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Background and Motivation
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Natural Disasters (1975–2008)

Disasters have a catastrophic effect on human lives and a region’s
or even a nation’s resources. A total of 2.3 billion people were
affected by natural disasters from 1995-2015 (UN Office of
Disaster Risk (2015)).
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Some Recent Disasters
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Hurricane Katrina in 2005

Hurricane Katrina has been called an “American tragedy,” in which
essential services failed completely.
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The Triple Disaster in Japan on March 11, 2011

Now the world is reeling from the aftereffects of the triple disaster
in Japan with disruptions in the high tech, automotive, and even
food industries with potential additional ramifications because of
the radiation.
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Superstorm Sandy and Power Outages

Manhattan without power October 30, 2012 as a result of the
devastation wrought by Superstorm Sandy.
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Challenges Associated with Disaster Relief

• Timely delivery of relief items is challenged by damaged and
destroyed infrastructure (transportation, telecommunications,
hospitals, etc.).

• Shipments of the wrong supplies create congestion and materiel
convergence (sometimes referred to as the second disaster).

• • Within three weeks following the 2010 earthquake in Haiti,
1,000 NGOs were operating in Haiti. News media attention of
insufficient water supplies resulted in immense donations to the
Dominican Red Cross to assist its island neighbor. Port-au-Price
was saturated with both cargo and gifts-in-kind.

• • After the Fukushima disaster, there were too many blankets
and items of clothing shipped and even broken bicycles.

• • After Katrina, even tuxedos were delivered to victims.

Better coordination among NGOs is needed.
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Challenges Associated with Disaster Relief - The NGO
Balancing Act

There were 1.5 million registered NGOs in the US in 2012. $300
billion in donations given yearly to US charities.
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Challenges Associated with Disaster Relief - Driving Forces
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Need for Game Theory Network Models for Disaster Relief
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Game Theory and Disaster Relief

We developed the first Generalized Nash Equilibrium (GNE) model
for post-disaster humanitarian relief, which contains both a
financial component and a supply chain component. The
Generalized Nash Equilibrium problem is a generalization of the
Nash Equilibrium problem (cf. Nash (1950, 1951)).

“A Generalized Nash Equilibrium Network Model for Post-Disaster
Humanitarian Relief,” Anna Nagurney, Emilio Alvarez Flores, and
Ceren Soylu, Transportation Research E 95 (2016), pp 1-18.
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Game Theory and Disaster Relief

The GNE model that we constructed had a structure that allowed
us to reformulate the equilibrium conditions, which included shared
constraints, as an optimization problem; typically, Generalized
Nash Equilibrium problems are formulated as quasi-variational
inequalities, which can pose challenges for computations.
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Game Theory and Disaster Relief

The new model, which we are presenting at this conference, has
the following extended features:

1. The financial funds functions, which capture the amount of
donations to each NGO, given their visibility through media of the
supplies of relief items delivered at demand points, and under
competition, need not take on a particular structure.

2. The altruism or benefit functions, also included in each NGO’s
utility function, need not be linear.

3. The competition associated with logistics is captured through
total cost functions that depend not only on a particular NGO’s
relief item shipments but also on those of the other NGOs.
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Game Theory and Disaster Relief

In order to guarantee effective product delivery at the demand
points, we retain the lower and upper bounds on demand points for
the relief item supplies as introduced in Nagurney, Alvarez Flores,
and Soylu (2016).

This feature of shared, or common, constraints among competing
decision-makers makes the problem a Generalized Nash Equilibrium
problem rather than just a Nash Equilibrium one.

Moreover, we make use of a Variational Equilibrium and, hence, we
do not need to utilize quasi-variational inequalities in the
formulation and computations but can apply the more advanced
variational inequality theory.
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Some Literature

Our disaster relief game theory framework entails competition for
donors as well as media exposure plus supply chain aspects. We
now highlight some of the related literature on these topics.

• Natsios (1995) contends that the cheapest way for relief
organizations to fundraise is to provide early relief in highly visible
areas.

• Balcik et al. (2010) note that the media is a critical factor
affecting relief operations with NGOs seeking visibility to attract
more resources from donors. They also review the challenges in
coordinating humanitarian relief chains and describe the current
and emerging coordination practices in disaster relief.
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Some Literature

• Olsen and Carstensen (2003) confirmed the frequently repeated
argument that media coverage is critical in relation to emergency
relief allocation in a number of cases that they analyzed.

• Van Wassenhove (2006) also emphasizes the role of the media in
humanitarian logistics and states that following appeals in the
media, humanitarian organizations are often flooded with
unsolicited donations that can create bottlenecks in the supply
chain.

• Zhuang, Saxton, and Wu (2014) develop a model that reveals
the amount of charitable contributions made by donors is positively
dependent on the amount of disclosure by the NGOs. They also
emphasize that there is a dearth of existing game-theoretic
research on nonprofit organizations. Our model attempts to help
to fill this void.
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Game Theory and Disaster Relief

Although there have been quite a few optimization models
developed for disaster relief there are very few game theory models.

Toyasaki and Wakolbinger (2014) constructed the first models of
financial flows that captured the strategic interaction between
donors and humanitarian organizations using game theory and also
included earmarked donations.

Muggy and Stamm (2014), in turn, provide an excellent review of
game theory in humanitarian operations and emphasize that there
are many untapped research opportunities for modeling in this area.

Additional references to disaster relief and humanitarian logistics
can be found in our papers.
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The Variational Equilibrium Network Framework
for Humanitarian Organizations
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The Network Structure of the Model
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Ĵ

HH
HHHHH

HHHHH
HHH

H
H

H
H

HHHj

� �

?



























�

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
ZZ~

K I 6

?

�
�

�
�

�
�

�
�

�
�

�
�

�
��=

�
�����

�����
���

�
�

�
�

�����

Yi
I

Figure 1: The Network Structure of the Game Theory Model
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The Game Theory Model

We consider m humanitarian organizations, that is,
nongovernmental organizations (NGOs), with a typical NGO
denoted by i , seeking to deliver relief supplies, post a disaster, to n
demand points, with a typical demand point denoted by j . The
relief supplies can be water, food, or medicine.

We denote the volume of the relief item shipment (flow) delivered
by NGO i to demand point j by qij . We group the nonnegative
relief item flows from each NGO i ; i = 1, . . . ,m, into the vector
qi ∈ Rn

+ and then we group the relief item flows of all the NGOs to
all the demand points into the vector q ∈ Rmn

+ . The vector qi is
the vector of strategies of NGO i .
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The Game Theory Model

Each NGO i encumbers a cost, cij , associated with shipping the
relief items to location j , where we assume that

cij = cij(q), j = 1, . . . n, (1)

with these cost functions being convex and continuously
differentiable. The cost functions (1) are associated with the
logistics aspects.

Each NGO i ; i = 1, . . . ,m, based on the media attention and the
visibility of NGOs at demand point j ; j = 1, . . . , n, receives
financial funds from donors given by the expression

n∑
j=1

Pij(q), (2)

where Pij(q) denotes the financial funds in donation dollars given
to NGO i due to visibility of NGO i at location j .
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The Game Theory Model

Since the NGOs are humanitarian organizations involved in disaster
relief, each NGO i also derives some utility from delivering the
needed relief supplies. We, hence, introduce an altruism/benefit
function Bi ; i = 1, . . . ,m, such that

Bi = Bi (q), (3)

and each benefit function is assumed to be concave and
continuously differentiable.

Each NGO i ; i = 1, . . . ,m, has an amount si of the relief item that
it can allocate post-disaster, which must satisfy:

n∑
j=1

qij ≤ si . (4)

We assume that the relief supplies have been prepositioned so that
they are in stock and available, since time is of the essence.
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The Game Theory Model

In addition, the relief item flows for each i ; i = 1, . . . ,m, must be
nonnegative, that is:

qij ≥ 0, j = 1, . . . , n. (5)
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The Game Theory Model

Each NGO i ; i = 1, . . . ,m, seeks to maximize its utility, Ui , with
the utility consisting of the financial gains due to its visibility
through media of the relief item flows, plus the utility associated
with the logistical (supply chain) aspects of delivery of the
supplies, which consists of the weighted altruism/benefit function
minus the logistical costs.

Without the imposition of demand bound constraints (which will
follow), the optimization problem faced by NGO i ; i = 1, . . . ,m, is,
thus,

Maximize Ui (q) =
n∑

j=1

Pij(q) + ωiBi (q)−
n∑

j=1

cij(q) (6)

subject to constraints (4) and (5).
The above model is a Nash Equilibrium problem, which can be
formulated as a variational inequality problem (cf. Gabay and
Moulin (1980) and Nagurney (1999)).
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The Common Constraints

The common constraints are imposed by an authority ensure that
the needs of the disaster victims are met, while recognizing the
negative effects of waste and material convergence. The
imposition of such constraints in terms of effectiveness and even
gains for NGOs was demonstrated in Nagurney, Alvarez Flores, and
Soylu (2016).
The two sets of common imposed constraints, at each demand
point j ; j = 1, . . . , n, are as follows:

m∑
i=1

qij ≥ d j , (7)

and
m∑

i=1

qij ≤ d̄j , (8)

where d j is the lower bound on the amount of the relief item

needed at demand point j and d̄j is the upper bound.
We assume that

m∑
i=1

si ≥
n∑

j=1

d j . (9)

Hence, the total supply of the relief item of the NGOs is sufficient
to meet the needs at all the demand points.
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The Game Theory Model

We assume that
m∑

i=1

si ≥
n∑

j=1

d j . (9)

Hence, the total supply of the relief item of the NGOs is sufficient
to meet the needs at all the demand points.
We define the feasible set Ki for each NGO i as:

Ki ≡ {qi | (4) and (5) hold} (10)

and we let K ≡
m∏

i=1

Ki .

In addition, we define the feasible set S consisting of the shared
constraints as:

S ≡ {q| (7) and (8) hold}. (11)
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Disaster Relief Generalized Nash Equilibrium

Definition 1: Disaster Relief Generalized Nash Equilibrium

A relief item flow pattern q∗ ∈ K =
m∏

i=1

Ki , q∗ ∈ S, constitutes a

disaster relief Generalized Nash Equilibrium if for each NGO i;
i = 1, . . . ,m:

Ûi (q
∗
i , q̂

∗
i ) ≥ Ui (qi , q̂

∗
i ), ∀qi ∈ Ki ,∀q ∈ S, (12)

where q̂∗i ≡ (q∗1 , . . . , q
∗
i−1, q

∗
i+1, . . . , q

∗
m).

An equilibrium is established if no NGO can unilaterally improve
upon its utility by changing its relief item flows in the disaster relief
network, given the relief item flow decisions of the other NGOs,
and subject to the supply constraints, the nonnegativity
constraints, and the shared/coupling constraints. We remark that
both K and S are convex sets.
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Variational Inequality Formulation of the Nash Equilibrium
Counterpart

If there are no coupling, that is, shared, constraints in the above
model, then q and q∗ in Definition 1 need only lie in the set K ,
and, under the assumption of concavity of the utility functions and
that they are continuously differentiable, we know that (cf. Gabay
and Moulin (1980) and Nagurney (1999)) the solution to what
would then be a Nash equilibrium problem (see Nash (1950,
1951)) would coincide with the solution of the following variational
inequality problem: determine q∗ ∈ K , such that

−
m∑

i=1

〈∇qi Ûi (q
∗), qi − q∗i 〉 ≥ 0, ∀q ∈ K , (13)

where 〈·, ·〉 denotes the inner product in the corresponding
Euclidean space and ∇qi Ûi (q) denotes the gradient of Ûi (q) with
respect to qi .

Nagurney, Daniele, Alvarez Flores, Caruso Disaster Relief Supply Chains



Variational Equilibrium

As emphasized in Nagurney, Yu, and Besik (2017), a refinement of
the Generalized Nash Equilibrium is what is known as a variational
equilibrium and it is a specific type of GNE (see Kulkarni and
Shabhang (2012)).

Specifically, in a GNE defined by a variational equilibrium, the
Lagrange multipliers associated with the common/shared/coupling
constraints are all the same.

This feature provides a fairness interpretation and is reasonable
from an economic standpoint.
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Variational Equilibrium

More precisely, we have the following definition:

Definition 2: Variational Equilibrium
A strategy vector q∗ is said to be a variational equilibrium of the
above Generalized Nash Equilibrium game if q∗ ∈ K , q∗ ∈ S is a
solution of the variational inequality:

−
m∑

i=1

〈∇qi Ui (q
∗), qi − q∗i 〉 ≥ 0, ∀q ∈ K ,∀q ∈ S. (14)
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Variational Equilibrium

We now expand the terms in variational inequality (14).

Specifically, we have that (14) is equivalent to the variational
inequality: determine q∗ ∈ K , q∗ ∈ S, such that

m∑
i=1

n∑
j=1

[
n∑

k=1

∂cik(q∗)

∂qij
−

n∑
k=1

∂Pik(q∗)

∂qij
− ωi

∂Bi (q
∗)

∂qij

]
×
[
qij − q∗ij

]
≥ 0,

∀q ∈ K ,∀q ∈ S. (15)
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Standard Form

We now put variational inequality (15) into standard variational
inequality form (see Nagurney (1999)), that is: determine
X ∗ ∈ K ⊂ RN , such that

〈F (X ∗),X − X ∗〉 ≥ 0, ∀X ∈ K, (16)

where F is a given continuous function from K to RN , K is a
closed and convex set, with both the vectors F (X ) and X being
column vectors, and N = mn.
We define X ≡ q and F (X ) where component (i , j); i = 1, . . . ,m;
j = 1, . . . , n, of F (X ), Fij(X ), is given by

Fij(X ) ≡

[
n∑

k=1

∂cik(q∗)

∂qij
−

n∑
k=1

∂Pik(q∗)

∂qij
− ωi

∂Bi (q
∗)

∂qij

]
(17)

and K ≡ K ∩ S. Then, clearly, (14) takes on the standard form
(16).
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Existence and Uniqueness of an Equilibrium Solution

A solution q∗ of disaster relief item flows to the variational
inequality problem (15) is guaranteed to exist since the function
F (X ) in (16) is continuous under the imposed assumptions and
the feasible set K comprised of the constraints is compact.

It follows from the classical theory of variational inequalities (cf.
Kinderlehrer and Stampacchia (1980) and Nagurney (1999)) that
if F (X ) is strictly monotone, that is:

〈F (X 1)− F (X 2),X 1 − X 2〉 > 0, ∀X 1,X 2 ∈ K,X 1 6= X 2,

then the solution to the variational inequality (16) is unique, and
we have a unique equilibrium product shipment pattern q∗ from
the NGOs to the demand points.
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Lagrange Theory and Analysis of Marginal Utilities
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Lagrange Theory and Analysis of Marginal Utilities

We now explore the Lagrange theory associated with variational
inequality (15) and we provide an analysis of the marginal utilities
at the equilibrium solution.

For an application of Lagrange theory to other models, see:
Daniele (2001) (spatial economic models), Barbagallo, Daniele,
and Maugeri (2012) (financial networks), Toyasaki, Daniele, and
Wakolbinger (2014) (end-of-life products networks), Daniele and
Giuffrè (2015) (random traffic networks), Caruso and Daniele
(2016) (transplant networks), Nagurney and Dutta (2016)
(competition for blood donations).
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Lagrange Theory and Analysis of Marginal Utilities

By setting:

C (q) =
m∑

i=1

n∑
j=1

[
n∑

k=1

∂cik(q∗)

∂qij
−

n∑
k=1

∂Pik(q∗)

∂qij
− ωi

∂Bi (q
∗)

∂qij

]
(qij−q∗ij),

(18)
variational inequality (15) can be rewritten as a minimization
problem as follows:

min
K

C (q) = C (q∗) = 0. (19)
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Lagrange Theory and Analysis of Marginal Utilities

Under the previously imposed assumptions, we know that all the
involved functions in (19) are continuously differentiable and
convex. We set:

aij = −qij ≤ 0, ∀i , ∀j ,

bi =
n∑

j=1

qij − si ≤ 0, ∀i ,

cj = d j −
m∑

i=1

qij ≤ 0, ∀j ,

ej =
m∑

i=1

qij − d j ≤ 0, ∀j ,

(20)

and
Γ(q) = (aij , bi , cj , ej)i=1,...,m; j=1,...,n . (21)

As a consequence, we remark that K can be rewritten as

K = {q ∈ Rmn : Γ(q) ≤ 0}. (22)
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Lagrange Theory and Analysis of Marginal Utilities

We now consider the following Lagrange function:

L(q, α, δ, σ, ε) =
n∑

j=1

cij(q)−
n∑

j=1

Pij(q)− ωiBi (q)

+
m∑

i=1

n∑
j=1

αijaij +
m∑

i=1

δibi +
n∑

j=1

σjcj +
n∑

j=1

εjej ,

(23)
∀q ∈ Rmn

+ , ∀α ∈ Rmn
+ , ∀δ ∈ Rm

+ , ∀σ ∈ Rn
+, ∀ε ∈ Rn

+,

where α is the vector with components: {α11, . . . , αmn}; δ is the
vector with components {δ1, . . . , δm}; σ is the vector with
elements: {σ1, . . . , σn}, and ε is the vector with elements:
{ε1, . . . , εn}.
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Lagrange Theory and Analysis of Marginal Utilities

It is easy to prove that the feasible set K is convex and that the
Slater condition is satisfied. Then, if q∗ is a minimal solution to
problem (19), there exist α∗ ∈ Rmn

+ , δ∗ ∈ Rm
+ , σ∗ ∈ Rn

+, ε∗ ∈ Rn
+

such that the vector (q∗, α∗, δ∗, σ∗, ε∗) is a saddle point of the
Lagrange function (23); namely:

L(q∗, α, δ, σ, ε) ≤ L(q∗, α∗, δ∗, σ∗, ε∗) ≤ L(q, α∗, δ∗, σ∗, ε∗), (24)

∀q ∈ Rmn
+ , ∀α ∈ Rmn

+ , ∀δ ∈ Rm
+ , ∀σ ∈ Rn

+, ∀ε ∈ Rn
+,

and
α∗ija

∗
ij = 0, ∀i , ∀j ,

δ∗i b
∗
i = 0, ∀i ,

σ∗j c
∗
j = 0, ε∗j e

∗
j = 0, ∀j . (25)
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Lagrange Theory and Analysis of Marginal Utilities

From the right-hand side of (24), it follows that q∗ ∈ Rmn
+ is a

minimal point of L(q, α∗, δ∗, σ∗, ε∗) in the whole space Rmn, and
hence, for all i = 1, . . . ,m, and for all j = 1, . . . , n, we have that:

∂L(q∗, α∗, δ∗, σ∗, ε∗)

∂qij

=
n∑

k=1

∂cik(q∗)

∂qij
−

n∑
k=1

∂Pik(q∗)

∂qij
−ωi

∂Bi (q
∗)

∂qij
−α∗ij +δ∗i −σ∗j +ε∗j = 0,

(26)
together with conditions (25).
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Conditions (25) and (26) represent an equivalent formulation of
variational inequality (15). Indeed, if we multiply (26) by (qij − q∗ij)
and sum up with respect to i and j , we get:

m∑
i=1

n∑
j=1

[
n∑

k=1

∂cik(q∗)

∂qij
−

n∑
k=1

∂Pik(q∗)

∂qij
− ωi

∂Bi (q
∗)

∂qij

]
(qij − q∗ij)

=
m∑

i=1

n∑
j=1

α∗ijqij −
m∑

i=1

n∑
j=1

α∗ijq
∗
ij︸ ︷︷ ︸

=0

−
m∑

i=1

δ∗i

n∑
j=1

qij − δ∗i

n∑
j=1

q∗ij︸ ︷︷ ︸
=δ∗i si



+
n∑

j=1

σ∗j

m∑
i=1

qij − σ∗j

m∑
i=1

q∗ij︸ ︷︷ ︸
=σ∗j d j

−
n∑

j=1

ε∗j

m∑
i=1

qij − ε∗j

m∑
i=1

q∗ij︸ ︷︷ ︸
=ε∗j d j


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=
m∑

i=1

n∑
j=1

α∗ijqij︸ ︷︷ ︸
≥0

−
m∑

i=1

δ∗i


n∑

j=1

qij − si︸ ︷︷ ︸
≤0

+
n∑

j=1

σ∗j


m∑

i=1

qij − d j︸ ︷︷ ︸
≥0



−
n∑

j=1

ε∗j


m∑

i=1

qij − d j︸ ︷︷ ︸
≤0

 ≥ 0. (27)
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Interpretation of the Lagrange Multipliers

We now discuss the meaning of some of the Lagrange multipliers.
We focus on the case where q∗ij > 0; namely, the relief item flow
from NGO i to demand point j is positive; otherwise, if q∗ij = 0,
the problem is not interesting. Then, from the first line in (25), we
have that α∗ij = 0.

Let us consider the situation when the constraints are not active,

that is, b∗i < 0 and d j <

m∑
i=1

q∗ij < d j .
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Interpretation of the Lagrange Multipliers

Specifically, b∗i < 0 means that
n∑

j=1

q∗ij < si ; that is, the sum of

relief items sent by the i-th NGO to all demand points is strictly
less than the total amount si at its disposal. Then, from the
second line in (25), we get: δ∗i = 0.

At the same time, from the last line in (25), d j <

m∑
i=1

q∗ij < d j ,

leads to: σ∗j = ε∗j = 0.
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Lagrange Theory and Analysis of Marginal Utilities

Hence, (26) yields:

n∑
k=1

∂cik(q∗)

∂qij
−

n∑
k=1

∂Pik(q∗)

∂qij
−ωi

∂Bi (q
∗)

∂qij
= α∗ij − δ∗i + σ∗j − ε∗j = 0

⇐⇒
n∑

k=1

∂Pik(q∗)

∂qij
+ ωi

∂Bi (q
∗)

∂qij
=

n∑
k=1

∂cik(q∗)

∂qij
. (28)

In this case, the marginal utility associated with the financial
donations plus altruism is equal to the marginal costs.
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Lagrange Theory and Analysis of Marginal Utilities

If, on the other hand,
m∑

i=1

q∗ij = d j , then σ∗j > 0. Hence, we get:

n∑
k=1

∂Pik(q∗)

∂qij
+ωi

∂Bi (q
∗)

∂qij
+σ∗j =

n∑
k=1

∂cik(q∗)

∂qij
, with σ∗j > 0, (29)

and, therefore,

n∑
k=1

∂cik(q∗)

∂qij
>

n∑
k=1

∂Pik(q∗)

∂qij
+ ωi

∂Bi (q
∗)

∂qij
, (30)

which means that the marginal costs are greater than the marginal
utility associated with the financial donations plus altruism and
this is a very bad situation.
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Lagrange Theory and Analysis of Marginal Utilities

Finally, if
m∑

i=1

q∗ij = d j , then ε∗j > 0, we have that:

n∑
k=1

∂Pik(q∗)

∂qij
+ωi

∂Bi (q
∗)

∂qij
=

n∑
k=1

∂cik(q∗)

∂qij
+ε∗j , with ε∗j > 0. (31)

Therefore,

n∑
k=1

∂cik(q∗)

∂qij
<

n∑
k=1

∂Pik(q∗)

∂qij
+ ωi

∂Bi (q
∗)

∂qij
. (32)

In this situation, the relevant marginal utility exceeds the marginal
cost and this is a desirable situation.
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Lagrange Theory and Analysis of Marginal Utilities

Analogously, if we assume that the conservation of flow equation is

active; that is, if
n∑

j=1

q∗ij = si , then δ∗i > 0. As a consequence, we

obtain:
n∑

k=1

∂Pik(q∗)

∂qij
+ωi

∂Bi (q
∗)

∂qij
=

n∑
k=1

∂cik(q∗)

∂qij
+δ∗i , with δ∗i > 0, (33)

which means that, once again, the marginal utility associated with
the financial donations plus altruism exceeds the marginal cost and
this is the desirable situation.

From the above analysis of the Lagrange multipliers and marginal
utilities at the equilibrium solution, we can conclude that the most
convenient situation, in terms of the marginal utilities, is the one

when
m∑
i=i

q∗ij = d j and
n∑

j=1

q∗ij = si .
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Lagrange Theory and Analysis of Marginal Utilities

Taking into account the Lagrange multipliers, an equivalent
variational formulation of problem (6) under constraints (4), (5),
(7), and (8) is the following one:

Find (q∗, δ∗, σ∗, ε∗) ∈ Rmn+m+2n
+ :

m∑
i=1

n∑
j=1

[
n∑

k=1

∂cik(q∗)

∂qij
−

n∑
k=1

∂Pik(q∗)

∂qij
− ωi

∂Bi (q
∗)

∂qij
+ δ∗i − σ∗j + ε∗j

]

(qij − q∗ij) +
m∑

i=1

si −
n∑

j=1

q∗ij

 (δi − δ∗i )

+
n∑

j=1

(
m∑

i=1

q∗ij − d j

)(
σj − σ∗j

)
+

n∑
j=1

(
d j −

m∑
i=1

q∗ij

)(
εj − ε∗j

)
≥ 0,

(34)
∀q ∈ Rmn

+ , ∀δ ∈ Rm
+ , ∀σ ∈ Rn

+, ∀ε ∈ Rn
+.

Nagurney, Daniele, Alvarez Flores, Caruso Disaster Relief Supply Chains



The Algorithm and Case Study
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The Algorithm

The algorithm that we apply to compute the numerical examples
comprising the case study is the Euler method of Dupuis and
Nagurney (1993).

As established therein, for convergence of the general iterative
scheme, which induces the Euler method, the sequence {aτ} must
satisfy:

∑∞
τ=0 aτ = ∞, aτ > 0, aτ → 0, as τ →∞. Conditions for

convergence for a variety of network-based problems can be found
in Nagurney and Zhang (1996) and Nagurney (2006).
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The Algorithm

Specifically, at iteration τ , the Euler method yields the following
closed form expressions for the relief item flows and the Lagrange
multipliers.

Explicit Formulae for the Euler Method Applied to the Game
Theory Model
In particular, we have the following closed form expression for the
relief item flows i = 1, . . . ,m; j = 1, . . . , n, at each iteration:

qτ+1
ij

= max{0, qτ
ij+aτ (

n∑
k=1

∂Pik(qτ )

∂qij
+ωi

∂Bi (q
τ )

∂qij
−

n∑
k=1

∂cik(qτ )

∂qij
−δτ

i +στ
j −ετ

j )};

(35)
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The Algorithm

The following are the closed form expressions for the Lagrange
multipliers associated with the supply constraints (4), respectively,
for i = 1, . . . ,m:

δτ+1
i = max{0, δτ

i + aτ (−si +
n∑

j=1

qτ
ij )}; (36)

The following are the closed form expressions for the Lagrange
multipliers associated with the lower bound demand constraints
(7), respectively, for j = 1, . . . , n:

στ+1
j = max{0, στ

j + aτ (−
m∑

i=1

qτ
ij + d j)}. (37)
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The Algorithm

The following are the closed form expressions for the Lagrange
multipliers associated with the upper bound demand constraints
(8), respectively, for j = 1, . . . , n:

ετ+1
j = max{0, ετ

j + aτ (−d̄j +
m∑

i=1

qτ
ij )}. (38)
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The Case Study - Tornados Strike Massachusetts

Our case study is inspired by a disaster consisting of a series of
tornados that hit western Massachusetts on June 1, 2011. The
largest tornado was measured at EF3. It was the worst tornado
outbreak in the area in a century (see Flynn (2011)). A wide swath
from western to central MA of about 39 miles was impacted.

The tornado killed 4 persons, injured more than 200 persons,
damaged or destroyed 1,500 homes, left over 350 people homeless
in Springfield’s MassMutual Center arena, left 50,000 customers
without power, and brought down thousands of trees.
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The Case Study - Tornados Strike Massachusetts

FEMA estimated that 1,435 residences were impacted with the
following breakdowns: 319 destroyed, 593 sustaining major
damage, 273 sustaining minor damage, and 250 otherwise affected.
FEMA estimated that the primary impact was damage to buildings
and equipment with a cost estimate of $24,782,299.

Total damage estimates from the storm exceeded $140 million, the
majority from the destruction of homes and businesses.

Especially impacted were the city of Springfield and the towns of
Monson and Brimfield. It has been estimated that, in the
aftermath, the Red Cross served about 11,800 meals and the
Salvation Army about 20,000 meals (cf. Western Massachusetts
Regional Homeland Security Advisory Council (2012)).
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Example 1 of the Case Study
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Figure 2: The Network Topology for the Case Study, Example 1
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Example 1 of the Case Study

The data for our case study, Example 1, are given below. The
supplies of meals available for delivery to the victims are:

s1 = 25, 000, s2 = 25, 000,

with the weights associated with the altruism benefit functions of
the NGOs given by:

ω1 = 1, ω2 = 1.

The financial funds functions are:

P11(q) = 1000
√

(3q11 + q21), P12(q) = 600
√

(2q12 + q22),

P13(q) = 400
√

(2q13 + q23),

P21(q) = 800
√

(4q21 + q11), P22(q) = 400
√

(2q22 + q12),

P23(q) = 200
√

(2q23 + q13).

The altruism functions are:

B1(q) = 300q11+200q12+100q13, B2(q) = 400q21+300q22+200q23.
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Example 1 of the Case Study

The cost functions, which capture distance from the main storage
depots in Springfield, are:

c11(q) = .15q2
11+2q11, c12(q) = .15q2

12+5q12, c13(q) = .15q2
13+7q13,

c21(q) = .1q2
21+2q21, c22(q) = .1q2

22+5q22, c23(q) = .1q2
23+7q23.
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Example 1 of the Case Study

The demand lower and upper bounds at the three demand points
are:

d1 = 10000, d̄1 = 20000,

d2 = 1000, d̄2 = 10000,

d3 = 1000, d̄3 = 10000.

The Euler method was implemented in FORTRAN and a Linux
system at the University of Massachusetts Amherst was used for
the computations.

The algorithm was initialized as follows: all Lagrange multipliers
were set to 0.00 and the initial relief item flows to a given demand
point were set to the lower bound divided by the number of NGOs,
which here is two.
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Example 1 of the Case Study

The Euler method yielded the following Generalized Nash
Equilibrium solution:

The equilibrium relief item flows are:

q∗11 = 3800.24, q∗12 = 668.64, q∗13 = 326.66,

q∗21 = 6199.59, q∗22 = 1490.52, q∗23 = 974.97.
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Example 1 of the Case Study

Since none of the supplies are exhausted, the computed Lagrange
multipliers associated with the supply constraints are:

δ∗1 = 0.00, δ∗2 = 0.00.

Since the demand at the first demand point, which is the city of
Springfield, is essentially at its lower bound, we have that:

σ∗1 = 835.22,

with
σ∗2 = 0.00, σ∗3 = 0.00.

All the Lagrange multipliers associated with the demand upper
bound constraints are equal to zero, that is:

ε∗1 = ε∗2 = ε∗3 = 0.00.
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Example 1 of the Case Study

In terms of the gain in financial donations, the NGOs receive the
following amounts:

3∑
j=1

P1j(q
∗) = 180, 713.23,

3∑
j=1

P2j(q
∗) = 168, 996.78.

This is reasonable since the American Red Cross tends to have
greater visibility post disasters than the Salvation Army through
the media and that was the case post the Springfield tornadoes.

Nagurney, Daniele, Alvarez Flores, Caruso Disaster Relief Supply Chains



Example 1 of the Case Study - Nash Equilibrium Version

We then proceeded to solve the Nash equilibrium counterpart of
the above Generalized Nash Equilibrium problem formulated as a
variational equilibrium. The variational inequality for the Nash
equilibrium is given in (13) and does not include the upper and
lower bound demand constraints. We solved it using the Euler
method but over the feasible set K as in (13).

The computed equilibrium relief item flows for the Nash
equilibrium are:

q∗11 = 1040.22, q∗12 = 668.64, q∗13 = 326.66,

q∗21 = 2054.51, q∗22 = 1490.52, q∗23 = 974.97.

The Lagrange multipliers associated with the supply constraints
are:

δ∗1 = 0.00, δ∗2 = 0.00.
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Example 1 of the Case Study - Nash Equilibrium Version

Observe that, without the imposition of the bounds on the
demands, Springfield, which is demand point 1 and is a big city,
receives only about one third of the volume of supplies (in this
case, meals) as needed, and as determined by the Generalized Nash
Equilibrium solution.

The American Red Cross now garners financial donations of:
119,985.66, whereas the Salvation Army stands to receive financial
donations equal to: 110,683.60. These values are significantly
lower than the analogous ones for the Generalized Nash equilibrium
model above.

NGOs, by coordinating their deliveries of needed supplies, such as
meals, can gain in terms of financial donations and attend to the
victims’ needs better by delivering in the amounts that have been
estimated to be needed in terms of lower and upper bounds.
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Example 1 of the Case Study

This more general model, for which an optimization reformulation
does not exist, in contrast to the model of Nagurney, Alvarez
Flores, and Soylu (2016), nevertheless, supports the numerical
result findings in the case study for Katrina therein.
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Example 2 of the Case Study

We now investigate the possible impact of the addition of a new
disaster relief organization, such as a church-based one, or the
Springfield Partners for Community Action, which also assisted in
disaster relief, providing meals post the tornadoes. Hence, the
network topology for case study, Example 2, is as in Figure 3. We
refer to the added NGO as “Other.” It is based in Springfield.
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Example 2 of the Case Study
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Figure 3: The Network Topology for the Case Study, Example 2
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Example 2 of the Case Study

The data are as in Example 1 but with the original Pij(q) functions
for the America Red Cross and the Salvation Army expanded as
per below and the added data for the “Other” NGO also as given
below.
The financial funds functions for are now:

P11(q) = 1000
√

(3q11 + q21 + q31), P12(q) = 600
√

(2q12 + q22 + q32), P13(q) = 400
√

(2q13 + q23 + q33),

P21(q) = 800
√

(4q21 + q11 + q31), P22(q) = 400
√

(2q22 + q12 + q32), P23(q) = 200
√

(2q23 + q13 + q33),

with those for the new NGO:

P31(q) = 400
√

(2q31 + q11 + q21), P32(q) = 200
√

(2q32 + q12 + q22), P33(q) = 100
√

(2q33 + q13 + q23).
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Example 2 of the Case Study

The weight ω3 = 1 and the altruism/benefit function for the new
NGO is:

B3(q) = 200q31 + 100q32 + 100q33.

The cost functions associated with the added NGO are:

c31(q) = .1q2
31+q31, c32(q) = .2q2

32+5q32, c33(q) = .2q2
33+7q33.
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Example 2 of the Case Study

The Euler method converged to the following Generalized Nash
Equilibrium solution:

The equilibrium relief item flows are:

q∗11 = 2506.97, q∗12 = 667.85, q∗13 = 325.59,

q∗21 = 4259.59, q∗22 = 1489.98, q∗23 = 974.45,

q∗31 = 3233.35, q∗32 = 242.42, q∗33 = 235.52.

Since none of the supplies are exhausted, the computed Lagrange
multipliers associated with the supply constraints are:

δ∗1 = 0.00, δ∗2 = 0.00, δ∗3 = 0.00.

The demand at the first demand point, which is the city of
Springfield, is at the lower bound of 10000.00. Hence, we have
that: σ∗1 = 446.70, with σ∗2 = 0.00, and σ∗3 = 0.00.
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Example 2 of the Case Study

All the Lagrange multipliers associated with the demand upper
bound constraints are equal to zero, that is:

ε∗1 = ε∗2 = ε∗3 = 0.00.

In terms of the gain in financial donations, the NGOs receive the
following amounts:

3∑
j=1

P1j(q
∗) = 173, 021.70,

3∑
j=1

P2j(q
∗) = 155, 709.50,

3∑
j=1

P3j(q
∗) = 60, 504.14.
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Example 2 of the Case Study

The volumes of relief items from the American Red Cross and the
Salvation Army to Springfield are greatly reduced, as compared to
the respective volumes in Example 1 and both original NGOs in
Example 1 now experience a reduction in financial donations
because of the increased competition for financial donations.
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Example 2 of the Case Study - Nash Equilibrium Version

For completeness, we also solved the Nash equilibrium counterpart
for Example 2.

The Nash equilibrium relief item flows are:

q∗11 = 1036.27, q∗12 = 667.85, q∗13 = 325.59,

q∗21 = 2051.17, q∗22 = 1489.98, q∗23 = 974.45,

q∗31 = 1009.61, q∗32 = 242.42, q∗33 = 235.52.

The financial donations of the NGOs are now the following:

3∑
j=1

P1j(q
∗) = 129, 037.42,

3∑
j=1

P2j(q
∗) = 115, 964.80,

3∑
j=1

P3j(q
∗) = 43, 07.16.
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Example 2 of the Case Study

In Example 2 of our case study, we, again, see that the NGOs
garner greater financial funds through the Generalized Nash
Equilibrium solution, rather than the Nash equilibrium one.

Moreover, the needs of the victims are met under the Generalized
Nash Equilibrium solution.
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Summary and Conclusions
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Summary and Conclusions

• We constructed a new Generalized Nash Equilibrium (GNE)
model for disaster relief, which contains both logistical as well as
financial funds aspects. The NGOs compete for financial funds
through their visibility in the response to a disaster and provide
needed supplies to the victims. A coordinating body imposes upper
bounds and lower bounds for the supplies at the various demand
points to guarantee that the victims receive the amounts at the
points of demand that are needed, and without excesses that can
add to the congestion and materiel convergence.

• We use a variational equilibrium formulation of the Generalized
Nash Equilibrium, which is then amenable to solution via
variational inequality algorithms. We provide qualitative properties
of the equilibrium pattern and also utilize Lagrange theory for the
analysis of the NGOs’ marginal utilities.
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Summary and Conclusions

• The computational scheme yields closed form expressions, at
each iteration, for the product flows and the Lagrange multipliers.

• The algorithm is then applied to a case study, inspired by rare
tornadoes that caused devastation in parts of western and central
Massachusetts in 2011. For completeness, we also compute the
solution to the Nash equilibrium counterparts of the two examples
making up the case study, in which the common demand bound
constraints are removed.
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Summary and Conclusions

• The case study reveals that victims may not receive the required
amounts of supplies, without the imposition of the demand
bounds. These results provide further support for the need for
greater coordination in disaster relief.

• Moreover, by delivering the required amounts of supplies the
NGOs can also garner greater financial donations.
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THANK YOU!

For more information, see:
http://supernet.isenberg.umass.edu
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