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Introduction

Disasters

The Emergency Events Database (EM-DAT) defines a disaster as a
natural situation or event that overwhelms local capacity and/or
necessitates a request for external assistance.
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Introduction

Response

Providing primary relief supplies such as water, food, medicine, and
shelter is crucial.

In many disasters, it may be extremely challenging to do so because
of damaged infrastructure, environmental conditions, etc.
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Introduction

Humanitarian Logistics

Definition: The process of planning, implementing, and controlling
the efficient, cost-effective flow and storage of goods and materials
and also the related information from the point of origin to the point
of demand in order to reduce the suffering of the victims.
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Introduction

Costs

- Purchasing and Transportation costs
- NGOs are nonprofit and dependent on donations.
- Approximately $300 billion dollars are donated to charities in the
United States each year.
- Competition is natural in an environment in which Humanitarian
Organizations (HOs) are competing for donor funding.
- The visibility of HOs in terms of disaster relief in the media can
assist in increasing donations.

Coordination

- Lack of coordination among agencies may lead to the duplication of
efforts, confusion at the last mile, and issues of material convergence.
- Initiatives have emerged such as the United Nations Joint Logistics
Center.
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Billion Dollar Disasters in the US in 2017

Nagurney, Salarpour, and Daniele () Integrated Financial and Logistical Game Theory Model



Optimization Models and Disaster Relief

Numerous studies have focused on optimization frameworks in
the context of disaster relief:

Haghani and Oh (1996) - Ozdamar et al. (2004) - Yi and Kumar
(2007) - Yi and Ozdamar (2007) - Tzeng et al. (2007) - Balcik,
Beamon, and Smilowitz (2008) - Balcik et al. (2010) - Nagurney et
al. (2012) - Vogiatzis, Walteros, and Pardalos (2013) - Vogiatzis and
Pardalos (2016) - Nagurney and Nagurney (2016).

See the survey of optimization models in emergency logistics by
Caunhye, Nie, and Pokharel (2012).

Additional references on models in humanitarian logistics can be found
in Duran et al. (2013) and in the survey by Ortuno et al. (2013).
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Game Theory Models and Disaster Relief

Although there have been quite a few optimization models
developed for disaster relief there are very few game theory models.

Toyasaki and Wakolbinger (2014) constructed the first models of
financial flows that captured the strategic interaction between
donors and humanitarian organizations using game theory and also
included earmarked donations.

Muggy and Stamm (2014), in turn, provide an excellent review of game
theory in humanitarian operations and emphasize that there are many
untapped research opportunities for modeling in this area.
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Game Theory Models and Disaster Relief

Several recent papers on competition in freight services and disaster
relief:

A. Nagurney (2016), Freight Service Provision for Disaster Relief: A Competitive
Network Model with Computations, in: Dynamics of Disasters: Key Concepts,
Models, Algorithms, and Insight, I.S. Kotsireas, A. Nagurney, and P.M. Pardalos,
Editors, Springer International Publishing Switzerland, pp 207-229.

A. Nagurney (2018), A Multitiered Supply Chain Network Equilibrium Model for
Disaster Relief with Capacitated Freight Service Provision, in: Dynamics of
Disasters: Algorithmic Approaches and Applications, I.S. Kotsireas, A. Nagurney,
and P.M. Pardalos, Editors, Springer International Publishing Switzerland, pp
85-10.

T. Gossler, T. Wakolbinger, A, Nagurney, and P. Daniele (2019), How to Increase

the Impact of Disaster Relief: A Study of Transportation Rates, Framework

Agreements and Product Distribution, European Journal of Operational Research,

274(1), pp 126-141.
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Game Theory Models and Disaster Relief

A. Nagurney, E. Alvarez Flores, and C. Soylu (2016), A Generalized Nash
Equilibrium Network Model for Post-Disaster Humanitarian Relief,
Transportation Research E, 95, pp 1-18.

• This is the first Generalized Nash Equilibrium (GNE) model for disaster
relief.

• It integrates the financial side and the logistical side.

• The model contains, as a special case, its Nash Equilibrium counterpart.
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Game Theory Models and Disaster Relief

A. Nagurney, P. Daniele, E. Alvarez Flores, and V. Caruso (2018), A
Variational Equilibrium Network Framework for Humanitarian
Organizations in Disaster Relief: Effective Product Delivery Under
Competition for Financial Funds, in: Dynamics of Disasters: Algorithmic
Approaches and Applications, I.S. Kotsireas, A. Nagurney, and P.M.
Pardalos, Editors, Springer International Publishers Switzerland, pp
109-133.
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Our Contributions in the New Paper

We construct a game theory model to capture the competition
among humanitarian organizations (HOs) with the goal of bringing
greater realism in terms of:

The purchasing of the products
There are different suppliers which HOs may be able to purchase
products from and these may be local or nonlocal.

Including multiple freight service providers
There are different freight service providers that can ship relief
items from the purchase locations of the HOs to the demand points.

Incorporatong capacity constraints
The freight service providers’ shipment capacities are limited due to
their available facilities and the impacted regions’ infrastructure.

Having budget constraints
The budget constraint faced by an HO is the most critical constraint
in any humanitarian relief operation.
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Our Contributions in the New Paper

The model allows each NGO to make optimal resource allocation,
given a budget constraint, based on local/nonlocal purchase prices
and freight service provision costs.

We do not assume that the relief items are prepositioned, but, rather,
that they must be purchased.

The results in this paper also contribute to the literature on
variational inequalities with nonlinear constraints, with a focus on
game theory, since there are very few such models.

To-date, the only other work that includes Lagrange analysis for a
humanitarian logistics model in the context of game theory, is the
paper by Nagurney et al. (2018) and therein all the constraints were
linear and there were no purchasing costs nor budget constraints.

Nagurney, Salarpour, and Daniele () Integrated Financial and Logistical Game Theory Model



Integrated Financial and Logistical Game Theory Model

m humanitarian organizations, with a typical one denoted by i .
n demand locations, with a typical location denoted by j .
t freight service providers (FSPs) with a typical one denoted by l .
o possible purchase locations, with a typical location denoted by k.
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Figure: The Network Structure of the Game Theory Model with Multiple
Purchasing Options and Multiple Freight Service Providers.
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Integrated Financial and Logistical Game Theory Model

Purchasing Costs

qijk,l : The volume of relief items purchased by HO i at location k and
shipped to demand location j by FSP l .
ρk : The relief item price at location k

The total financial outlay for purchasing the relief items at the various
locations for HO i ; i = 1, . . . ,m, is

o∑
k=1

ρk

n∑
j=1

t∑
l=1

qijk,l . (1)
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Integrated Financial and Logistical Game Theory Model

Transportation Costs

cijk,l : The transportation cost that HO i pays to get its relief items delivered to
the demand point j by freight service provider l from purchase location k.

The total outlay associated with the logistical costs, hence, can be expressed for
HO i ; i = 1, . . . ,m, as:

n∑
j=1

o∑
k=1

t∑
l=1

cijk,l(q). (2)

Cost functions are assumed to be convex and continuously differentiable.
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Integrated Financial and Logistical Game Theory Model

Monetized Benefit Functions

The more effectively HOs provide relief at the demand points, the more
attention they receive from potential and existing donors.

A benefit function associated with HO i ; i = 1, . . . ,m, is denoted by Bi (q),
and with it we associate a nonnegative monetization weight ωi as follows:

ωiBi (q). (3)

HOs may benefit not only from their own efforts but also from other HOs’
visibility at the demand points.

Altruism functions are assumed to be concave and continuously
differentiable.
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Integrated Financial and Logistical Game Theory Model

Utility Functions

The utility function Ui (q) for HO i ; i = 1, . . . ,m:

Ui (q) = ωiBi (q)−
o∑

k=1

ρk

n∑
j=1

t∑
l=1

qijk,l −
n∑

j=1

o∑
k=1

t∑
l=1

cijk,l(q). (4)
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Integrated Financial and Logistical Game Theory Model

Nonnegativity Constraints

The volume of the relief item of each HO i ; i = 1, . . . ,m, to any demand
point j ; j = 1, . . . , n, purchased at location k; k = 1, . . . , o, and
transported by FSP l ; l = 1, . . . , t, consists of the nonnegativity
constraints:

qijk,l ≥ 0, ∀j , k, l . (5)

Budget Constraints

bi denotes HO i ’s budget.

o∑
k=1

ρk

n∑
j=1

t∑
l=1

qijk,l +
n∑

j=1

o∑
k=1

t∑
l=1

cijk,l(q) ≤ bi . (6)
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Integrated Financial and Logistical Game Theory Model

While the HOs may be willing to send as much of the relief item as
they can, FSPs have limited capacity due to their facilities, vehicle
portfolio and availability, and also the disaster regions’ infrastructures.

Shipment Capacity Constraints

uk,l : The shipment capacity of FSP l from purchase location k
The capacity constraints faced by HO i ; i = 1, . . . ,m, are:

m∑
i=1

n∑
j=1

qijk,l ≤ uk,l , k = 1, . . . , o; l = 1, . . . , t. (7)
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Integrated Financial and Logistical Game Theory Model

At each demand point j ; j = 1, . . . , n, the volume of relief items will not be

less than d j and, at the same time, it will not exceed d̄j .

Demand Lower Bound and Upper Bound Constraints
m∑

i=1

o∑
k=1

t∑
l=1

qijk,l ≥ d j , j = 1, . . . , n, (8)

m∑
i=1

o∑
k=1

t∑
l=1

qijk,l ≤ d̄j j = 1, . . . , n. (9)
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Integrated Financial and Logistical Game Theory Model

Feasible set Ki

We define the feasible set Ki corresponding to HO i as:

Ki ≡ {qi |(5) holds} (10)

and we let K ≡
∏m

i=1 Ki .

Feasible Set S
We define the feasible set S of shared constraints as:

S ≡ {q|(6) holding for all i , and (8), (9), (10) hold}. (11)

We assume that the sum of the budgets of all the HOs, i.e.,
∑m

i=1 bi

is sufficient to meet the sum of all the minimum demands, that is,∑n
j=1 d j so that the set K ≡ K ∩ S will be nonempty.
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Integrated Financial and Logistical Game Theory Model

Definition 1: Generalized Nash Equilibrium for the Humanitarian
Organizations

A relief item flow vector q∗ ∈ K , q∗ ∈ S is a Generalized Nash Equilibrium
if for each HO i ; i = 1, . . . ,m,:

Ui (q
∗
i , q̂

∗
i ) ≥ Ui (qi , q̂∗i ), ∀qi ∈ Ki ,∀q ∈ S, (12)

where q̂∗i ≡ (q∗1 , . . . , q
∗
i−1, q

∗
i+1, . . . , q

∗
m).

Not one of the HOs is willing to deviate from his current relief item
flow pattern, given the relief flow item patterns of the other HOs.

Each HO’s utility depends not only on his own strategy but also on
that of the others’ strategies since their feasible sets are intertwined.
The latter condition makes the problem a Generalized Nash
Equilibrium model.
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A Variational Equilibrium

It is well-known that Generalized Nash Equilibria (GNE) can be formulated
as quasivariational inequality problems (cf. Fischer, Herrich, and
Schonefeld (2014)).

However, the state of the art of algorithms for the solution of such
problems is not as advanced as for variationalinequality problems.

As noted in Nagurney, Yu, and Besik (2017), one may take advantage of a
refinement of the GNE known as a Variational Equilibrium, which is a
specific type of GNE (cf. Kulkarni and Shabhang (2012)), and enables a
variational inequality formulation
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Integrated Financial and Logistical Game Theory Model

Definition 2: Variational Equilibrium

A relief item flow vector q∗ is a Variational Equilibrium of the above
Generalized Nash Equilibrium problem if q∗ ∈ K , q∗ ∈ S is a solution to
the following variational inequality:

−
m∑

i=1

〈∇qi Ui (q
∗), qi − q∗i 〉 ≥ 0, ∀q ∈ K ,∀q ∈ S. (13)

Expanding variational inequality (13), we obtain:

mX
i=1

nX
j=1

oX
k=1

tX
l=1

24 nX
r=1

oX
p=1

tX
s=1

∂cirp,s(q
∗)

∂qijk,l
+ ρk − ωi

∂Bi (q
∗)

∂qijk,l

35 ×
h
qijk,l − q∗ijk,l

i
≥ 0, (14)

∀q ∈ K , ∀q ∈ S.
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Integrated Financial and Logistical Game Theory Model

Standard Variational Inequality Form

We now put variational inequality (14) into standard form: determine
X ∗ ∈ K, such that:

〈F (X ∗),X − X ∗〉 ≥ 0, ∀X ∈ K, (15)

where 〈·, ·〉 is the inner product in N-dimensional Euclidean space, where
N = mnot for our model. We define X ≡ q and F (X ) as having
components:

Fijk,l(X ) ≡
n∑

r=1

o∑
p=1

t∑
s=1

∂cirp,s(q)

∂qijk,l
+ ρk − ωi

∂Bi (q)

∂qijk,l
, ∀i , j , k, l , (16)

with K ≡ K ∩ S.
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Integrated Financial and Logistical Game Theory Model

Existence

Since the function F (X ) that enters our variational inequality problem
(15) with components as in (16) is, under the imposed conditions,
continuous and, clearly, the feasible set K is not only convex, but compact
because of the demand and budget constraints, we know that a solution
X ∗ exists from the standard theory of variational inequalities (Kinderlehrer
and Stampacchia (1980)).
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Lagrange Theory and Analysis of the Marginal Utilities

We investigate the Lagrange theory associated with the variational
inequality (14).

Using the Lagrange multipliers, we analyze the marginal utilities and
the role of each constraint in the model.

Optimization Problem

C(q) =
mX

i=1

nX
j=1

oX
k=1

tX
l=1

24 nX
r=1

oX
p=1

tX
s=1

∂cirp,s(q
∗)

∂qijk,l
+ ρk − ωi

∂Bi (q
∗)

∂qijk,l

35 ×
h
qijk,l − q∗ijk,l

i
, (17)

Variational inequality (14) can be rewritten as the following minimization problem:

min
K

C(q) = C(q∗) = 0. (18)
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Lagrange Theory and Analysis of the Marginal Utilities

Constraints and Associated Lagrange Multipliers

ek,l =
m∑

i=1

n∑
j=1

qijk,l − uk,l ≤ 0, εk,l ,∀k,∀l ,

fi =
o∑

k=1

ρk

n∑
j=1

t∑
l=1

qijk,l +
n∑

j=1

o∑
k=1

t∑
l=1

cijk,l(q)− bi ≤ 0, γi ,∀i ,

gijk,l = −qijk,l ≤ 0, λijk,l ,∀i ,∀j ,∀k,∀l , (19)

aj = d j −
m∑

i=1

o∑
k=1

t∑
l=1

qijk,l ≤ 0, αj ,∀j ,

bj =
m∑

i=1

o∑
k=1

t∑
l=1

qijk,l − d̄j ≤ 0, βj ,∀j .
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Lagrange Theory and Analysis of the Marginal Utilities

Lagrange Function

L(q, ε, γ, λ, α, β) =
mX

i=1

nX
j=1

oX
k=1

tX
l=1

24 nX
r=1

oX
p=1

tX
s=1

∂cirp,s(q
∗)

∂qijk,l
+ ρk − ωi

∂Bi (q
∗)

∂qijk,l

35 ×
h
qijk,l − q∗ijk,l

i

+
oX

k=1

tX
l=1

ek,l εk,l +
mX

i=1

fiγi +
mX

i=1

nX
j=1

oX
k=1

tX
l=1

gijk,lλijk,l +
nX

j=1

ajαj +
nX

j=1

bjβj , (20)

∀q ∈ Rmnot
+ , ∀α ∈ Rn

+, ∀β ∈ Rn
+, ∀ε ∈ Rot

+ , ∀γ ∈ Rm
+ , ∀λ ∈ Rmnot

+ .
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Lagrange Theory and Analysis of the Marginal Utilities

Since the feasible set K is convex and the Slater condition is satisfied,
if q∗ is a minimal solution to problem (18) the vector
(q∗, ε∗, γ∗, λ∗, α∗, β∗) is a saddle point of the Lagrange function.

L(q∗, ε, γ, λ, α, β) ≤ L(q∗, ε∗, γ∗, λ∗, α∗, β∗) ≤ L(q, ε∗, γ∗, λ∗, α∗, β∗) (21)

and
e∗k,lε

∗
k,l = 0, ∀k,∀l ,

f ∗i γ∗i = 0, ∀i ,

g∗ijk,lλ
∗
ijk,l = 0, ∀i ,∀j ,∀k,∀l ,

a∗j α
∗
j = 0, ∀j ,

b∗j β
∗
j = 0, ∀j . (22)
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Lagrange Theory and Analysis of the Marginal Utilities

∂L(q∗, ε∗, γ∗, λ∗, α∗, β∗)

∂qijk,l
=

 n∑
r=1

o∑
p=1

t∑
s=1

∂cirp,s(q
∗)

∂qijk,l
+ ρk − ωi

∂Bi (q
∗)

∂qijk,l



+ε∗k,l + γ∗i

ρk +
n∑

r=1

o∑
p=1

t∑
s=1

∂cirp,s(q
∗)

∂qijk,l

− λ∗ijk,l − α∗j + β∗j = 0, (23)

Conditions (22) and (23) represent an equivalent formulation of
variational inequality (14). Indeed, if we multiply (23) by
(qijk,l − q∗ijk,l) and sum up with respect to i , j , k, and l we get:
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Lagrange Theory and Analysis of the Marginal Utilities

Variational Inequality

Determine (q∗, ε∗, γ∗, α∗, β∗) ∈ R2mnot+ot+m+2n
+ such that

mX
i=1

nX
j=1

oX
k=1

tX
l=1

24(
nX

r=1

oX
p=1

tX
s=1

∂cirp,s(q
∗)

∂qijk,l
+ ρk )(1 + γ∗i )− ωi

∂Bi (q
∗)

∂qijk,l
+ ε∗k,l − α∗j + β∗j

35

×
h
qijk,l − q∗ijk,l

i
+

oX
k=1

tX
l=1

24uk,l −
mX

i=1

nX
j=1

q∗ijk,l

35 ×
h
ε∗k,l − ε∗k,l

i

+
mX

i=1

24bi −
oX

k=1

ρk

nX
j=1

tX
l=1

q∗ijk,l −
nX

j=1

oX
k=1

tX
l=1

cijk,l (q
∗)

35 × [γi − γ∗i ]

+
nX

j=1

"
mX

i=1

oX
k=1

tX
l=1

q∗ijk,l − d j

#
×

h
αj − α∗j

i
+

nX
j=1

"
d̄j −

mX
i=1

oX
k=1

tX
l=1

q∗ijk,l

#
×

h
βj − β∗j

i
≥ 0,

∀(q, ε, γ, α, β) ∈ Rmnot+ot+m+2n
+ . (24)
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Lagrange Theory and Analysis of the Marginal Utilities

The Meaning of Some of the Lagrange Multipliers

When the constraints are not active:

n∑
r=1

o∑
p=1

t∑
s=1

∂cirp,s(q
∗)

∂qijk,l
+ ρk = ωi

∂Bi (q
∗)

∂qijk,l
, (25)

the weighted marginal altruism is equal to the sum of the marginal
logistical cost and the relief item purchase price (for the respective
i , j , k, l).
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Lagrange Theory and Analysis of the Marginal Utilities

The Meaning of Some of the Lagrange Multipliers

If the first constraint is active; namely,
m∑

i=1

n∑
j=1

q∗ijk,l = uk,l ,

n∑
r=1

o∑
p=1

t∑
s=1

∂cirp,s(q
∗)

∂qijk,l
+ ρk + εk,l = ωi

∂Bi (q
∗)

∂qijk,l
, (26)

the weighted marginal altruism exceeds the sum of the marginal
logistical cost and the relief item purchase price (for the respective
i , j , k, l) and this is a good situation.
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Lagrange Theory and Analysis of the Marginal Utilities

The Meaning of Some of the Lagrange Multipliers

If the fourth constraint is active; namely,
m∑

i=1

n∑
k=1

t∑
l=1

q∗ijk,l = d j ,

n∑
r=1

o∑
p=1

t∑
s=1

∂cirp,s(q
∗)

∂qijk,l
+ ρk − αj = ωi

∂Bi (q
∗)

∂qijk,l
, (27)

which implies a bad situation.
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Lagrange Theory and Analysis of the Marginal Utilities

The Meaning of Some of the Lagrange Multipliers

If the fifth constraint is active; namely,
m∑

i=1

n∑
k=1

t∑
l=1

q∗ijk,l = d j ,

n∑
r=1

o∑
p=1

t∑
s=1

∂cirp,s(q
∗)

∂qijk,l
+ ρk + βj = ωi

∂Bi (q
∗)

∂qijk,l
, (28)

the weighted marginal altruism exceeds the sum of the marginal
logistical cost and the relief item purchase price (for the respective
i , j , k, l) and this is again a good situation.
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Lagrange Theory and Analysis of the Marginal Utilities

From the above analysis of the Lagrange multipliers and marginal
utilities at the equilibrium solution, we can conclude that the most
convenient situation, in terms of weighted altruism, is the one when
m∑

i=1

n∑
j=1

q∗ijk,l = uk,l and
m∑

i=1

n∑
k=1

t∑
l=1

q∗ijk,l = d j .
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The Algorithm

The algorithm is the Euler method, which is induced by the general
iterative scheme of Dupuis and Nagurney (1993). As Dupuis and Nagurney
(1993) establish, for convergence of the general iterative scheme, the
sequence {aτ} must satisfy:

∑∞
τ=0 aτ = ∞, aτ > 0, aτ → 0, as τ →∞.
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Explicit Formulae for the Euler Method Applied to the
Game Theory Model

Specifically, at an iteration τ + 1, we have the following closed form
expression for the relief item flow that each HO i = 1, . . . ,m, purchases at
location k = 1, . . . , o, and has then transported to the demand point
j = 1, . . . , n, by FSP l = 1, . . . , t:

qτ+1
ijk,l = max{0, qτ

ijk,l +aτ (ωi
∂Bi (q

τ )

∂qijk,l
− (

nX
r=1

oX
p=1

tX
s=1

∂cirp,s(q
τ )

∂qijk,l
+ρk )(1+γτ

i )+ατ
j −βτ

j −ετ
k,l )}.

(30)
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Explicit Formulae for the Euler Method Applied to the
Game Theory Model

The explicit formula for the Lagrange multipliers associated with the
budget constraint (6), respectively, for i = 1, . . . ,m, is:

γτ+1
i = max{0, γτ

i + aτ (−bi +
o∑

k=1

ρk

n∑
j=1

t∑
l=1

qτ
ijk,l +

n∑
j=1

o∑
k=1

t∑
l=1

cijk,l(q
τ ))}. (31)

The closed form expression associated with the Lagrange multiplier for
each capacity constraint (8) for k = 1, . . . , o; l = 1, . . . , t, is:

ετ+1
k,l = max{0, ετ

j + aτ (−uk,l +
m∑

i=1

n∑
j=1

qτ
ijk,l)}. (32)
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Explicit Formulae for the Euler Method Applied to the
Game Theory Model

The Lagrange multiplier for the demand lower bound constraint (9) at
demand points j = 1, . . . , n, is computed according to:

ατ+1
j = max{0, ατ

j + aτ (−
m∑

i=1

o∑
k=1

t∑
l=1

qτ
ijk,l + d j)}. (33)

The Lagrange multiplier for the demand upper bound constraint (10) at
demand points j = 1, . . . , n, is computed as follows:

βτ+1
j = max{0, βτ

j + aτ (−d̄j +
m∑

i=1

o∑
k=1

t∑
l=1

qτ
ijk,l)}. (34)
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Numerical Examples: Hurricane Harvey

Hurricane Harvey was a Category 4 storm that hit Texas on August
25, 2017.
It caused $125 billion in damage, affected almost 13 million people,
and became the second costliest disaster in U.S history.
There were over 880,000 applications for disaster relief across 41
Texas counties.
Port Arthur, 13,654 applications were submitted.
Bay City, with 6500 applications.

Silsbee, with 3,232 registered applications.

FEMA, American Red Cross, and The Salvation Army.
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Example 1: Baseline Supply Chain Network

We consider two humanitarian organizations, the Salvation Army and
the American Red Cross, respectively. The Salvation Army is a
smaller relief organization as compared to the American Red Cross;

Three demand points: Port Arthur, Bay City, and Silsbee, respectively.
The major devastation occurred in the Port Arthur region.

The HOs have two options to purchase the relief items from:
Purchasing Location 1 (PL 1) and Purchasing Location 2 (PL 2).
PL 1: reasonable price, far from the affected area. PL 2: offers a
similar product at a higher price, a local market.

Two Freight Service Providers, denoted by FSP 1 and FSP 2,
respectively. In contrast to FSP 2, FSP 1 has fewer freight assets and
capability, so it provides service with less capacity as compared to
FSP 1.

Nagurney, Salarpour, and Daniele () Integrated Financial and Logistical Game Theory Model



Example 1: Baseline Supply Chain Network
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Figure: Example 1: Two Humanitarian Organizations, Three Demand Locations,
Two Purchasing Options, Two Freight Service Providers.
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Example 1: Baseline Supply Chain Network

The humanitarian organizations’ budgets are:

b1 = 3× 106, b2 = 6× 106.

The HOs’ altruism functions are:

B1(q) =
2∑

k=1

2∑
l=1

(300q11k,l + 200q12k,l + 100q13k,l),

B2(q) =
2∑

k=1

2∑
l=1

(400q21k,l + 300q22k,l + 200q23k,l),

monetization weights associated with these benefit functions are:

ω1 = 1, ω2 = 1.
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Example 1: Baseline Supply Chain Network

The lower and upper bounds on demand points are:

d1 = 10000, d̄1 = 20000,

d2 = 1000, d̄2 = 10000,

d3 = 1000, d̄3 = 10000.

Markets at each purchasing location sell the relief items at the following
prices:

ρ1 = 50, ρ2 = 70.
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Example 1: Baseline Supply Chain Network

The FSPs’ capacities are as follows:

u1,1 = 3000, u1,2 = 6000,

u2,1 = 5000, u2,2 = 8000.

Cost functions:

ci11,1(q) = 0.2q2
i11,1 + 2qi11,1 + qj11,1, ci21,1(q) = 0.2q2

i21,1 + 5qi21,1 + 2.5qj21,1,

ci31,1(q) = 0.2q2
i31,1 + 7qi31,1 + 3.5qj31,1,

ci12,1(q) = 0.15q2
i12,1 + 2qi12,1 + qj12,1, ci22,1(q) = 0.15q2

i22,1 + 5qi22,1 + 2.5qj22,1,

ci32,1(q) = 0.15q2
i32,1 + 7qi32,1 + 3.5qj32,1,

ci11,2(q) = 0.15q2
i11,2 + 2qi11,2 + qj11,2, ci21,2(q) = 0.15q2

i21,2 + 5qi21,2 + 2.5qj21,2,

ci31,2(q) = 0.15q2
i31,2 + 7qi31,2 + 3.5qj31,2,

ci12,2(q) = 0.1q2
i12,2 + 2qi12,2 + qj12,2, ci22,2(q) = 0.1q2

i22,2 + 5qi22,2 + 2.5qj22,2,

ci32,2(q) = 0.1q2
i32,2 + 7qi32,2 + 3.5qj32,2,

∀i = 1, 2; j 6= i .
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Example 1: Baseline Supply Chain Network

Results:

q∗ij1,1 =

»
874.22 362.42 107.52
134.20 0.00 357.42

–
, q∗ij2,1 =

»
1098.80 416.54 76.70
1432.14 749.74 409.87

–
,

q∗ij1,2 =

»
1165.47 483.20 143.28
1498.80 816.10 476.53

–
, q∗ij2,2 =

»
1648.22 624.48 115.05
2148.17 1123.9 614.48

–
.

The amount of the relief item received at each demand point is:

2X
i=1

2X
k=1

2X
l=1

q∗i1k,l = 10000.00,
2X

i=1

2X
k=1

2X
l=1

q∗i2k,l = 4576.76,
2X

i=1

2X
k=1

2X
l=1

q∗i3k,l = 2300.86.

The Lagrange multipliers for the lower bound demand constraints:

α∗1 = 101.72, α∗2 = α∗3 = 0.

The Lagrange multipliers of the upper demand bound constraints:

β∗1 = β∗2 = β∗3 = 0.
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Example 1: Baseline Supply Chain Network

The volumes of relief items carried by each FSP from each purchasing
location are:

2∑
i=1

3∑
j=1

q∗ijk,l =

[
1835.79 4583.70
4183.79 6274.38

]
.

The Lagrange multipliers associated with the shipping capacities:

ε∗1,1 = ε∗1,2 = ε∗2,1 = ε∗2,2 = 0.

The total cost of each organization:

2X
k=1

ρk

3X
j=1

2X
l=1

q∗1jk,l +
3X

j=1

2X
k=1

2X
l=1

c1jk,l (q
∗) = 1, 419, 224.00,

2X
k=1

ρk

3X
j=1

2X
l=1

q∗2jk,l +
3X

j=1

2X
k=1

2X
l=1

c2jk,l (q
∗) = 2, 208, 465.25.

The Lagrange multipliers associated with their budget constraints:

γ∗1 = γ∗2 = 0.
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Example 1: Baseline Supply Chain Network

The benefit/altruism that each organization gains from helping the
affected people is:

B1(q
∗) = 1, 857, 600.50, B2(q

∗) = 3, 264, 018.25.

Putting all the terms in the respective objective functions together, the
utility of each HO, after the disaster relief operation, is:

U1(q
∗) = 438, 376.50, U2(q

∗) = 1, 055, 553.00.
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Example 1: Baseline Supply Chain Network

Analysis and Insights:

The American Red Cross is more active than The Salvation Army.

The American Red Cross delivers 9,761.73 relief items, which is more
than the 7,115.92 that The Salvation Army has been able to deliver.

The American Red Cross spends more than The Salvation Army.

The American Red Cross has a higher utility than The Salvation
Army.

FSP 2 achieves a large share of the transportation market by
benefiting from its own facilities and larger shipment capacity.

In the sales market, 10,458.16 relief items are purchased from PL 2
and, despite having a higher price, PL2 is preferred by the HOs due to
the lower shipping costs. PL 1 also, because of its lower item price,
still has a good share of market. 6,419.48 relief items have been
brought to the demand points from PL 1.
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Example 2: New Purchasing Location is Added

The HOs have a new location option for purchasing the relief items.

The new purchasing location, denoted by PL 3, is a local one. It
charges a lower price than the existing local purchasing location, PL
2, but its price is still higher than PL 1’s price.

The relief items are sold at the new purchasing location at the price:

ρ3 = 60.

Nagurney, Salarpour, and Daniele () Integrated Financial and Logistical Game Theory Model



Example 2: New Purchasing Location is Added
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Figure: Example 2: Two Humanitarian Organizations, Three Demand Locations,
Three Purchasing Options, Two Freight Service Providers.
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Example 2: New Purchasing Location is Added

The FSPs’ capacities:
u1,1 = 3000, u1,2 = 6000,

u2,1 = 4000, u2,2 = 7000,

u3,1 = 4000, u3,2 = 7000.

The HOs’ altruism functions:

B1(q) =
3X

k=1

2X
l=1

(300q11k,l + 200q12k,l + 100q13k,l ),

B2(q) =
3X

k=1

2X
l=1

(400q21k,l + 300q22k,l + 200q23k,l ).

The transportation cost functions:

ci13,1(q) = 0.15q2
i13,1 + 2qi13,1 + qj13,1, ci23,1(q) = 0.15q2

i23,1 + 5qi23,1 + 2.5qj23,1,

ci33,1(q) = 0.15q2
i33,1 + 7qi33,1 + 3.5qj33,1,

ci13,2(q) = 0.1q2
i13,2 + 2qi13,2 + qj13,2, ci23,2(q) = 0.1q2

i23,2 + 5qi23,2 + 2.5qj23,2,

ci33,2(q) = 0.1q2
i33,2 + 7qi33,2 + 3.5qj33,2.

∀i = 1, 2; j 6= i .
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Example 2: New Purchasing Location is Added

Results:

q∗ij1,1 =

»
620.14 362.42 107.48
0.00 0.00 357.42

–
, q∗ij2,1 =

»
760.20 416.54 76.69
1092.91 749.74 409.87

–
,

q∗ij1,2 =

»
826.80 483.20 143.28
1159.56 816.40 476.53

–
, qij2,2 =

»
1139.12 624.48 114.94
1639.00 1123.96 614.48

–
,

q∗ij3,1 =

»
793.51 449.87 109.97

1126.623 783.07 443.20

–
,

q∗ij3,2 =

»
1189.10 674.47 164.88
1688.99 1173.96 664.47

–
.

The amount of relief items received at each demand point is:

2X
i=1

3X
k=1

2X
l=1

q∗i1k,l = 12, 035.55,
2X

i=1

3X
k=1

2X
l=1

q∗i2k,l = 7, 658.10,
2X

i=1

3X
k=1

2X
l=1

q∗i3k,l = 3, 683.22.

The Lagrange multipliers for the lower bound demand constraints:

α∗1 = α∗2 = α∗3 = 0.
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Example 2: New Purchasing Location is Added

The Lagrange multipliers of the upper demand bound constraints:

β∗1 = β∗2 = β∗3 = 0.

The amount of relief items carried by each FSP from each purchasing
location is:

2∑
i=1

3∑
j=1

q∗ijk,l =

1447.47 3905.76
3505.94 5255.98
3705.85 5555.87

 .

Not one of them has reached the capacity and, hence, we have that:

ε∗1,1 = ε∗1,2 = ε∗2,1 = ε∗2,2 = ε∗3,1 = ε∗3,2 = 0.
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Example 2: New Purchasing Location is Added

The total cost of each organization in this operation:

3X
k=1

ρk

3X
j=1

2X
l=1

q∗1jk,l +
3X

j=1

3X
k=1

2X
l=1

c1jk,l (q
∗) = 1, 454, 783.75,

3X
k=1

ρk

3X
j=1

2X
l=1

q∗2jk,l +
3X

j=1

3X
k=1

2X
l=1

c2jk,l (q
∗) = 2, 821, 781.50.

The Lagrange multipliers associated with the budget constraints:

γ∗1 = γ∗2 = 0.

The benefit/altruism of each organization:

B1(q
∗) = 2, 272, 585.50, B2(q

∗) = 4, 670, 005.50.

The utility of each HO:

U1(q
∗) = 817, 796.75, U2(q

∗) = 1, 848, 224.00.
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Example 2: New Purchasing Location is Added

Analysis and Insights:

Both organizations take advantage of this opportunity and buy more
relief items.

The American Red Cross experiences an increase of almost 5,000, as
compared to Example 1. The Salvation Army provides 9,057.09 relief
item kits.

Both organizations pay more, but this higher cost has led to a
significant increase in their utility.

The new PL was able to take a large market share due to its lower
price than the other local PL and the lower transportation rates than
the nonlocal PL. Both of the previous purchasing locations experience
a decrease in sales with the arrival of the new PL.

The increase in the purchasing power of HOs has also boosted the
transportation market with the major increase being in the shipments
of the relief items from newly added PL to the affected region.
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Example 3: Additional Disruptions in Transportation

We now consider additional disruptions in transportation.

All the logistical costs are as in Example 2 except that the nonlinear
component is multiplied by a factor of 10.
The new computed equilibrium relief item flows i = 1, 2; j = 1, 3 are:

q∗ij1,1 =

»
575.14 249.96 0.00
0.00 0.00 266.55

–
, q∗ij2,1 =

»
700.21 266.54 0.00
1032.92 599.75 199.94

–
,

q∗ij1,2 =

»
766.86 333.21 0.00
1099.57 666.41 266.55

–
, qij2,2 =

»
1049.17 399.73 0.00
1549.01 899.45 299.75

–
,

q∗ij3,1 =

»
0.00 299.88 0.00

1066.25 633.08 233.27

–
,

q∗ij3,2 =

»
0.00 499.73 0.00

1599.00 949.45 349.74

–
.
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Example 3: Additional Disruptions in Transportation

The amount of relief items received at each demand point is:
2X

i=1

3X
k=1

2X
l=1

q∗i1k,l = 11, 270.81,
2X

i=1

3X
k=1

2X
l=1

q∗i2k,l = 5, 747.18,
2X

i=1

3X
k=1

2X
l=1

q∗i3k,l = 1, 549.20.

The Lagrange multipliers for the lower bound demand constraints:

α∗1 = α∗2 = α∗3 = 0.

The Lagrange multipliers of the upper demand bound constraints:

β∗1 = β∗2 = β∗3 = 0.

The amount of relief items carried by each FSP from each purchasing
location is:

2∑
i=1

3∑
j=1

q∗ijk,l =

1025.06 3132.59
2799.36 4197.11
2966.01 4447.06

 .

Not one of them has reached the capacity and, hence, we have that:

ε∗1,1 = ε∗1,2 = ε∗2,1 = ε∗2,2 = ε∗3,1 = ε∗3,2 = 0.
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Example 3: Additional Disruptions in Transportation

The total cost of each organization in this operation:

3X
k=1

ρk

3X
j=1

2X
l=1

q∗1jk,l +
3X

j=1

3X
k=1

2X
l=1

c1jk,l (q
∗) = 1, 459, 130.25,

3X
k=1

ρk

3X
j=1

2X
l=1

q∗2jk,l +
3X

j=1

3X
k=1

2X
l=1

c2jk,l (q
∗) = 2, 657, 446.75.

The Lagrange multipliers associated with the budget constraints:

γ∗1 = γ∗2 = 0.

The benefit/altruism of each organization:

B1(q
∗) = 1, 877, 028.75, B2(q

∗) = 3, 972, 979.50.

The utility of each HO:

U1(q
∗) = 417, 898.50, U2(q

∗) = 1, 315, 532.75.
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Example 3: Additional Disruptions in Transportation

Analysis and Insights:

The additional disruption leads to a sharp decrease in the number of
items sent by each organization.

The American Red Cross and the Salvation Army send, respectively,
2,675 and 2,133 fewer relief item kits, than in Example 2.

The costs of the operations are almost the same as in Example 2 for
both organizations, but they experience reduced incurred altruism, as
compared to Example 2, and also lower utilities.

All three PLs face a drop in their sales. Similarly, FSPs transport an
average of 2400 fewer items from PLs to the demand regions as
compared to the situation of not having the additional disruption in
transportation.
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Summary and Conclusions

In this paper, we develop an integrated financial and logistical game
theory model for humanitarian organizations. The HOs have budget
constraints.

The model includes both relief item purchasing costs and freight
service shipping costs, with the former being possible both locally and
nonlocally, if feasible, and with the latter including competition, under
capacity constraints, among the humanitarian organizations.

The governing equilibrium conditions, given common/shared
constraints associated with the demands for relief items at the
demand points, plus the freight capacity constraints, yield a
Generalized Nash equilibrium, which can be challenging to solve.
Nevertheless, through the concept of a variational equilibrium, we
construct a variational inequality formulation.
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Summary and Conclusions

The model is qualitatively analyzed and a Lagrange analysis provided,
which yields insights on the impacts of the constraints.

The proposed algorithm yields closed form expressions, at each
iteration, which enables ease of computer implementation.

The numerical examples, inspired by Hurricane Harvey, one of the
most expensive natural disasters to ever hit the United States,
illustrate the modeling and computational framework.

The framework adds to the literature on game theory and disaster
relief as well as to the literature on variational inequalities with
nonlinear constraints.
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Thank You!

For more information: https://supernet.isenberg.umass.edu/
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