ2∗) ∈
Rmn+m+2n

+ coincides with the solution to the VI:

m∑
k=1

n∑
l=1

− n∑
j=1

(
∂Pj(q

∗)

∂qkl
)− ωkγkl

βk
+

1

βk

∂ckl(q
∗
kl)

∂qkl
+ λ∗k − λ1

l
∗
+ λ2

l
∗


× [qkl − q∗kl ]

+
m∑

k=1

(sk −
n∑

l=1

q∗kl)× (λk − λ∗k) +
n∑

l=1

(
n∑

k=1

q∗kl − d l)× (λl − λ1
l
∗
)

+
n∑

l=1

(d̄l −
m∑

k=1

q∗kl)× (λ2
l − λ2

l
∗
) ≥ 0, ∀(q, λ, λ1, λ2) ∈ Rmn+m+2n

+ .

(11)
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Algorithms
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Algorithms

There are many effective algorithms to compute solutions to
VI problems, and convergence follows under suitable
assumptions.

Typically, a VI is approximated as a series of optimization
problems, and, when it comes to network problems, one should
apply optimization algorithms that exploit the network structure.

In 1983, Dafermos, in a paper in Mathematical Programming,
proposed a general iterative scheme, which induces algorithms such
as the projection and relaxation methods.

The algorithm of Korpelevich (1977) only requires monotonicity of
F (X ) and Lipschitz continuity for convergence, provided that a
solution exists.
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Algorithms

The general iterative scheme of Dupuis and Nagurney (1993), in
turn, estimates the solution X ∗ ∈ K to the VI

〈F (X ∗),X − X ∗〉 ≥ 0, ∀X ∈ K

as follows for an iteration τ :

X τ+1 = PK(X τ − aτFτ (X
τ )),

where Fτ (·) are approximations to F (·) and PK is the projection on
the feasible set.

In particular, if Fτ = F , then the Euler method is induced.

For convergence, the sequence {aτ} must satisfy:
∑∞

τ=0 aτ = ∞,
aτ > 0, aτ → 0, as τ →∞.
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The Algorithm

Explicit Formulae for the Euler Method Applied to the Model

We have the following closed form expression for the product flows
k = 1, . . . ,m; l = 1, . . . , n, at each iteration:

qτ+1
kl = max

{0, {qτ
kl+aτ (

n∑
j=1

(
∂Pj(q

τ )

∂qkl
)+

ωkγkl

βkl
− 1

βk

∂ckl(q
τ
kl)

∂qkl
−λτ

k+λ1
l
τ−λ2

l
τ
)}},

the following closed form expressions for the Lagrange multipliers
associated with the supply constraints, respectively, for
k = 1, . . . ,m:

λτ+1
k = max{0, λτ

k + aτ (−sk +
n∑

l=1

qτ
kl)}.
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The Algorithm

The following closed form expressions are for the Lagrange
multipliers associated with the lower bound demand constraints,
respectively, for l = 1, . . . , n:

λ1
l
τ+1

= max{0, λ1
l
τ

+ aτ (−
n∑

k=1

qτ
kl + d l)}.

The following closed form expressions are for the Lagrange
multipliers associated with the upper bound demand constraints,
respectively, for l = 1, . . . , n:

λ2
l
τ+1

= max{0, λ2
l
τ

+ aτ (−d̄l +
m∑

k=1

qτ
kl)}.
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Hurricane Katrina Case Study
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Hurricane Katrina Case Study

Making landfall in August of 2005, Katrina caused extensive
damage to property and infrastructure, left 450,000 people
homeless, and took 1,833 lives in Florida, Texas, Mississippi,
Alabama, and Louisiana (Louisiana Geographic Information
Center (2005)).

Given the hurricane’s trajectory, most of the damage was
concentrated in Louisiana and Mississippi. In fact, 63% of all
insurance claims were in Louisiana, a trend that is also reflected in
FEMA’s post-hurricane damage assessment of the region (FEMA
(2006)).
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Hurricane Katrina Case Study

The total damage estimates range from $105 billion (Louisiana
Geographic Information Center (2005)) to $150 billion (White
(2015)), making Hurricane Katrina not only a far-reaching and
costly disaster, but also a very challenging environment for
providing humanitarian assistance.

We consider 3 NGOs: the Red Cross, the Salvation Army, and
Others and 10 Parishes in Louisiana.
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Hurricane Katrina Case Study
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Figure: Hurricane Katrina Relief Network Structure
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Hurricane Katrina Case Study

The structure of the Pj functions is as follows:

Pj(q) = kj

√√√√ m∑
i=1

qij .

The weights are:
ω1 = ω2 = ω3 = 1,

with γij = 950 for i = 1, 2, 3 and j = 1, . . . , 10.
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Hurricane Katrina Case Study

Hurricane Katrina Demand Point Parameters

Parish Node j kj d j d̄j pj (in %)

St. Charles 1 8 16.45 50.57 2.4
Terrebonne 2 16 752.26 883.82 6.7
Assumption 3 7 106.36 139.24 1.9
Jefferson 4 29 742.86 1,254.89 19.5
Lafourche 5 6 525.53 653.82 1.7
Orleans 6 42 1,303.99 1,906.80 55.9
Plaquemines 7 30 33.28 62.57 57.5
St. Barnard 8 42 133.61 212.43 78.4
St. James 9 9 127.53 166.39 1.2
St. John the
Baptist

10 7 19.05 52.59 6.7

Table: Demand Point Data for the Generalized Nash Equilibrium
Problem for Hurricane Katrina
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Hurricane Katrina Case Study

We then estimated the cost of providing aid to the Parishes as a
function of the total damage in the area and the supply chain
efficiency of each NGO. We assume that these costs follow the
structures observed by Van Wassenhove (2006) and randomly
generate a number based on his research with a mean of p̂ = .8

and standard deviation of s =
√

.8(.2)
3 .

We denote the corresponding coefficients by πi . Thus, each NGO i ;
i = 1, 2, 3, incurs costs according the the following functional form:

cij(qij) =
(
πiqij +

1

1− pj

)2
.
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Hurricane Katrina Case Study

Data Parameters for NGOs Providing Aid

NGO i πi γij βi si
Others 1 .82 950 .355 1,418
Red Cross 2 .83 950 .55 2,200
Salvation Army 3 .81 950 .095 382

Table: NGO Data for the Generalized Nash Equilibrium Problem for
Hurricane Katrina
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Hurricane Katrina Case Study

Generalized Nash Equilibrium Product Flows (in Millions of Aid Units)

Demand Point Others Red Cross Salvation Army

St. Charles 17.48 28.89 4.192
Terrebonne 267.023 411.67 73.57
Assumption 49.02 77.26 12.97
Jefferson 263.69 406.68 72.45
Lafourche 186.39 287.96 51.18
Orleans 463.33 713.56 127.1
Plaquemines 21.89 36.54 4.23
St. Barnard 72.31 115.39 16.22
St. James 58.67 92.06 15.66
St. John the
Baptist

18.2 29.99 4.40

Table: Flows to Demand Points under Generalized Nash Equilibrium
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Hurricane Katrina Case Study

The total utility obtained through the above flows for the
Generalized Nash Equilibrium for Hurricane Katrina is 9, 257, 899,
with the Red Cross capturing 3,022,705, the Salvation Army
3,600,442.54, and Others 2,590,973.

In addition, we have that the Red Cross, the Salvation Army, and
Others receive 2,200.24, 1418.01, and 382.31 million in donations,
respectively.

The relief item flows meet at least the lower bound, even if doing
so is very expensive due to the damages to the infrastructure in the
region.
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Hurricane Katrina Case Study

Furthermore, the above flow pattern behaves in a way that, after
the minimum requirements are met, any additional supplies are
allocated in the most efficient way. For example, only the
minimum requirements are met in New Orleans Parish, while the
upper bound is met for St. James Parish.
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The Nash Equilibrium Solution

If we remove the shared constraints, we obtain a Nash Equilibrium
solution, and we can compare the outcomes of the humanitarian
relief efforts for Hurricane Katrina under the Generalized Nash
Equilibrium concept and that under the Nash Equilibrium concept.
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The Nash Equilibrium Solution

Nash Equilibrium Product Flows

Demand Point Others Red Cross Salvation Army

St. Charles 142.51 220.66 38.97
Terrebonne 142.50 220.68 38.93
Assumption 142.51 220.66 38.98
Jefferson 142.38 220.61 38.74
Lafourche 142.50 220.65 38.98
Orleans 141.21 219.59 37.498
Plaquemines 141.032 219.28 37.37
St. Barnard 138.34 216.66 34.59
St. James 142.51 220.65 38.58
St. John the
Baptist

145.51 220.66 38.98

Table: Flows to Demand Points under Nash Equilibrium
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The Nash Equilibrium Solution

Under the Nash Equilibrium, the NGOs obtain a higher utility than
under the Generalized Nash Equilibrium. Specifically, of the total
utility 10, 346, 005.44, 2,804,650 units are received by the Red
Cross, 5,198,685 by the Salvation Army, and 3,218,505 are
captured by all other NGOs.

Under this product flow pattern, there are total donations of
3,760.73, of which 2,068.4 are donated to the Red Cross, 357.27
to the Salvation Army, and 1,355 to the other players.
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The Nash Equilibrium Solution

It is clear that there is a large contrast between the flow
patterns under the Generalized Nash and Nash Equilibria.
For example, the Nash Equilibrium flow pattern results in
about $500 million less in donations.

While this has strong implications about how collaboration
between NGOs can be beneficial for their fundraising efforts,
the differences in the general flow pattern highlights a much
stronger point.
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Additional Insights

Under the Nash Equilibrium, NGOs successfully maximize their
utility. Overall, the Nash Equilibrium solution leads to an increase
of utility of roughly 21% when compared to the flow patterns
under the Generalized Nash Equilibrium.

But they do so at the expense of those in need. In the Nash
Equilibrium, each NGO chooses to supply relief items such that
costs can be minimized. On the surface, this might be a good
thing, but recall that, given the nature of disasters, it is usually
more expensive to provide aid to demand points with the greatest
needs.
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Additional Insights

With this in mind, one can expect oversupply to the demand
points with lower demand levels, and undersupply to the most
affected under a purely competitive scheme. This behavior can be
seen explicitly in the results summarized in the Tables.

For example, St. Charles Parish receives roughly 795% of its
upper demand, while Orleans Parish only receives about
30.5% of its minimum requirements. That means that much
of the 21% in ‘increased’ utility is in the form of waste.

In contrast, the flows under the Generalized Nash Equilibrium
guarantee that minimum requirements will be met and that there
will be no waste; that is to say, as long as there is a coordinating
authority that can enforce the upper and lower bound constraints,
the humanitarian relief flow patterns under this bounded
competition will be significantly better than under untethered
competition.
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An Extension of the Model

At the Dynamics of Disasters conference in Greece, July 5-9, 2017,
we presented the paper: “A Variational Equilibrium Network
Framework for Humanitarian Organizations in Disaster Relief:
Effective Product Delivery Under Competition for Financial
Funds,” A. Nagurney, P. Daniele, E. Alvarez Flores, and V. Caruso,
published in the Dynamics of Disasters: Algorithmic Approaches
and Applications Springer volume.
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The Extended Model

The extended model captures competition for logistic services, has
more general cost functions as well as financial donation functions
and uses general altruism benefit functions, where the costs
associated with logistics are now given by:

cij = cij(q), i = 1, . . . ,m; j = 1, . . . n.

Each NGO i ; i = 1, . . . ,m, based on the media attention and the
visibility of NGOs at demand point j ; j = 1, . . . , n, receives
financial funds from donors given by the expression

n∑
j=1

Pij(q),

where Pij(q) denotes the financial funds in donation dollars given
to NGO i due to visibility of NGO i at location j . We introduce an
altruism/benefit function Bi ; i = 1, . . . ,m, such that

Bi = Bi (q).
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Extension of the Model
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Figure: The Network Structure of the Extended Game Theory Model

Professor Anna Nagurney EURO - Tutorial on Game Theory and Variational Inequalities



The Extended Model

The utility function of NGO i ; i = 1, . . . ,m, is now:

Maximize Ui (q) =
n∑

j=1

Pij(q) + ωiBi (q)−
n∑

j=1

cij(q)

with the same constraints imposed as the original Generalized
Nash Equilibrium model for post-disaster relief.

In the new model, we can no longer reformulate the Generalized
Nash Equilibrium as an optimization problem but do so as a
Variational Equilibrium and, hence, we can apply variational
inequality theory.
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The Extended Model

We define the feasible set Ki for each NGO i as:

Ki ≡ {qi | (1) and (2) hold}

and we let K ≡
m∏

i=1

Ki .

In addition, we define the feasible set S consisting of the shared
constraints as:

S ≡ {q| (6) and (7) hold}.

Observe that now not only does the utility of each NGO
depend on the strategies, that is, the relief item flows, of the
other NGOs, but so does the feasible set because of the
common constraints. Hence, the above game theory model,
in which the NGOs compete noncooperatively is a
Generalized Nash Equilibrium problem.
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The Extended Model

We make use of the following:

Definition: Disaster Relief Generalized Nash Equilibrium

A relief item flow pattern q∗ ∈ K =
m∏

i=1

Ki , q∗ ∈ S, constitutes a

disaster relief Generalized Nash Equilibrium if for each NGO i;
i = 1, . . . ,m:

Ui (q
∗
i , q̂

∗
i ) ≥ Ui (qi , q̂

∗
i ), ∀qi ∈ Ki ,∀q ∈ S,

where q̂∗i ≡ (q∗1 , . . . , q
∗
i−1, q

∗
i+1, . . . , q

∗
m).

An equilibrium is established if no NGO can unilaterally improve
upon its utility by changing its relief item flows in the disaster relief
network, given the relief item flow decisions of the other NGOs,
and subject to the constraints. Both K and S are convex sets.
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Nash Equilibrium

Nash Equilibrium

If there are no coupling, that is, shared, constraints in the above
model, then q and q∗ in the Definition need only lie in the set K ,
and, under the assumption of concavity of the utility functions and
that they are continuously differentiable, we know that (cf. Gabay
and Moulin (1980) and Nagurney (1999)) the solution to what
would then be a Nash equilibrium problem (see Nash (1950,
1951)) would coincide with the solution of the following variational
inequality problem: determine q∗ ∈ K , such that

−
m∑

i=1

〈∇qi Ui (q
∗), qi − q∗i 〉 ≥ 0, ∀q ∈ K ,

where 〈·, ·〉 denotes the inner product in the corresponding
Euclidean space and ∇qi Ui (q) denotes the gradient of Ui (q) with
respect to qi .
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Variational Equilibrium

As emphasized in Nagurney, Yu, and Besik (2017), a refinement of
the Generalized Nash Equilibrium is what is known as a variational
equilibrium and it is a specific type of GNE (see Kulkarni and
Shabhang (2012)).

Definition: Variational Equilibrium

A strategy vector q∗ is said to be a variational equilibrium of the
above Generalized Nash Equilibrium game if q∗ ∈ K , q∗ ∈ S is a
solution of the variational inequality:

−
m∑

i=1

〈∇qi Ui (q
∗), qi − q∗i 〉 ≥ 0, ∀q ∈ K ,∀q ∈ S.
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The Extended Model

In a GNE defined by a variational equilibrium, the Lagrange
multipliers associated with the common/shared/coupling
constraints are all the same. This feature provides a fairness
interpretation and is reasonable from an economic
standpoint.

By utilizing a variational equilibrium, we can take advantage
of the well-developed theory of variational inequalities,
including algorithms (cf. Nagurney (1999) and the references
therein), which are in a more advanced state of development
and application than algorithms for quasivariational inequality
problems.
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The Extended Model

We now expand the terms in the variational inequality for the
GNE. We have that the previous VI is equivalent to the variational
inequality: determine q∗ ∈ K , q∗ ∈ S, such that

m∑
i=1

n∑
j=1

[
n∑

k=1

∂cik(q∗)

∂qij
−

n∑
k=1

∂Pik(q∗)

∂qij
− ωi

∂Bi (q
∗)

∂qij

]

×
[
qij − q∗ij

]
≥ 0, ∀q ∈ K ,∀q ∈ S.
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The Extended Model

An Alternative Variational Inequality Formulation of the
Generalized Nash Equilibrium for the Extended Model

Find (q∗, δ∗, σ∗, ε∗) ∈ Rmn+m+2n
+ :

m∑
i=1

n∑
j=1

[
n∑

k=1

∂cik(q∗)

∂qij
−

n∑
k=1

∂Pik(q∗)

∂qij
− ωi

∂Bi (q
∗)

∂qij
+ δ∗i − σ∗j + ε∗j

]

×(qij − q∗ij) +
m∑

i=1

si −
n∑

j=1

q∗ij

× (δi − δ∗i )

+
n∑

j=1

(
m∑

i=1

q∗ij − d j

)
×
(
σj − σ∗j

)
+

n∑
j=1

(
d j −

m∑
i=1

q∗ij

)

×
(
εj − ε∗j

)
≥ 0, ∀q ∈ Rmn

+ ,∀δ ∈ Rm
+ ,∀σ ∈ Rn

+,∀ε ∈ Rn
+.
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The Case Study - Tornadoes Strike Massachusetts

Our case study is inspired by a disaster consisting of a series of
tornadoes that hit western Massachusetts on June 1, 2011. The
largest tornado was measured at EF3. It was the worst tornado
outbreak in the area in a century (see Flynn (2011)). A wide swath
from western to central MA of about 39 miles was impacted.

The tornado killed 4 persons, injured more than 200 persons,
damaged or destroyed 1,500 homes, left over 350 people homeless
in Springfield’s MassMutual Center arena, left 50,000 customers
without power, and brought down thousands of trees.
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The Case Study - Tornadoes Strike Massachusetts

FEMA estimated that 1,435 residences were impacted with the
following breakdowns: 319 destroyed, 593 sustaining major
damage, 273 sustaining minor damage, and 250 otherwise affected.
FEMA estimated that the primary impact was damage to buildings
and equipment with a cost estimate of $24,782,299.

Total damage estimates from the storm exceeded $140 million, the
majority from the destruction of homes and businesses.

Especially impacted were the city of Springfield and the towns of
Monson and Brimfield. It has been estimated that, in the
aftermath, the Red Cross served about 11,800 meals and the
Salvation Army about 20,000 meals (cf. Western Massachusetts
Regional Homeland Security Advisory Council (2012)).
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We consider the American Red Cross and the Salvation Army as
the NGOs, who provide the meals, which are the flows. The
demand points are: Springfield, Monson, and Brimfield.

We find in multiple examples comprising our case study of
Massachusetts tornadoes that the NGOs garner greater
financial funds through the Generalized Nash Equilibrium
solution, rather than the Nash equilibrium one. Moreover,
the needs of the victims are met under the Generalized Nash
Equilibrium solution

.
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Writing OpEds on the Topic
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Additional Research on Game Theory and Disaster Relief

“A Multitiered Supply Chain Network Equilibrium Model for
Disaster Relief with Capacitated Freight Service Provision,” A.
Nagurney (2018), Dynamics of Disasters: Algorithmic Approaches
and Applications Springer volume.
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Figure: The Multitiered Disaster Relief Humanitarian Organization and
Freight Service Provision Supply Chain Network
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Supply Chain Networks from Healthcare to Food
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A Multidisciplinary Approach

In our research on perishable and time-sensitive product supply
chains, we utilize results from physics, chemistry, biology, and
medicine in order to capture the perishability of various products
over time from healthcare products such as blood, medical
nucleotides, and pharmaceuticals to food.
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Blood Supply Chains for the Red Cross

A. Nagurney, A. H. Masoumi, and M. Yu, “Supply Chain Network
Operations Management of a Blood Banking System with Cost
and Risk Minimization,” Computational Management Science 9(2)
(2012), pp 205-231.
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Blood Supply Chains for the Red Cross

The American Red Cross is the
major supplier of blood products
to hospitals and medical centers
satisfying about 40% of the
demand for blood components
nationally.
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Blood Supply Chains for the Red Cross

The shelf life of platelets is 5 days and of red blood cells is 42.

Over 39,000 donations are needed everyday in the US.

Blood is a perishable product that cannot be manufactured
but must be donated.

As of February 1, 2018, the American Red Cross was facing a
critical emergency need for blood and platelet donors.
Severe winter weather forced the cancellation of hundreds of
blood drives, resulting in nearly tens of thousands donations
uncollected. In addition, flu in the US was close to epidemic
levels.

There is increasing competition among blood service
organizations for donors and, overall, there has been a
decrease in demand because of improved medical procedures.
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Supply Chain Network Topology for a Regionalized Blood Bankd ARC Regional Division1
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Blood Supply Chains for the Red Cross

Our blood supply chain network optimization model for the
management of the procurement, testing and processing, and
distribution has such novel features as:

It captures perishability of this life-saving product through
the use of arc multipliers;

It contains discarding costs associated with waste/disposal;

It handles uncertainty associated with demand points;

It assesses costs associated with shortages/surpluses at
the demand points, and

It quantifies the supply-side risk associated with
procurement.
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Blood Supply Chains

In the paper, “Mergers and Acquisitions in Blood Banking Systems:
A Supply Chain Network Approach,” A.H. Masoumi, M. Yu, and
A. Nagurney, International Journal of Production Economics 193
(2017), pp 406-421, we constructed network models to assess
possible synergies associated with mergers and acquisitions among
blood service organizations, taking into account capacities and
frequencies of various supply chain network link activities.
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Blood Supply Chain Competition

A. Nagurney and P. Dutta, “Competition for Blood Donations,”
Omega 212 (2019), pp 103-114.

A. Nagurney and P. Dutta, “Supply Chain Network Competition
Among Blood Service Organizations: A Generalized Nash
Equilibrium Framework,” Annals of Operations Research 275(2)
(2019), pp 551-586.
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Blood Supply Chain Competition
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Medical Nuclear Supply Chains

We developed a medical nuclear supply chain network design
model which captures the decay of the radioisotope
molybdenum.

“Medical Nuclear Supply Chain Design: A Tractable Network
Model and Computational Approach,” A. Nagurney and L.S.
Nagurney, International Journal of Production Economics 140(2)
(2012), pp 865-874.
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Medical Nuclear Supply Chains

Medical nuclear supply chains are essential supply chains in
healthcare and provide the conduits for products used in
nuclear medical imaging, which is routinely utilized by
physicians for diagnostic analysis for both cancer and cardiac
problems.

Such supply chains have unique features and characteristics due to
the products’ time-sensitivity, along with their hazardous nature.

Salient Features:

complexity

economic aspects

underlying physics of radioactive decay

importance of considering both waste management and risk
management.
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Medical Nuclear Supply Chains

Over 10,000 hospitals in the world use radioisotopes (World
Nuclear Association (2018)).

Technetium, 99mTc, which is a decay product of Molybdenum-99,
99Mo, is the most commonly used medical radioisotope, used in
more than 80% of the radioisotope injections, with more than 30
million procedures worldwide each year.

The half-life of Molybdenum-99 is 66 hours.

Each day, more than 40,000 nuclear medical procedures are
performed in the United States using Technetium-99m.
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Medical Nuclear Supply Chains

For over two decades, all of the Molybdenum necessary for
US-based nuclear medical diagnostic procedures has come from
foreign sources.

The majority of the reactors are between 40 and 50 years old.
Several of the reactors currently used are due to be retired by the
end of this decade (Seeverens (2010) and OECD Nuclear Energy
Agency (2010a)), Ottawa’s was retired in 2016.

Professor Anna Nagurney EURO - Tutorial on Game Theory and Variational Inequalities



h0
?

���
���

HHH
HHjhR1

hRi· · · · · · hRnRReactors

?

���
��� ?

HHH
HHj?

���
���

HHH
HHj

Radioisotope
Production

TransportationhC 1
1

h· · ·C 1
j · · · hC 1

nC

? ? ?

Processing
Facilities

99Mo Extraction
and PurificationhC 2

1
hC 2

j· · · C 2
nC

· · · h
?

H
HHHHj

XXXXXXXXXXz?

�
�����

H
HHHHj?

�
�����

����������9R j
TransportationhG 1

1 · · ·G 1
k

h · · · hG 1
nG

? ? ?
Generator
ManufacturinghG 2

1 · · ·G 2
k

h · · · hG 2
nG

?

HHH
HHj

XXXXXXXXXXz?

���
���

HHH
HHj?

���
���

����������9R j
TransportationhH1

1 · · ·H1
k

h · · · hH1
nH

Hospitals or
Imaging Facilities

Generator
Manufacturing Facilities

? ? ?

99mTc
ElucitationhH1

2 · · ·H2
k

h · · · hH2
nHPatient Demand Points

The Medical Nuclear Supply Chain Network Topology
Professor Anna Nagurney EURO - Tutorial on Game Theory and Variational Inequalities



Arc Multipliers

Because of the exponential decay of molybdenum, we have that
the quantity of the radioisotope:

N(t) = N0e
−λt

so that an arc multiplier on a link a that takes ta hours of time
corresponds to:

αa = e−
ln2
66.7

ta .
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Food Supply Chains

Food is something anyone can relate to.
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Fascinating Facts About Food Perishability

Source: Food and Agriculture Organization of the United Nations 2011Professor Anna Nagurney EURO - Tutorial on Game Theory and Variational Inequalities



Fascinating Facts About Food Perishability

Source: Food and Agriculture Organization of the United Nations 2011
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Wasting of Food

Source: Food and Agriculture Organization of the United Nations 2018
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Fresh Produce Food Supply Chains

Our fresh produce supply chain network oligopoly model:

1 captures the deterioration of fresh food along the entire
supply chain from a network perspective;

2 handles the time decay through the introduction of arc
multipliers;

3 formulates oligopolistic competition with product
differentiation;

4 includes the disposal of the spoiled food products, along with
the associated costs;

5 allows for the assessment of alternative technologies involved
in each supply chain activity.

Reference: “Competitive Food Supply Chain Networks with
Application to Fresh Produce,” M. Yu and A. Nagurney, European
Journal of Operational Research 224(2) (2013), pp 273-282.
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Fresh Produce Food Supply Chains

iR1 · · ·RnR Demand MarketsiH
HH

HHj

PPPPPPPq?

�������) ?

��
�

���· · · · · ·· · · · · ·· · · · · ·· · · · · ·

D1
1,2

i · · · iD1
n1

D ,2D
I
1,2

i · · · iD I
nI

D ,2

?
. . .

?
. . .

?
. . .

?
. . .· · ·

D1
1,1

i · · · iD1
n1

D ,1D
I
1,1

i · · · iD I
nI

D ,1

?

HH
H
HHj?

��
�

��� ?

HH
H
HHj?

��
�

���
· · · · · · · · · · · · · · · · · ·· · ·

C 1
1,2

i · · · iC 1
n1

C ,2C
I
1,2

i · · · iC I
nI

C ,2

?
. . .

?
. . .

?
. . .

?
. . .· · ·

C 1
1,1

i · · · iC 1
n1

C ,1C
I
1,1

i · · · iC I
nI

C ,1

?

HHH
HHj?

���
��� ?

HHH
HHj?

���
���

· · · · · · · · · · · · · · · · · ·· · ·

Production

Shipment

Processing

Shipment

Storage

Distribution

M1
1

i · · · iM1
n1

M
M I

1
i · · · iM I

nI
M

�
��	

@
@@R

�
��	

@
@@R

· · · · · · · · · · · ·
i1 iI· · ·

Food Firm 1 Food Firm I

The Fresh Produce Supply Chain Network Topology
Professor Anna Nagurney EURO - Tutorial on Game Theory and Variational Inequalities



Summary and Conclusions
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Summary and Conclusions

In this part of the tutorial, a game theory network model for
post-disaster relief was presented, which integrates financial
flows and logistical flows, with NGOs competing for
financial funds from donors while also seeking to deliver the
needed supplies.

The model, because of common constraints on the demand
side, in order to ensure that the needed supplies are delivered
in the correct amounts without an oversupply, is a
Generalized Nash Equilibrium (GNE) model, which can be
challenging to solve.

Because of the structure of the functions comprising the
objective functions of the NGOs, the governing GNE
conditions can be reformulated as an optimization problem.
We utilize then a VI construct for effective and efficient
computational purposes when we consider a case study on
Hurricane Katrina.
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Summary and Conclusions

An extension of the model is then given, which makes use of
the concept of a Variational Equilibrium and results from a
case study based on tornadoes in Massachusetts outline.

The results show that, by doing better for a victims’
perspective, the NGOs can also gain financially.

Additional recent related game theory models in the nonprofit
sector for both disaster relief and blood supply chains are
also highlighted, along with several in healthcare and food.
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Part 3: Cybercrime, Financial Networks,
Cybersecurity, and a Future Internet

Outline

• Cybercrime

• A Predictive Network Economic Model of Cybercrime

• Cybersecurity Investments

• Nash Equilibrium, Nash Bargaining, System-Optimization

• Network Vulnerability

• A Retail Case Study

• Envisioning a New Kind of Internet – ChoiceNet

• Summary and Conclusions.
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Cybercrime
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How I Became Interested in Cybersecurity

One of my books, written with a UMass Amherst PhD alum,
now Professor Qiang, was “hacked” and digital copies of it
posted on websites around the globe.

In a sense, this may be viewed as a compliment since clearly
someone had determined that it has some sort of value.
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How I Became Interested in Cybersecurity

The publisher John Wiley & Sons was notified and lawyers
got involved but how do you contact and then influence
those responsible for postings on rather anonymous websites?

About the same time news about cyberattacks was getting
prominent attention in the media and there were those
interested in working with us on related research on
cybersecurity.
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The Internet has transformed the
ways in which individuals, groups,
organizations communicate, obtain
information, access entertainment, and
conduct their economic and social
activities.

In 2012, there were over 2.4
billion users. In 2019 more than
half of the world’s population is
using the Internet.
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Some Recent Major Cyberattacks

• Equifax: In September, 2017, it was revealed that names, SSNs,
birthdates, drivers’ license information, and credit card numbers on about
143 million U.S. consumers was compromised in a cybersecurity breach
that began in mid-May and was discovered only on July 29, 2017
(Bloomberg (2017)). In late February 2018, Equifax disclosed that it had
discovered that an additional 2.4 million U.S. consumers were affected by
the cyberattack (Reuters (2018)).

• “WannaCry” ransomware: Began in mid-May 2017. It crippled

National Health Services (NHS) hospitals in the UK, hobbling emergency

rooms, delaying vital medical procedures, etc. (WIRED (2017)).
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Some Recent Major Cyberattacks

• Banks: The Carbanak group, also known as Anunak, was exposed in
2015 after supposedly stealing upwards of $1 billion from more than 100
banks across 30 countries (The New York Times (2015)).

• US Office of Personnel Management: In June 2015, OPM
discovered that sensitive information, including SSNs of 21.5 million
federal employees was stolen (WIRED (2016)).

•Sony Pictures Entertainment The attack on Sony in 2014 destroyed
data on more than 3,000 computers and disclosed prerelease films and
embarrassing emails of executives (Fortune (2015)).

•Target, Home Depot, Michaels Stores, Staples, and eBay: These
were breached in 2014 - card data and personal information of millions of
customers were stolen (The New York Times (2015)).
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Cost of Cybercrime

• Cybercrimes are costly for organizations. According to
Forbes (2017), cybercrime will cost the world about $6 trillion per
year on average through 2021. All industries fall victim to
cybercrime, but to different degrees. Average annual costs per
company caused by global cybercrime as of 2017 by sector
(in million US$) (Ponemon(2017))
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Changing Attacker Profiles

McAfee Labs Threats Report, August 2015
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Cybercrime

Clearly, hackers go where there is money.
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The most costly cybercrimes (58% annually) are those caused by denial of

service, malicious insider and web-based attacks. Mitigation may require

enabling technologies, intrusion prevention systems, applications security

testing solutions and enterprise solutions.

Source: Sarnowski for Booz Allen and Hamilton
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Putting Cybercrime in Context

Source: The Economic Impact of Cybercrime and Cyber Espionage,

Center for Strategic and International Studies, July 2013, sponsored by

McAfee.

Professor Anna Nagurney EURO - Tutorial on Game Theory and Variational Inequalities



Cyberattacks

The median number of days that attackers were present on a

victim’s network before being discovered dropped to 146 days in

2015 from 205 days in 2014 – a trend that shows positive

improvement since measuring 416 days back in 2012. Breaches

still often go undetected for years, according to Mandiant.
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Cybercrime and Financial Institutions

According to a recent survey cybercrime is placing heavy
strains on the global financial sector, with cybercrime now
the second most commonly reported economic crime
affecting financial services firms.

Cybercrime accounted for 38% of all economic crimes in the
financial sector, as compared to an average of 16% across all
other industries.

Cyberattacks are intrusive and economically costly. In
addition, they may adversely affect a company’s most
valuable asset - its reputation.
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It’s About Risk Management

Source: Framework for Improving Critical Infrastructure Cybersecurity,

National Institute of Standards and Technology (NIST), February 12,

2014
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Which Nodes and Links Really Matter?
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Empirical Evidence: Jan. 1994 - Dec. 1996 - Connectivity,
Vulnerability

Granger Causality Results: Green Broker, Red Hedge Fund, Black
Insurer, Blue Bank Source: Billio, Getmansky, Lo, and Pelizzon (2011)
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Empirical Evidence: Jan. 2006 - Dec. 2008 - Connectivity,
Vulnerability

Granger Causality Results: Green Broker, Red Hedge Fund,
Black Insurer, Blue Bank Source: Billio, Getmansky, Lo, and Pelizzon (2011)
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The Financial Network Model

Demand Markets: Real Estate, Household, and Business Loans, etc.
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Figure: The Structure of the Financial Network with Intermediation

A. Nagurney and K. Ke (2003), “Financial Networks with Electronic

Transactions: Modeling, Analysis, and Computations,” Quantitative

Finance 3, pp 71-87.
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The Nagurney and Qiang (N-Q) Performance Measure

Definition: A Unified Network Performance Measure

The network performance/efficiency measure, E(G , d), for a given
network topology G and the equilibrium (or fixed) demand vector
d, is:

E = E(G , d) =

∑
w∈W

dw
λw

nW
,

where recall that nW is the number of O/D pairs in the network,
and dw and λw denote, for simplicity, the equilibrium (or fixed)
demand and the equilibrium disutility for O/D pair w, respectively.

A. Nagurney and Q. Qiang (2008), “A Network Efficiency Measure with

Application to Critical Infrastructure Networks,” Journal of Global

Optimization 40, pp 261-275.

Professor Anna Nagurney EURO - Tutorial on Game Theory and Variational Inequalities



The Importance of Nodes and Links

Definition: Importance of a Network Component

The importance of a network component g ∈ G, I (g), is measured
by the relative network efficiency drop after g is removed from the
network:

I (g) =
4E
E

=
E(G , d)− E(G − g , d)

E(G , d)

where G − g is the resulting network after component g is
removed from network G.
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Approach to Identifying the Importance of Network
Components

The elimination of a link is treated in the N-Q network
efficiency measure by removing that link while the removal of
a node is managed by removing the links entering and
exiting that node.

In the case that the removal results in no path connecting an O/D
pair, we simply assign the demand for that O/D pair to an abstract
path with a cost of infinity.

The N-Q measure is well-defined even in the case of
disconnected networks.
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The Ranking of Links in the Braess Network

Table: Link Results for the Braess Network

N-Q Measure L-M Measure
Importance Importance Importance Importance

Link Value Ranking Value Ranking

a .2069 1 .1056 3

b .1794 2 .2153 2

c .1794 2 .2153 2

d .2069 1 .1056 3

e -.1084 3 .3616 1

N-Q (Nagurney-Qiang); L-M (Latora-Marchiori)
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The Ranking of Nodes in the Braess Network

Table: Nodal Results for the Braess Network

N-Q Measure L-M Measure
Importance Importance Importance Importance

Node Value Ranking Value Ranking

1 1.0000 1 — —

2 .2069 2 .7635 1

3 .2069 2 .7635 1

4 1.0000 1 — —
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Advantages of the N-Q Network Efficiency Measure

• The measure captures demands, flows, costs, and behavior of
users, in addition to network topology.

• The resulting importance definition of network components is
applicable and well-defined even in the case of disconnected
networks.

• It can be used to identify the importance (and ranking) of
either nodes, or links, or both.

• It can be applied to assess the efficiency/performance of a
wide range of network systems, including financial systems
and supply chains under risk and uncertainty.

• It is applicable also to elastic demand networks.

• It is applicable to dynamic networks, including the Internet.
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Financial Networks and Game Theory
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A Predictive Network Economic Model of Cybercrime
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Network Economics of Cybercrime

We lay the foundation for the development of network
economics based models for cyberccrime in financial services.

Financial services firms as well as hackers are economic
agents.

Our view is that financial firms produce/possess
commodities (or products) that hackers (criminals) seek
to obtain.

We assume that the firms (as well as the hackers) can be
located in different regions of a country or in different
countries. Financial service firms may also be interpreted as
prey and the hackers as predators.
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Network Economics of Cybercrime

Commodities or products that the hackers seek to acquire
may include: credit card numbers, password information,
specific documents, etc.

The financial firms are the producers of these commodities
whereas the hackers act as agents and “sell” these products, if
they acquire them, at the “going” market prices.

There is a “price” at which the hackers acquire the
financial commodity from a financial institution and a
price at which they sell the hacked product in the
demand markets. The former we refer to as the supply
price and the latter is the demand price.
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Network Economics of Cybercrime

In addition, we assume that there is a transaction cost
associated between each pair of financial and demand
markets for each commodity. These transaction costs can
be generalized costs that also capture risk.
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Network Economics of Cybercrime

Indeed, if the cyber criminals do not find demand markets for
their acquired financial commodities (since there are no
consumers willing to pay the price) then there is no economic
incentive for them to acquire the financial commodities.

To present another criminal network analogue – consider the
market for illegal drugs, with the U.S. market being one of
the largest, if not the largest one. If there is no demand for
the drugs then the suppliers of illegal drugs cannot recover
their costs of production and transaction and the flows of
drugs will go to zero.

According to a recent Rand report, for many, the cyber black
market can be more profitable than the illegal drug trade.
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Network Economics of Cybercrime

• After the major Target breach, some credit cards obtained
thus initially sold for $135 each on the black market, but,
within weeks, as banks started to cancel the cards, the price
dropped to $8 and, seven months after Target learned about the
breach, the cards had essentially no value.

• In addition, different “brands” of credit cards can be viewed as
different products since they command different prices on the black
market. For example, according to Leinwand Leger (2014) credit
cards with the highest credit limits, such as an American Express
Platinum card, command the highest prices.

• A card number with a low limit might sell for $1 or $2, while a
high limit card number can sell for $15 or considerably more, as
noted above. Hacked credit card numbers of European credit
cards can command prices five times higher than U.S. cards
(see Peterson (2013)).
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Perishability and Cybercrime in Financial Products

There is a short time window during which the value of a financial
product acquired through cybercrime is positive but it decreases
during the time window.

Hence, financial products such as credit cards that are hacked can
be treated as perishable products such as fruits, vegetables, etc.
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Perishability and Cybercrime in Financial Products

This part of the tutorial is based on the paper, “A Multiproduct
Network Economic Model of Cybercrime in Financial Services,” A.
Nagurney, Service Science 7(1) (2015), pp 70-81.
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Perishability and Cybercrime in Financial Products
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Figure: Structure of the Network Economic Problem
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Some Notation - Variables

Variables

Let Qk
ij denote the nonnegative amount of financial product k

obtained from i and shipped to j . Q is the vector of Qk
ij s.

Let sk
i denote the nonnegative supply of financial product k at i

and let dk
j be the demand for k and j . s is the vector of sk

i s and d

is the vector of dk
j s.

T k
ij is the time between the acquisition of product k from source

location i and its sale at j .

T k
ave,j is the average time for delivery of product k at demand

market j , where T k
ave,j =

Pm
i=1 T k

ij Q
k
ij

dk
j

. Tave is the vector of T k
ave,js.
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Some Notation - Functions

Functions

Let πk
i (s) denote the price of acquiring product k at source

location i .

Let ρk
j (d ,Tave) denote the demand price of financial product k at

demand market j .

Let ĉk
ij (Q) denote the unit transaction cost associated with

transacting product k between i and j .
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Conservation of Flow Equations

Conservation of Flow Equations

The conservation of flow equations are:

sk
i =

n∑
j=1

Qk
ij , k = 1, . . . , o; i = 1, . . . ,m,

dk
j =

m∑
i=1

Qk
ij , k = 1, . . . , o; i = 1, . . . , n,

Qk
ij ≥ 0, k = 1, . . . , o; i = 1, . . . ,m; j = 1, . . . , n.

In addition, we introduce the following expression, which captures
time:

tk
ij Q

k
ij + hk

ij = T k
ij , k = 1, . . . , o; i = 1, . . . ,m; j = 1, . . . , n.
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In view of the conservation of flow equations, we can define new
demand price functions ρ̂k

j , ∀k,∀j as follows:

ρ̂k
j (Q) ≡ ρk

j (d ,Tave), k = 1, . . . , o; j = 1, . . . , n.

If the demand at a demand market for a product is equal to zero,
we remove that demand market from the network for that product
since the corresponding time average would not be defined.

Also, we can define new supply price functions π̂k
i , ∀k,∀i as:

π̂k
i (Q) ≡ πk

i (s), k = 1, . . . , o; j = 1, . . . , n,

which allow us to construct a variational inequality formulation
governing the equilibrium conditions below with nice features for
computations. We assume that all the functions in the model are
continuous.
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The Network Economic Equilibrium Conditions

The Network Economic Equilibrium Conditions

The network economic equilibrium conditions for cybercrime have
been achieved if for all products k; k = 1, . . . , o, and for all pairs
of markets (i , j); i = 1, . . . ,m; j = 1, . . . , n, the following
conditions hold:

π̂k
i (Q∗) + ck

ij (Q
∗)

{
= ρ̂k

j (Q∗), if Qk
ij
∗

> 0

≥ ρk
j (Q∗), if Qk

ij
∗

= 0,

where recall that π̂k
i denotes the price of product k at source

location i , ck
ij denotes the unit transaction cost associated with k

between (i , j), and ρ̂k
j is the demand price of k at demand market

j . Qk
ij
∗

is the equilibrium flow of product k between i and j with
Q∗ being the vector of all such flows.

We define the feasible set K ≡ {Q|Q ∈ Romn
+ }.
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VI Formulation of the Equilibrium Conditions

Theorem: Variational Inequality Formulation

A product flow pattern Q∗ ∈ K is a cybercrime network economic
equilibrium if and only if it satisfies the variational inequality
problem:

o∑
k=1

m∑
i=1

n∑
j=1

[
π̂k

i (Q∗) + ck
ij (Q

∗)− ρ̂k
j (Q∗)

]
× (Qk

ij − Qk
ij
∗
) ≥ 0,

∀Q ∈ K .

The above VI can be put into standard form (see Nagurney (1999)):
determine X ∗ ∈ K, such that

〈F (X ∗),X − X ∗〉 ≥ 0, ∀X ∈ K

if we define K ≡ K , X ≡ Q, and F (X ) ≡ (Fkij(X )); k = 1, . . . , o;

i = 1, . . . ,m; j = 1, . . . , n, where Fkij = π̂k
i (Q) + ck

ij (Q)− ρ̂k
j (Q).
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The Algorithm

The Euler Method

At each iteration τ one solves the following problem:

X τ+1 = PK(X τ − aτF (X τ )),

where PK is the projection operator, and where {aτ} must satisfy:∑∞
τ=0 aτ = ∞, aτ > 0, aτ → 0, as τ →∞.

Explicit Formulae

We have the following closed form expression for the product flows
k = 1, . . . ,m; i = 1, . . . ,m; j = 1, . . . , n:

Qk
ij

τ+1
= max{0,Qk

ij
τ

+ aτ (ρ̂
k
j (Qτ )− ck

ij (Q
τ )− π̂k

i (Qτ )}.
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Numerical Examples

The Network Topology of the Examples
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Example 1

The supply price functions are:

π1
1(s) = 5s1

1 + s1
2 + 2, π1

2(s) = 2s1
2 + s1

1 + 1,

π2
1(s) = 2s2

1 + s1
1 + 1, π2

2(s) = s2
2 + .5s1

2 + 1.

The unit transaction cost functions are:

c1
11(Q) = .03Q1

11
2
+ 3Q1

11 + 1, c1
21(Q) = .02Q1

21
2
+ 2Q1

21 + 2,

c2
11(Q) = .01Q2

11
2
+ Q2

11 + 1, c2
21(Q) = .001Q2

21
2
+ .1Q2

21 + 1,

c1
12(Q) = .01Q1

12
2
+ Q1

12 + 1, c1
22(Q) = .01Q1

22
2
+ Q1

22 + 1,

c2
12(Q) = .01Q2

12
2
+ Q2

12 + 1, c2
22(Q) = .02Q2

22
2
+ 2Q2

22 + 2.
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Example 1

The demand price functions are:

ρ1
1(d ,Tave) = −2d1

1 − d2
1 − .5T 1

ave,1 + 500,

ρ2
1(d) = −3d2

1 − d1
1 − .1T 2

ave,1 + 300,

ρ1
2(d ,Tave) = −d1

2 − .5d2
2 − .2T 1

ave,2 + 200,

ρ2
2(d ,Tave) = −2d2

2 − d1
2 − .1T 2

ave,2 + 100.
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Example 1

The time expressions are:

T 1
11 = .1Q1

11 + 10, T 1
21 = .5Q1

21 + 5,

T 2
11 = .1Q2

11 + 20, T 2
21 = .5Q2

21 + 15,

T 1
12 = .1Q1

12 + 10, T 1
22 = .1Q1

22 + 10,

T 2
12 = .5Q2

12 + 5, T 2
22 = .5Q2

22 + 10,

so that

T 1
ave,1 =

T 1
11Q

1
11 + T 1

21Q
1
21

d1
1

, T 2
ave,1 =

T 2
11Q

2
11 + T 2

21Q
2
21

d2
1

.

T 1
ave,2 =

T 1
12Q

1
12 + T 1

22Q
1
22

d1
2

, T 2
ave,2 =

T 2
12Q

2
12 + T 2

22Q
2
22

d2
2

.
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Example 2

Example 2 has the same data as Example 1 except that now we
have a modification in the demand price function associated with
the second product at demand market 2 so that:

ρ2
2(d ,Tave) = −2d2

2 − d1
2 − .1T 2

ave,2 + 200.

Such a change might represent that the value of this
financial product has increased at that demand market.
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Example 3

Example 3 was constructed from Example 2 and had the same
data except that we increased the fixed terms in all the transaction
cost functions so that:

c1
1 (Q) = .03Q1

11
2
+ 3Q1

11 + 10, c1
21(Q) = .02Q1

21
2
+ 2Q1

21 + 20,

c2
11(Q) = .01Q2

11
2
+ Q2

11 + 10, c1
21(Q) = .001Q2

21
2
+ .1Q2

21 + 10,

c1
12(Q) = .01Q1

12
2
+ Q1

12 + 10, c1
22(Q) = .01Q1

22
2
+ Q1

22 + 10,

c2
12(Q) = .01Q2

12
2
+ Q2

12 + 10, c2
22(Q) = .02Q2

22
2
+ 2Q2

22 + 20.

This could represent the situation that the cybercriminals
have a harder time fencing all the products at all the demand
markets.
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Results

Table: Equilibrium Solutions for the Examples

Financial Flows Example 1 Example 2 Example 3

Q1
11
∗

25.93 26.31 26.21

Q1
12
∗

0.00 0.00 0.00

Q1
21
∗

46.73 48.28 46.45

Q1
22
∗

16.77 12.50 11.61

Q2
11
∗

11.69 4.81 3.47

Q2
12
∗

6.09 23.46 23.59

Q2
21
∗

37.56 39.27 39.57

Q2
22
∗

0.00 12.67 9.69
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Results

Table: Incurred Equilibrium Prices and Average Times

Prices Example 1 Example 2 Example 3
ρ1
1(d

∗,T ∗
ave) 294.07 295.07 300.35

ρ2
1(d

∗,T ∗
ave) 76.52 89.85 94.87

ρ1
2(d

∗,T ∗
ave) 175.51 164.94 167.28

ρ2
2(d

∗,T ∗
ave) 69.98 113.86 120.52

Average Times Example 1 Example 2 Example 3
T 1

ave,1 22.74 23.32 22.59

T 2
ave,1 30.78 33.09 33.62

T 1
ave,2 23.35 22.50 22.32

T 2
ave,2 10.61 13.75 13.08
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Managerial Insights

• The above numerical examples, although stylized, provide
important managerial insights that cybersecurity professionals may
take advantage of in securing their data.

• The examples show the quantified impacts of changes in the
data on the equilibrium financial product flows, and on the
incurred demand prices and average times for product delivery.

• The results are consistent with existing data on hacked credit
cards. For example, Goncharov (2012) reports that the cost,
that is, the supply price, of hacking into various accounts can
range anywhere from $16 to over $325. Also, as reported in
Ablon, Libicki, and Golay (2014), following an initial breach,
the markets may get flooded with cybercrime products
leading to a decrease in prices, which the structure of our
demand price functions capture.
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Managerial Insights

• Credit cards acquired in the Target breach initially fetched
from $20 to $135 depending on the type of card, expiration
date as well as limit (cf. Ablon, Libicki, and Golay (2014)).
Although our numerical study did not focus on a specific historical
data breach, the results are not inconsistent with results obtained
in practice.

• Finally, the model captures the crucial time element in the
demand market pricing of products obtained through cybercrime
with a focus on financial services.
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Cybersecurity Investments
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Multifirm Models of Cybersecurity Investment

This part of the tutorial is based on the paper, “Multifirm Models
of Cybersecurity Investment Competition vs. Cooperation and
Network Vulnerability,” A. Nagurney and S. Shukla, European
Journal of Operational Research 260(2) (2017), pp 588-600,
where many references and additional theoretical and numerical
results can be found.
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Investing in Cybersecurity

There is a growing interest in developing rigorous frameworks
for cybersecurity investments.

JPMorgan increased its cybersecurity spending to over $600
million in 2019 (The New York Times).

It is clear that making the best cybersecurity investments is
a very timely problem and issue.
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Common Features of the Models

We describe three different models of multifirm cybersecurity
investments.

The first model is a Nash Equilibrium (NE) one capturing
noncooperative behavior; the second and third are cooperative
models, using Nash Bargaining (NB) and System-Optimization
(S-O) concepts, respectively.
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Common Features of the Models

There are m firms in the “network.” These firms can be
financial service firms, energy firms, manufacturing firms, or
even retailers.

Each firm i ; i = 1, . . . ,m, in the network is interested in
determining how much it should invest in cybsecurity with the
cybersecurity level or, simply, security level of firm i denoted, wlog,
by si ; i = 1 . . . , m.
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Common Features of the Models

The cybersecurity level si of each firm i must satisfy the following
constraint:

0 ≤ si ≤ usi , i = 1, . . . ,m,

where usi <1, and is also greater than zero, is the upper bound on
the security level for firm i .

A value of a cybersecurity level of 1 would imply perfect security,
which is not achievable. When si = 0 the firm has no security. We
group the security levels of all firms into the m-dimensional vector
s.
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Common Features of the Models

In order to attain security level si , firm i encumbers an investment
cost hi (si ) with the function assumed to be continuously
differentiable and convex.

For a given firm i , hi (0) = 0 denotes an entirely insecure firm and
hi (1) = ∞ is the investment cost associated with complete security
for the firm, as in Shetty et al. (2009) and Shetty (2010). An
example of a suitable hi (si ) function that we use in this paper is

hi (si ) = αi (
1√

(1− si )
− 1)

with αi > 0. Such a function was utilized in Nagurney and
Nagurney (2015), in Nagurney, Nagurney, and Shukla (2015), and
in Nagurney, Daniele, and Shukla (2015).
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Common Features of the Models

Network Security Level of a Firm and the Network Vulnerability

The network security level, s̄, is the average security, given by:

s̄ =
1

m

m∑
j=1

sj .

The vulnerability of firm i , vi = (1− si ), and the network
vulnerability, v̄ = (1− s̄).
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Common Features of the Models

Following Shetty (2010), the probability pi of a successful attack
on firm i ; i = 1, . . . ,m is

pi = (1− si )(1− s̄), i = 1, . . . ,m,

where (1− s̄) is the probability of an attack on the network and
(1− si ) is the probability of success of such an attack on firm i .
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Common Features of the Models

Each firm i ; i = 1, . . . ,m has a utility associated with its wealth
Wi , denoted by fi (Wi ), which is increasing, and is continuous and
concave. The form of the fi (Wi ) that we use is

√
W i (see Shetty

et al. (2009)).

Also, a firm i is faced with damage Di if there is a successful
cyberattack on it.
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Common Features of the Models

Expected Utility of a Firm

The expected utility E (Ui ) of firm i ; i = 1, . . . ,m, is given by the
expression:

E (Ui ) = (1− pi )fi (Wi ) + pi (fi (Wi − Di ))− hi (si ).

We may write E (Ui ) = E (Ui (s)),∀i . Each E (Ui (s)) is strictly
concave with respect to si under the assumed functional forms
above since we also know that each hi (si ); i = 1, . . . ,m is strictly
convex.
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The Nash Equilibrium Model of Cybersecurity Investments

We seek to determine a security level pattern s∗ ∈ K 1, where
K 1 =

∏m
i=1 K 1

i and K 1
i ≡ {si |0 ≤ si ≤ usi}, such that the firms

will be in a state of equilibrium with respect to their cybersecurity
levels. K 1 is convex since it is a Cartesian product of the firms’
feasible sets with each such set being convex since it corresponds
to box-type constraints.

Definition: Nash Equilibrium in Cybersecurity Levels

A security level pattern s∗ ∈ K 1 is said to constitute a
cybersecurity level Nash equilibrium if for each firm i ; i = 1, . . . ,m:

E (Ui (s
∗
i , ŝ∗i )) ≥ E (Ui (si , ŝ

∗
i )), ∀si ∈ K 1

i ,

where
ŝ∗i ≡ (s∗1 , . . . , s∗i−1, s

∗
i+1, . . . , s

∗
m).
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VI Formulation of the NE Model

Theorem: VI Formulation of Nash Equilibrium

Since for each firm i; i = 1, . . . ,m the expected profit function
E (Ui (s)) is concave with respect to the variable si , and is
continuously differentiable, and the feasible set K 1 is convex, we
know that s∗ ∈ K 1 is a Nash equilibrium in cybersecurity levels
according to the Definition if and only if it satisfies the VI

−
m∑

i=1

∂E (Ui (s
∗))

∂si
× (si − s∗i ) ≥ 0, ∀s ∈ K 1;

or, if and only if it satisfies the VI

m∑
i=1

∂hi (s
∗
i )

∂si
+ [fi (Wi )− fi (Wi − Di )]

 1

m

m∑
j=1

s∗j − 1− 1

m
+

s∗i
m


×(si − s∗i ) ≥ 0, ∀s ∈ K 1.
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Algorithm for the Solution of the NE Model

We can apply the Euler method, presented earlier to solve this
model.

In view of the simple structure of the underlying feasible set, the
Euler method yields at each iteration closed form expressions for
the security levels: i ; i = 1, . . . ,m, given by:

sτ+1
i =

max{0,min{usi , s
τ
i + aτ (−

∂hi (s
τ
i )

∂sτ
i

− (fi (Wi )− fi (Wi − Di )) 1

m

m∑
j=1

sτ
j − 1− 1

m
+

sτ
i

m

}}.
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The Nash Bargaining Model of Cybersecurity Investments

The bargaining model proposed by Nash (1950b, 1953) is based on
axioms and focused on two players, that is, decision-makers. The
framework easily generalizes to m decision-makers, as noted in
Leshem and Zehavi (2008). An excellent overview can be found in
Binmore, Rubinstein, and Wolinsky (1989) and in the book by
Muthoo (1999).

Let E (UNE
j ) denote the expected utility of firm j evaluated at the

Nash equilibrium security level solution. E (UNE
j ) is the

disagreement point of firm j , according to the bargaining
framework.
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The Nash Bargaining Model of Cybersecurity Investments

The objective function underlying the Nash bargaining model of
cybersecurity investments is:

Z 1 =
m∏

j=1

(E (Uj(s))− E (UNE
j )).

The optimization problem to be solved is then:

Maximize
m∏

j=1

(E (Uj(s))− E (UNE
j ))

subject to:

E (Uj(s)) ≥ E (UNE
j ), j = 1, . . . ,m, s ∈ K 1.

We define the feasible set K 2 consisting of the above constraints,
which we know is convex.
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The S-O Model of Cybersecurity Investments

Under system-optimization, the objective function becomes:

Z 2 =
m∑

j=1

E (Uj(s))

and the feasible set remains as for the Nash equilibrium problem,
that is, s ∈ K 1.

Hence, the system-optimization cybersecurity investment problem
is to:

Maximize
m∑

j=1

E (Uj(s))

subject to:
s ∈ K 1.
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A Retail Case Study
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A Retail Case Study
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A Retail Case Study

Solutions of the Nash Equilibrium model were computed by
applying the Euler method, with the Euler method implemented in
Matlab on a Lenovo G410 laptop with an Intel Core i5 processor
and 8GB RAM.

The convergence tolerance was set to 10−5, so that the algorithm
was deemed to have converged when the absolute value of the
difference between each successively computed security level was
less than or equal to 10−5. The sequence {aτ} was set to:
.1{1, 1

2 , 1
2 , 1

3 , 1
3 , 1

3 , ...}.

We initialized the Euler method by setting the security levels at
their lower bounds. The upper bounds on the security levels
usi = 0.99,∀i .
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A Retail Case Study

The solutions to the Nash Bargaining and System-Optimization
models were computed by applying the Interior Point Method in
the SAS NLP Solver. The algorithm was called upon while using
SAS Studio, a web browser-based programming environment. The
maximum optimality error, in each case example below, was
5× 10−7 for the S-O solutions.
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A Retail Case Study

Wealth, damages, and investment costs are given in US
dollars in millions. The αi values in the cybersecurity
investment functions across all examples are the number of
employees in millions based on the most recently available
public data.

We consider two retailers. Firm 1 represents the second largest
discount retailer in the United States, Target Corporation. The
firm, in January 2014, announced that the security of 70 million of
its users was breached and their information compromised. Credit
card information of 40 million users was used by hackers to
generate an estimated $53.7 million in the black market as per
Newsweek (2014).
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A Retail Case Study

Firm 2 represents Home Depot, a popular retailer in the home
improvement and construction domain. Products available under
these categories are also sold through Target which makes them
compete for a common consumer base. The company was
struggling with high turnover and old software which led to a
compromise of 56 million users (Newsweek (2014)).

Firm 1 (Target) suffered $148 million in damages, according to the
Consumer Bankers Association and the Credit Union National
Association (Newsweek (2014)). Firm 2 (Home Depot) incurred a
$62 million in legal fees and staff overtime to deal with their
cyberattack in 2014. Additionally, it paid $90 million to banks for
re-issuing debit and credit cards to users who were compromised
(Newsweek (2014)).
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A Retail Case Study

We use the annual revenue data for the firms to estimate their
wealth. Hence, in US$ in millions, W1 = 72600; W2 = 78800. The
potential damages these firms stand to sustain in the case of
similar cyberattacks as above in the future amount to (in US$ in
millions): D1 = 148.0; D2 = 152.

The wealth functions are of the form:
f1(W1) =

√
W1; f2(W2) =

√
W2.

The cybersecurity investment cost functions are:

h1(s1) = 0.25(
1√

1− s1
− 1); h2(s2) = 0.30(

1√
1− s2

− 1).

The parameters α1 = .25 and α2 = .30 are the number of
employees of the respective firms in millions, thereby, representing
their size.
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Results

Results for the Nash Equilibrium model, the Bargaining Nash
model, and the System-Optimization model for cybersecurity
investments are summarized in the Table.

Solution NE NB S-O
s1 0.384 0.443 0.460

s2 0.317 0.409 0.388

v1 0.616 0.557 0.540

v2 0.683 0.591 0.612

s̄ 0.350 0.426 0.424

v̄ 0.650 0.574 0.576

E (U1) 269.265 269.271 269.268

E (U2) 280.530 280.531 280.534

Table: Results for NE, NB, and S-O for Target and Home Depot
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Results

Target Corporation is part of the Retail Cyber Intelligence Sharing
Center through which the firm shares cyber threat information with
other retailers that are part of the Retail Industry Leaders
Association and also with public stakeholders such as the U.S.
Department of Homeland Security, and the FBI (RILA (2014)).
Even Home Depot has expressed openness towards the sharing
threat information.

Professor Anna Nagurney EURO - Tutorial on Game Theory and Variational Inequalities



Sensitivity Analysis

We report the results for sensitivity analysis by increasing the
values of the Di parameters for i = 1, 2. The wealth and alpha
parameters are fixed as previously: (in US$ in millions)
W1 = 72600, W2 = 78800 (in millions); α1 = 0.25, α2 = 0.30.
The solutions are reported in the following Tables.

Parameters NE NB S-O
D1 D2 E(U1) E(U2) E(U1) E(U2) E(U1) E(U2)

24800 25200 268.476 279.648 268.485 279.658 268.484 279.659
34800 35200 268.377 279.542 268.386 279.551 268.385 279.552
44800 45200 268.290 279.451 268.300 279.461 268.300 279.461

Table: Expected Utilities for NE, NB, and S-O for Target and Home
Depot for Varying Di Parameters for α1 = .25 and α2 = .30
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Sensitivity Analysis

Parameters NE NB S-O
D1 D2 s1 s2 v̄ s1 s2 v̄ s1 s2 v̄

24800 25200 .924 .915 .08040 .933 .924 .07165 .933 .924 .07166
34800 35200 .935 .927 .06890 .943 .935 .06144 .943 .934 .06145
44800 45200 .943 .935 .06090 .949 .942 .05431 .949 .942 .05432

Table: Network Vulnerability v̄ for NE, NB, and S-O for Target and
Home Depot for Varying Di Parameters for α1 = .25 and α2 = .30
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Sensitivity Analysis

The network vulnerability is consistently the lowest under the
NB solution concept, demonstrating the benefit of
bargaining for cooperation in cybersecurity.

The increase in expected utilities on employing NB over NE is US$
10,193 for Target and US$ 10,346 for Home Depot in the scenario
with D1 = 44800, D2 = 45200. Comparison of S-O and NB shows
an increase of US$ 515 for Home Depot but a decrease of US$ 513
for Target when D1 = 44800, D2 = 45200.
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Additional Sensitivity Analysis

We now report the results for additional sensitivity analysis by
increasing the values of the Di parameters for i = 1, 2, where the
wealth and alpha parameters as follows: (in US$ in millions):
W1 = 72600, W2 = 78800 (in millions); α1 = 100.00, α2 = 120.00
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.

The results are reported in the subsequent Tables. The higher
alpha parameters result in a significant increase in expected
utilities as we move from NE to NB and S-O.

Parameters NE NB S-O
D1 D2 E(U1) E(U2) E(U1) E(U2) E(U1) E(U2)

24800 25200 222.472 235.991 223.541 237.087 223.410 237.220
34800 35200 210.460 223.098 211.619 224.278 211.517 224.381
44800 45200 200.039 212.090 201.276 213.340 201.212 213.405

Table: Expected Utilities for NE, NB, and S-O for Target and Home
Depot for Varying Di Parameters for α1 = 100.00 and α2 = 120.00
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Additional Sensitivity Analysis

Parameters NE NB S-O
D1 D2 s1 s2 v̄ s1 s2 v̄ s1 s2 v̄

24800 25200 .169 .066 .88285 .262 .164 .78711 .265 .161 .78719
34800 35200 .289 .197 .75705 .369 .281 .67496 .371 .279 .67502
44800 45200 .374 .288 .66915 .444 .363 .59661 .445 .362 .59665

Table: Network Vulnerability v̄ for NE, NB, and S-O for Target and
Home Depot for Varying Di Parameters α1 = 100.00 and α2 = 120.00
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Additional Sensitivity Analysis

Figure: Representation of Table Showing Comparison of Network
Vulnerability v̄ for NE, NB, and S-O with Varying Di Parameters
α1 = 100.00 and α2 = 120.00

The network vulnerability is consistently the lowest for the
NB solution, signifying the benefits of cooperation for
cybersecurity.
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Sharing of cyber information among these companies could
be tricky, yet, nevertheless, essential.

LOGIIC, Linking the Oil and Gas Industry to Improve Cybersecurity,
was established for collaboration among companies in this sector
and the US Department of Homeland Security. BP, Chevron, Shell,
Total and others possessing global energy infrastructure are
members of the program (Automation Federation (2013)).

Based on our case studies, which describe results for different
industrial sectors, it can be stated that the Nash Bargaining
model is the most practical and beneficial for firms, the
network, and consumers alike in terms of security levels.
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Cybersecurity and Supply Chains

Figure: Supply chains are also vulnerable to cyberattacks and can serve
as entre points
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Cybersecurity, Supply Chains, and Game Theory
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Figure: The Structure of the Supply Chain Network Game Theory Model
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Some Other Examples of Our Recent Cybersecurity Work

“A Supply Chain Network Game Theory Model of Cybersecurity
Investments with Nonlinear Budget Constraints,” A. Nagurney, P.
Daniele, and S. Shukla, Annals of Operations Research 248(1)
(2017), pp 405-427.

“Cybersecurity Investments with Nonlinear Budget Constraints:
Analysis of the Marginal Expected Utilities,” P. Daniele, A.
Maugeri, and A. Nagurney, in: Operations Research, Engineering,
and Cyber Security, Th.M. Rassias and N.J. Daras (Eds.), Springer
International Publishing Switzerland (2017), pp 117-134.

“A Game Theory Model of Cybersecurity Investments with
Information Asymmetry,” A. Nagurney and L.S. Nagurney,
Netnomics 16(1-2) (2015), pp 127-148.
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Our Latest Supply Chain Book
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In the book, we present supply chain network models and tools to
investigate: information asymmetry, impacts of outsourcing on
quality, minimum quality standards, applications to industries such
as pharma and high tech, freight services and quality, and the
identification of which suppliers matter the most.
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Envisioning a New Kind of Internet – ChoiceNet

Professor Anna Nagurney EURO - Tutorial on Game Theory and Variational Inequalities



Envisioning a New Kind of Internet – ChoiceNet

We were one of five teams funded by the
US National Science Foundation as part of
the Future Internet Architecture (FIA)
project. Our project: Network Innovation
Through Choice envisions a new Internet
architecture ChoiceNet.

Team:

University of Massachusetts Amherst:
Tilman Wolf, Anna Nagurney

University of Kentucky: Jim Griffioen,
Ken Calvert

North Carolina State University: Rudra
Dutta, George Rouskas

RENCI/UNC: Ilya Baldin
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Some Weaknesses of Current Internet

• The Internet architecture lacks in mechanisms to introduce
competition and market forces.

• Existing economic models cannot be deployed in today’s
Internet: no mechanisms in order to create and discover
contracts with any provider and to do so on short-time
scales, and time-scales of different lengths.

• Routing of messages may be inefficient and the capacity is
not well-utilized in the network.
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ChoiceNet Foci: Choices and Network Economics

Choice criteria can include:

• privacy

• minimization of risk

• even reducing environmental impact.

Transparency is associated with ChoiceNet and having more
refined routing options can also assist in cybersecurity.
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ChoiceNet Principles

Competition Drives Innovation!

Services are at core of ChoiceNet
(“everything is a service”)

Services provide a benefit, have a cost
Services are created, composed, sold,
verified, etc.

“Encourage alternatives” Provide
building blocks for different types of
services

“Know what happened” Ability to
evaluate services

“Vote with your wallet” Reward good
services!
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ChoiceNet

• ChoiceNet / economy plane enables new business models
in the Internet
– Very dynamic economic relationships are possible
– All entities get rewarded.

• Examples
– Movie streaming
– Reading a newspaper online in a coffee shop (short-term and
long-term contracts)
–Customers as providers.
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Designing an Internet

The new book by Clark, a developer of the Internet, cites our
paper: “ChoiceNet: Toward an Economy Plane for the Internet,”
Wolf, Griffioen, Calvert, Dutta, Rouskas, Baldin, and Nagurney,
ACM SIGCOMM Computer Communication Review 44(3) (2018),
pp 58-65.
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Game Theory Models - Flow of Content and Payments
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Network Providers

Users at Demand Markets

Content Providers

“A Network Economic Game Theory Model of a Service-Oriented

Internet with Price and Quality Competition in Both Content and

Network Provision,” S. Saberi, A. Nagurney, and T. Wolf, Service

Science 6(4) (2014), pp 229-250.
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Summary and Conclusions

• In the final part of this tutorial, we overviewed our work on
network vulnerability from a cybersecurity perspective. Our
“clients” were retailers, who have also encountered a growing
number of cyberattacks. Additional results we have obtained for
case studies in energy and in financial services.

• The cybersecurity investment models that we prevented included
Nash Equilibrium, Nash Bargaining, as well as
System-Optimization models. The results demonstrate the
relevance of cooperation with the most practical cooperative
model being that of Nash Bargaining.

• We also provided a framework for a Future Internet Architecture
known as ChoiceNet.

• Our research integrates inputs from practitioners with the goal of
providing prescriptive analytics for decision-making.
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Thank You!

For more information: https://supernet.isenberg.umass.edu/
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