A Competitive Multiperiod Supply Chain Network Model with Freight Carriers and Green Technology Investment Option

Jose M. Cruz

Sara Saberi (WPI), Joseph Sarkis (WPI), Anna Nagurney (UMass)

School of Business University of Connecticut Hartford, CT 06119

EURO 2028 July 8-11, 2018, Valencia, Spain

This presentation is based on the paper:

Saberi, S., Cruz, J.M., Sarkis, J., Nagurney, A. (2017). A Competitive Multiperiod Supply Chain Network Model with Freight Carriers and Green Technology Investment Option. Accepted for publication in *European Journal of Operational Research*.

Motivation

Increase environmental awareness and improve ecological footprint

- Walmart plan for CO2 reduction with its extended supply chain
- Siemens (2015) will spend nearly \$110 million to lower the company's emissions. To reduce carbon emissions in half by 2020 and save between \$ 20 to \$30 million annually.
- Dell plan to use packaging material made of wheat straw; This new material uses 40% less energy to produce, 90% less water, and costs less to make than traditional packaging
- Literature on sustainable supply chain management focused on environmental decision making and closed-loop supply chains

Motivation

- Increase environmental awareness and improve ecological footprint
- Walmart plan for CO2 reduction with its extended supply chain
- Siemens (2015) will spend nearly \$110 million to lower the company's emissions. To reduce carbon emissions in half by 2020 and save between \$ 20 to \$30 million annually.
- Dell plan to use packaging material made of wheat straw; This new material uses 40% less energy to produce, 90% less water, and costs less to make than traditional packaging
- Literature on sustainable supply chain management focused on environmental decision making and closed-loop supply chains

- Increase environmental awareness and improve ecological footprint
- Walmart plan for CO2 reduction with its extended supply chain
- Siemens (2015) will spend nearly \$110 million to lower the company's emissions. To reduce carbon emissions in half by 2020 and save between \$ 20 to \$30 million annually.
- Dell plan to use packaging material made of wheat straw; This new material uses 40% less energy to produce, 90% less water, and costs less to make than traditional packaging
- Literature on sustainable supply chain management focused on environmental decision making and closed-loop supply chains

- Increase environmental awareness and improve ecological footprint
- Walmart plan for CO2 reduction with its extended supply chain
- Siemens (2015) will spend nearly \$110 million to lower the company's emissions. To reduce carbon emissions in half by 2020 and save between \$ 20 to \$30 million annually.
- Dell plan to use packaging material made of wheat straw; This new material uses 40% less energy to produce, 90% less water, and costs less to make than traditional packaging
- Literature on sustainable supply chain management focused on environmental decision making and closed-loop supply chains

- Increase environmental awareness and improve ecological footprint
- Walmart plan for CO2 reduction with its extended supply chain
- Siemens (2015) will spend nearly \$110 million to lower the company's emissions. To reduce carbon emissions in half by 2020 and save between \$ 20 to \$30 million annually.
- Dell plan to use packaging material made of wheat straw; This new material uses 40% less energy to produce, 90% less water, and costs less to make than traditional packaging
- Literature on sustainable supply chain management focused on environmental decision making and closed-loop supply chains

- products and inventory quantities
- product shipping costs
- energy rating
- and initial technology investments
- Explicit integration of environmental preferences of retailers and manufacturers in selecting their manufacturers and carriers
- Consumer awareness of green technology and foot print outcomes in spatial price equilibrium conditions

- products and inventory quantities
- product shipping costs
- energy rating
- and initial technology investments
- Explicit integration of environmental preferences of retailers and manufacturers in selecting their manufacturers and carriers
- Consumer awareness of green technology and foot print outcomes in spatial price equilibrium conditions

- Explicitly model competition among manufacturing firms, retail stores, and freight carriers in terms of:
 - products and inventory quantities
 - product shipping costs
 - energy rating
 - and initial technology investments
- Explicit integration of environmental preferences of retailers and manufacturers in selecting their manufacturers and carriers
- Consumer awareness of green technology and foot print outcomes in spatial price equilibrium conditions

- Explicitly model competition among manufacturing firms, retail stores, and freight carriers in terms of:
 - products and inventory quantities
 - product shipping costs
 - energy rating
 - and initial technology investments
- Explicit integration of environmental preferences of retailers and manufacturers in selecting their manufacturers and carriers
- Consumer awareness of green technology and foot print outcomes in spatial price equilibrium conditions

- products and inventory quantities
- product shipping costs
- energy rating
- and initial technology investments
- Explicit integration of environmental preferences of retailers and manufacturers in selecting their manufacturers and carriers
- Consumer awareness of green technology and foot print outcomes in spatial price equilibrium conditions

- products and inventory quantities
- product shipping costs
- energy rating
- and initial technology investments
- Explicit integration of environmental preferences of retailers and manufacturers in selecting their manufacturers and carriers
- Consumer awareness of green technology and foot print outcomes in spatial price equilibrium conditions

- products and inventory quantities
- product shipping costs
- energy rating
- and initial technology investments
- Explicit integration of environmental preferences of retailers and manufacturers in selecting their manufacturers and carriers
- Consumer awareness of green technology and foot print outcomes in spatial price equilibrium conditions

- Modeling supply chain decision making and management from operational, tactical, and strategic business perspectives (Brandenburg et al. (2014); Ding et al. (2016); Fahimnia et al. (2015); Ouardighi et al. (2016); Zhu and He (2017))
- Environmental decision making in supply chain management processes and associated optimization from a number of dimensions (Nagurney et al. (2007); Cruz (2008); Frota Neto et al. (2008))
- Utilizing regulatory policies related to internalizing externalities such as including emission taxes (Cruz and Liu (2011); Dhavale and Sarkis (2015); Diabat and Simchi-Levi (2009); Zakeri et al. (2015))
- The investigations were limited to the static case and miss network equilibrium models

- Modeling supply chain decision making and management from operational, tactical, and strategic business perspectives (Brandenburg et al. (2014); Ding et al. (2016); Fahimnia et al. (2015); Ouardighi et al. (2016); Zhu and He (2017))
- Environmental decision making in supply chain management processes and associated optimization from a number of dimensions (Nagurney et al. (2007); Cruz (2008); Frota Neto et al. (2008))
- Utilizing regulatory policies related to internalizing externalities such as including emission taxes (Cruz and Liu (2011); Dhavale and Sarkis (2015); Diabat and Simchi-Levi (2009); Zakeri et al. (2015))
- The investigations were limited to the static case and miss network equilibrium models

- Modeling supply chain decision making and management from operational, tactical, and strategic business perspectives (Brandenburg et al. (2014); Ding et al. (2016); Fahimnia et al. (2015); Ouardighi et al. (2016); Zhu and He (2017))
- Environmental decision making in supply chain management processes and associated optimization from a number of dimensions (Nagurney et al. (2007); Cruz (2008); Frota Neto et al. (2008))
- Utilizing regulatory policies related to internalizing externalities such as including emission taxes (Cruz and Liu (2011); Dhavale and Sarkis (2015); Diabat and Simchi-Levi (2009); Zakeri et al. (2015))
- The investigations were limited to the static case and miss network equilibrium models

- Modeling supply chain decision making and management from operational, tactical, and strategic business perspectives (Brandenburg et al. (2014); Ding et al. (2016); Fahimnia et al. (2015); Ouardighi et al. (2016); Zhu and He (2017))
- Environmental decision making in supply chain management processes and associated optimization from a number of dimensions (Nagurney et al. (2007); Cruz (2008); Frota Neto et al. (2008))
- Utilizing regulatory policies related to internalizing externalities such as including emission taxes (Cruz and Liu (2011); Dhavale and Sarkis (2015); Diabat and Simchi-Levi (2009); Zakeri et al. (2015))
- The investigations were limited to the static case and miss network equilibrium models

Figure: The supply chain network with freight carriers

Multiperiod Green Supply Chain-Freight Carrier Network

Figure: The supply chain network with freight carriers

Notation	Definition
δ_{mi}	Energy rating of manufacturer <i>i</i>
δ_{co}	Energy rating of carrier o
δ_{rj}	Energy rating of retailer <i>j</i>
δ_{max}	Maximum possible level of energy rating.

Ma

$$\text{ximize} \quad \sum_{t=1}^{T} \frac{1}{(1+r)^{t}} \left\{ \sum_{j=1}^{N} p_{ijt}^{1*} q_{ijt}^{1} - PC_{it}(S_{t}, \delta_{mi}) - \sum_{j=1}^{N} TC_{ijt}(q_{ijt}^{1}, \delta_{mi}) - WC_{it}(I_{it}, \delta_{mi}) - \sum_{j=1}^{N} \sum_{o=1}^{O} R_{ijot}(p_{t}^{2*}, \delta_{co}) p_{ijot}^{2*} \right\} - TSI_{i}(\delta_{mi})$$

$$(1)$$

$$S_{i1} - I_{i1} \ge \sum_{j=1}^{N} q_{ij1}^{1}$$
(2)

$$I_{i(t-1)} + S_{it} - I_{it} \ge \sum_{j=1}^{N} q_{ijt}^{1}, \qquad \forall t = 2, \dots, T$$
(3)

$$q_{ijt}^{1} = \sum_{o=1}^{O} R_{ijot}(p_{t}^{2}, \delta_{co}), \qquad \forall j, t$$

$$\tag{4}$$

$$\delta_{mi} \le \delta_{co}, \qquad \forall o \tag{5}$$

Ma

$$\begin{aligned} \text{aximize} \quad \sum_{t=1}^{T} \frac{1}{(1+r)^{t}} \left\{ \sum_{j=1}^{N} p_{ijt}^{1*} q_{ijt}^{1} - PC_{it}(S_{t}, \delta_{mi}) - \sum_{j=1}^{N} TC_{ijt}(q_{ijt}^{1}, \delta_{mi}) \right. \\ \left. - WC_{it}(I_{it}, \delta_{mi}) - \sum_{j=1}^{N} \sum_{o=1}^{O} R_{ijot}(p_{t}^{2*}, \delta_{co}) p_{ijot}^{2*} \right\} - TSI_{i}(\delta_{mi}) \end{aligned}$$

$$(1)$$

subject to:

$$S_{i1} - I_{i1} \ge \sum_{j=1}^{N} q_{ij1}^{1}$$
 (2)

$$I_{i(t-1)} + S_{it} - I_{it} \ge \sum_{j=1}^{N} q_{ijt}^{1}, \quad \forall t = 2, \dots, T$$
 (3)

$$q_{ijt}^{1} = \sum_{o=1}^{O} R_{ijot}(p_{t}^{2}, \delta_{co}), \qquad \forall j, t$$

$$\tag{4}$$

$$\delta_{mi} \le \delta_{co}, \qquad \forall o \tag{5}$$

Ma

subject to:

$$S_{i1} - I_{i1} \ge \sum_{j=1}^{N} q_{ij1}^{1}$$
 (2)

$$I_{i(t-1)} + S_{it} - I_{it} \ge \sum_{j=1}^{N} q_{ijt}^{1}, \quad \forall t = 2, ..., T$$
 (3)

$$q_{ijt}^{1} = \sum_{o=1}^{O} R_{ijot}(p_{t}^{2}, \delta_{co}), \qquad \forall j, t$$
(4)

Ma

subject to:

$$S_{i1} - I_{i1} \ge \sum_{j=1}^{N} q_{ij1}^{1}$$
 (2)

$$I_{i(t-1)} + S_{it} - I_{it} \ge \sum_{j=1}^{N} q_{ijt}^{1}, \quad \forall t = 2, ..., T$$
 (3)

$$q_{ijt}^{1} = \sum_{o=1}^{O} R_{ijot}(p_{t}^{2}, \delta_{co}), \qquad \forall j, t$$
(4)

$$\delta_{mi} \le \delta_{co}, \qquad \forall o \tag{5}$$

and the nonnegativity constraints: $q_{ijt}^1 \ge 0, \ S_{it} \ge 0, \ I_{it} \ge 0, \ 0 \le \delta_{mi} \le \delta_{max}, \ \forall j, t.$

$$\begin{aligned} \text{Maximize} \quad \sum_{t=1}^{T} \frac{1}{(1+r)^{t}} \left\{ \sum_{i=1}^{M} \sum_{j=1}^{N} R_{ijot}(p_{t}^{2}, \delta_{co}) p_{ijot}^{2} - \sum_{i=1}^{M} \sum_{j=1}^{N} CC_{ijot}(q_{ijot}^{2}, \delta_{co}) q_{ijot}^{2} - \sum_{i=1}^{M} AC_{iot}(B_{iot}, \delta_{co}) \right\} - TSI_{o}(\delta_{co}) \end{aligned}$$
(6)

$$\sum_{j=1}^{N} R_{ijo1}(p_1^2, \delta_{co}) - B_{io1} \ge \sum_{j=1}^{N} q_{ijo1}^2$$
(7)

$$B_{io(t-1)} + \sum_{j=1}^{N} R_{ijot}(p_t^2, \delta_{co}) - B_{iot} \ge \sum_{j=1}^{N} q_{ijot}^2, \qquad \forall t = 2, \dots, T$$
(8)

$$\sum_{t=1}^{T} \sum_{o=1}^{O} q_{ijot}^2 = \sum_{t=1}^{T} q_{ijt}^1, \qquad \forall i, j$$
(9)

and

$$p_{ijot}^2 \ge 0, \; B_{iot} \ge 0, \; q_{ijot}^2 \ge 0, \; 0 \le \delta_{co} \le \delta_{max}, \qquad orall i, j, t.$$

$$\begin{aligned} \text{Maximize} \quad \sum_{t=1}^{T} \frac{1}{(1+r)^{t}} \left\{ \sum_{i=1}^{M} \sum_{j=1}^{N} R_{ijot}(p_{t}^{2}, \delta_{co}) p_{ijot}^{2} - \sum_{i=1}^{M} \sum_{j=1}^{N} CC_{ijot}(q_{ijot}^{2}, \delta_{co}) q_{ijot}^{2} - \sum_{i=1}^{M} AC_{iot}(B_{iot}, \delta_{co}) \right\} - TSI_{o}(\delta_{co}) \end{aligned}$$
(6)

$$\sum_{j=1}^{N} R_{ijo1}(p_1^2, \delta_{co}) - B_{io1} \ge \sum_{j=1}^{N} q_{ijo1}^2$$
(7)

$$B_{io(t-1)} + \sum_{j=1}^{N} R_{ijot}(p_t^2, \delta_{co}) - B_{iot} \ge \sum_{j=1}^{N} q_{ijot}^2, \quad \forall t = 2, \dots, T$$
(8)

$$\sum_{t=1}^{T} \sum_{o=1}^{O} q_{ijot}^{2} = \sum_{t=1}^{T} q_{ijt}^{1}, \qquad \forall i, j$$
(9)

and

$$p_{ijot}^2 \geq 0, \; B_{iot} \geq 0, \; q_{ijot}^2 \geq 0, \; 0 \leq \delta_{co} \leq \delta_{max}, \qquad orall i,j,t.$$

$$\begin{aligned} \text{Maximize} \quad \sum_{t=1}^{T} \frac{1}{(1+r)^{t}} \left\{ \sum_{i=1}^{M} \sum_{j=1}^{N} R_{ijot}(p_{t}^{2}, \delta_{co}) p_{ijot}^{2} - \sum_{i=1}^{M} \sum_{j=1}^{N} CC_{ijot}(q_{ijot}^{2}, \delta_{co}) q_{ijot}^{2} - \sum_{i=1}^{M} AC_{iot}(B_{iot}, \delta_{co}) \right\} - TSI_{o}(\delta_{co}) \end{aligned}$$
(6)

$$\sum_{j=1}^{N} R_{ijo1}(p_1^2, \delta_{co}) - B_{io1} \ge \sum_{j=1}^{N} q_{ijo1}^2$$
(7)

$$B_{io(t-1)} + \sum_{j=1}^{N} R_{ijot}(p_t^2, \delta_{co}) - B_{iot} \ge \sum_{j=1}^{N} q_{ijot}^2, \qquad \forall t = 2, \dots, T$$
(8)

$$\sum_{t=1}^{T} \sum_{o=1}^{O} q_{ijot}^{2} = \sum_{t=1}^{T} q_{ijt}^{1}, \qquad \forall i, j$$
(9)

and

$$p_{ijot}^2 \geq 0, \; B_{iot} \geq 0, \; q_{ijot}^2 \geq 0, \; 0 \leq \delta_{co} \leq \delta_{max}, \qquad orall i,j,t.$$

We modify it to two inequality constraints as:

Generalized Nash equilibrium problem (GNEP)

$$\sum_{t=1}^{T} \sum_{o=1}^{O} q_{ijot}^{2} = \sum_{t=1}^{T} q_{ijt}^{1}, \qquad \forall i, j$$
(9)

We modify it to two inequality constraints as:

$$\sum_{t=1}^{T} \sum_{o=1}^{O} q_{ijot}^{2} \ge \sum_{t=1}^{T} q_{ijt}^{1}, \qquad \forall i, j$$
(10)

and

$$\sum_{t=1}^{T} \sum_{o=1}^{O} q_{ijot}^{2} \le \sum_{t=1}^{T} q_{ijt}^{1}, \qquad \forall i, j$$
(11)

Τ

Maximize

$$\sum_{t=1}^{r} \frac{1}{(1+r)^{t}} \left\{ \rho_{jt}^{3*} \sum_{k=1}^{r} q_{jkt}^{3} - IC_{jt}(Z_{jt}, \delta_{rj}) - HC_{jt}(Y_{t}, \delta_{rj}) - \sum_{k=1}^{K} TC_{jkt}(q_{jkt}^{3}, \delta_{rj}) - \sum_{i=1}^{M} \rho_{ijt}^{1*} q_{ijt}^{1} \right\} - TSI_{j}(\delta_{rj})$$
(12)

subject to:

$$\sum_{t=1}^{T} Y_{jt} = \sum_{t=1}^{T} \sum_{i=1}^{M} \sum_{o=1}^{O} q_{ijot}^{2}$$
(13)

$$\sum_{t=1}^{T} Y_{jt} = \sum_{t=1}^{T} \sum_{i=1}^{M} q_{ijt}^{1}$$
(14)

$$Y_{j1} - Z_{j1} \ge \sum_{k=1}^{K} q_{jk1}^3$$
(15)

$$Z_{j(t-1)} + Y_{jt} - Z_{jt} \ge \sum_{k=1}^{K} q_{jkt}^3, \quad \forall t = 2, \dots, T$$
 (16)

$$\delta_{rj} \leq \delta_{mi}, \quad \forall i$$
(17)

and $q_{jkt}^3 \geq 0,\, Y_{jt} \geq 0,\, Z_{jt} \geq 0,\, 0 \leq \delta_{rj} \leq \delta_{max} \; orall k,\, t$.

ĸ

$$\begin{aligned} \text{Maximize} \quad \sum_{t=1}^{T} \frac{1}{(1+r)^{t}} \left\{ p_{jt}^{3*} \sum_{k=1}^{K} q_{jkt}^{3} - IC_{jt}(Z_{jt}, \delta_{rj}) - HC_{jt}(Y_{t}, \delta_{rj}) - \\ - \sum_{k=1}^{K} TC_{jkt}(q_{jkt}^{3}, \delta_{rj}) - \sum_{i=1}^{M} p_{ijt}^{1*} q_{ijt}^{1} \right\} - TSI_{j}(\delta_{rj}) \end{aligned} \tag{12}$$

$$\sum_{t=1}^{T} Y_{jt} = \sum_{t=1}^{T} \sum_{i=1}^{M} \sum_{o=1}^{O} q_{ijot}^{2}$$
(13)

$$\sum_{t=1}^{T} Y_{jt} = \sum_{t=1}^{T} \sum_{i=1}^{M} q_{ijt}^{1}$$
(14)

$$Y_{j1} - Z_{j1} \ge \sum_{k=1}^{K} q_{jk1}^3$$
(15)

$$Z_{j(t-1)} + Y_{jt} - Z_{jt} \ge \sum_{k=1}^{K} q_{jkt}^3, \quad \forall t = 2, \dots, T$$
 (16)

$$\delta_{rj} \leq \delta_{mi}, \quad \forall i$$
(17)

$$\begin{aligned} \text{Maximize} \quad \sum_{t=1}^{T} \frac{1}{(1+r)^{t}} \left\{ p_{jt}^{3*} \sum_{k=1}^{K} q_{jkt}^{3} - IC_{jt}(Z_{jt}, \delta_{rj}) - HC_{jt}(Y_{t}, \delta_{rj}) - \\ - \sum_{k=1}^{K} TC_{jkt}(q_{jkt}^{3}, \delta_{rj}) - \sum_{i=1}^{M} p_{ijt}^{1*} q_{ijt}^{1} \right\} - TSI_{j}(\delta_{rj}) \end{aligned} \tag{12}$$

$$\sum_{t=1}^{T} Y_{jt} = \sum_{t=1}^{T} \sum_{i=1}^{M} \sum_{o=1}^{O} q_{ijot}^{2}$$
(13)

$$\sum_{t=1}^{T} Y_{jt} = \sum_{t=1}^{T} \sum_{i=1}^{M} q_{ijt}^{1}$$
(14)

$$Y_{j1} - Z_{j1} \ge \sum_{k=1}^{K} q_{jk1}^{3}$$
(15)

$$Z_{j(t-1)} + Y_{jt} - Z_{jt} \ge \sum_{k=1}^{K} q_{jkt}^{3}, \quad \forall t = 2, \dots, T$$
 (16)

$$\delta_{rj} \leq \delta_{mi}, \quad \forall i$$
 (17)

$$\begin{aligned} \text{Maximize} \quad \sum_{t=1}^{T} \frac{1}{(1+r)^{t}} \left\{ p_{jt}^{3*} \sum_{k=1}^{K} q_{jkt}^{3} - IC_{jt}(Z_{jt}, \delta_{rj}) - HC_{jt}(Y_{t}, \delta_{rj}) - \\ - \sum_{k=1}^{K} TC_{jkt}(q_{jkt}^{3}, \delta_{rj}) - \sum_{i=1}^{M} p_{ijt}^{1*} q_{ijt}^{1} \right\} - TSI_{j}(\delta_{rj}) \end{aligned} \tag{12}$$

$$\sum_{t=1}^{T} Y_{jt} = \sum_{t=1}^{T} \sum_{i=1}^{M} \sum_{o=1}^{O} q_{ijot}^{2}$$
(13)

$$\sum_{t=1}^{T} Y_{jt} = \sum_{t=1}^{T} \sum_{i=1}^{M} q_{ijt}^{1}$$
(14)

$$Y_{j1} - Z_{j1} \ge \sum_{k=1}^{K} q_{jk1}^{3}$$
(15)

$$Z_{j(t-1)} + Y_{jt} - Z_{jt} \ge \sum_{k=1}^{K} q_{jkt}^{3}, \quad \forall t = 2, \dots, T$$
 (16)

$$\delta_{rj} \leq \delta_{mi}, \quad \forall i$$
 (17)

and $q_{jkt}^3 \ge 0$, $Y_{jt} \ge 0$, $Z_{jt} \ge 0$, $0 \le \delta_{rj} \le \delta_{max} \ \forall k, t$.

The Behavior of Consumers within the Demand Markets

$$\frac{1}{(1+r)^{t}} [p_{jt}^{3*} + SC_{jkt}(q_{jkt}^{3*})] \begin{cases} = \frac{1}{(1+r)^{t}} p_{kjt}^{4*}, & \text{if} \quad q_{jkt}^{3*} > 0, \\ \\ \ge \frac{1}{(1+r)^{t}} p_{kjt}^{4*}, & \text{if} \quad q_{jkt}^{3*} = 0 \end{cases}$$
(18)

and

$$D_{kjt}(p^{4*}, \delta_{rj}^{*}) \begin{cases} = q_{jkt}^{3*}, & \text{if } p_{kjt}^{4*} > 0, \\ \\ \leq q_{jkt}^{3*}, & \text{if } p_{kjt}^{4*} = 0. \end{cases}$$
(19)

Conditions (18) and (19) must hold simultaneously for all demand markets. These conditions correspond to the well-known spatial price equilibrium conditions (cf. Nagurney (1999); Takayama and Judge (1964)).

The Behavior of Consumers within the Demand Markets

$$\frac{1}{(1+r)^{t}}[p_{jt}^{3*} + SC_{jkt}(q_{jkt}^{3*})] \begin{cases} = \frac{1}{(1+r)^{t}} \rho_{kjt}^{4*}, & \text{if} \quad q_{jkt}^{3*} > 0, \\ \\ \ge \frac{1}{(1+r)^{t}} \rho_{kjt}^{4*}, & \text{if} \quad q_{jkt}^{3*} = 0 \end{cases}$$
(18)

and

$$D_{kjt}(p^{4*}, \delta_{rj}^{*}) \begin{cases} = q_{jkt}^{3*}, & \text{if } p_{kjt}^{4*} > 0, \\ \\ \leq q_{jkt}^{3*}, & \text{if } p_{kjt}^{4*} = 0. \end{cases}$$
(19)

Conditions (18) and (19) must hold simultaneously for all demand markets. These conditions correspond to the well-known spatial price equilibrium conditions (cf. Nagurney (1999); Takayama and Judge (1964)).

The Behavior of Consumers within the Demand Markets

$$\frac{1}{(1+r)^{t}} [p_{jt}^{3*} + SC_{jkt}(q_{jkt}^{3*})] \begin{cases} = \frac{1}{(1+r)^{t}} p_{kjt}^{4*}, & \text{if } q_{jkt}^{3*} > 0, \\ \ge \frac{1}{(1+r)^{t}} p_{kjt}^{4*}, & \text{if } q_{jkt}^{3*} = 0 \end{cases}$$
(18)

and

$$D_{kjt}(p^{4*}, \delta_{rj}^{*}) \begin{cases} = q_{jkt}^{3*}, & \text{if } p_{kjt}^{4*} > 0, \\ \\ \leq q_{jkt}^{3*}, & \text{if } p_{kjt}^{4*} = 0. \end{cases}$$
(19)

Conditions (18) and (19) must hold simultaneously for all demand markets. These conditions correspond to the well-known spatial price equilibrium conditions (cf. Nagurney (1999); Takayama and Judge (1964)).

Theorem 1: Variational Inequality Formulation

The equilibrium conditions governing the multiperiod supply chain - freight carrier model are equivalent to the solution of the variational inequality problem given by: determine $(q^{1*}, q^{2*}, q^{3*}, S^*, l^*, \delta_m^*, p^{2*}, B^*, \delta_c^*, Y^*, Z^*, \delta_r^*, p^{4*}, \mu^{1*}, \mu^{2*}, \mu^{3*}, \theta^*, \eta^{1*}, \eta^{2*}, \nu^{1*}, \nu^{2*}, \gamma^*) \in \mathcal{K}$, satisfying

$$\langle F(X^*), X - X^* \rangle \ge 0, \quad \forall X \in \mathcal{K}$$
 (20)

where

 $X \equiv (q^{1}, q^{2}, q^{3}, S, I, \delta_{m}, p^{2}, B, \delta_{c}, Y, Z, \delta_{r}, p^{4}, \mu^{1}, \mu^{2}, \mu^{3}, \theta, \eta^{1}, \eta^{2}, \nu^{1}, \nu^{2}, \gamma)$

$$\begin{split} F(X) &\equiv (F_{q_{ijt}^{1}}, F_{q_{ijot}^{2}}, F_{q_{jkt}^{3}}, F_{S_{it}}, F_{I_{it}}, F_{\delta_{mi}}, F_{\rho_{ijot}^{2}}, F_{B_{iot}}, F_{\delta_{co}}, F_{Y_{jt}}, F_{Z_{jt}}, F_{\delta_{ij}}, F_{\rho_{jkt}^{4}}, \\ F_{\mu_{in}^{1}}, F_{\mu_{in}^{2}}, F_{\mu_{ij}^{3}}, F_{\theta_{iit}}, F_{\eta^{1}}, F_{\eta^{2}}, F_{\nu^{1}}, F_{\nu^{2}}, F_{\gamma}) \end{split}$$

. The term $\langle\cdot,\cdot
angle$ denotes the inner product in N-dimensional Euclidean space.

The Modified Projection Method

Step 0: Initialization

Start with $X^0 \in \mathcal{K}$, as a feasible initial point, and let $\tau = 1$. Set ω such that $0 < \omega < \frac{1}{L}$, where L is the Lipschitz constant for function F(X).

Step 1: Computation

Compute \bar{X}^{τ} by solving the variational inequality subproblem:

$$\langle \bar{X}^{\tau} + \omega F(X^{\tau-1}) - X^{\tau-1}, X - \bar{X}^{\tau} \rangle \ge 0, \qquad \forall X \in \mathcal{K}.$$
 (21)

Step 2: Adaptation

Compute X^{τ} by solving the variational inequality subproblem:

$$\langle X^{\tau} + \omega F(\bar{X}^{\tau}) - X^{\tau-1}, X - X^{\tau} \rangle \ge 0, \qquad \forall X \in \mathcal{K}.$$
 (22)

Numerical Examples

Example 1

Two manufacturers, M = 2; two retailers, N = 2; two carriers, O = 2; and two demand markets, K = 2; competing over five planning periods, T = 5.

Figure: Example 1 Supply Chain Network

The energy rating, δ , can be zero and should not be more than 1, $(\delta_{max} = 1)$

The cost functions are:

$$\begin{aligned} & PC_{it}(S_{it}, \delta_{mi}) = \alpha^{it}S_{1t} + 0.05(S_{it})^2 - \delta_{mi}S_{it}, \qquad i = 1, 2, t = 1, \dots, 5. \\ & \alpha^{1t} = [2, 2.5, 3, 3.5, 4], \qquad \alpha^{2t} = [3, 4, 4.5, 5, 5.5]. \\ & WC_{it}(I_{it}, \delta_{mi}) = 1.05I_{it} + 0.002(I_{it})^2 - \delta_{mi}I_{it} + 10, \qquad i = 1, 2; t = 1, \dots, 5. \\ & TC_{ijt}(q_{ijt}, \delta_{mi}) = 1.5q_{ijt} + 0.8(q_{ijt})^2 - \delta_{mi}q_{ijt}, \qquad i = 1, 2; j = 1, 2; t = 1, \dots, 5. \\ & HC_{jt}(Y_{jt}, \delta_{ij}) = 3Y_{jt} + 0.05(Y_{jt})^2 - \delta_{ij}Y_{jt}, \qquad j = 1, 2; t = 1, \dots, 5. \\ & HC_{jt}(Z_{jt}, \delta_{ij}) = 1.01Z_{jt} + 0.002(Z_{jt})^2 - \delta_{ij}Z_{jt}, \qquad t = 1, \dots, 5. \\ & IC_{jt}(Z_{jt}, \delta_{ij}) = 1.01Z_{jt} + 0.002(Z_{jt})^2 - \delta_{ij}Z_{jt}, \qquad t = 1, \dots, 5. \\ & R_{ijot}(\rho_t^2, \delta_{co}) = 20 - 1.5\rho_{ijot}^2 + 0.5\sum_{c \neq o} \rho_{ijct}^2 + 3\delta_{co}, \qquad i = 1, 2; j = 1, 2; o = 1, 2; t = 1, \dots, 5. \\ & CC_{ijot}(q_{ijot}^2, \delta_{co}) = 1.1q_{ijot}^2 + 0.003q_{ijot}^2 - \delta_{co}q_{ijot}^2, \qquad i = 1, 2; j = 1, 2; o = 1, 2; t = 1, \dots, 5. \\ & AC_{iot}(B_{iot}, \delta_{co}) = B_{iot} + 0.001(B_{iot})^2 - \delta_{co}B_{iot}, \qquad i = 1, 2; o = 1, 2; t = 1, \dots, 5. \end{aligned}$$

The investment cost functions for manufacturers, retailers, and carriers are defined, respectively, as:

$$TSI_{i}^{1} = 500 + 300(\delta_{mi})^{2}, \qquad i = 1, 2.$$

$$TSI_{j}^{3} = 500 + 200(\delta_{ij})^{2}, \qquad j = 1, 2.$$

$$TSI_{o}^{2} = 500 + 200(\delta_{co})^{2}, \qquad o = 1, 2.$$

The cost functions are:

$$\begin{aligned} &PC_{it}(S_{it}, \delta_{mi}) = \alpha^{it}S_{1t} + 0.05(S_{it})^2 - \delta_{mi}S_{it}, \qquad i = 1, 2, t = 1, \dots, 5. \\ &\alpha^{1t} = [2, 2.5, 3, 3.5, 4], \qquad \alpha^{2t} = [3, 4, 4.5, 5, 5.5]. \\ &WC_{it}(I_{it}, \delta_{mi}) = 1.05I_{it} + 0.002(I_{it})^2 - \delta_{mi}I_{it} + 10, \qquad i = 1, 2; t = 1, \dots, 5. \\ &TC_{ijt}(q_{ijt}, \delta_{mi}) = 1.5q_{ijt} + 0.8(q_{ijt})^2 - \delta_{mi}q_{ijt}, \qquad i = 1, 2; j = 1, 2; t = 1, \dots, 5. \\ &HC_{jt}(Y_{jt}, \delta_{ij}) = 3Y_{jt} + 0.05(Y_{jt})^2 - \delta_{ij}Y_{jt}, \qquad j = 1, 2; t = 1, \dots, 5. \\ &HC_{jt}(Z_{jt}, \delta_{ij}) = 1.01Z_{jt} + 0.002(Z_{jt})^2 - \delta_{ij}Z_{jt}, \qquad t = 1, \dots, 5. \\ &IC_{jt}(Z_{jt}, \delta_{ij}) = 1.01Z_{jt} + 0.002(Z_{jt})^2 - \delta_{ij}Z_{jt}, \qquad t = 1, \dots, 5. \\ &R_{ijot}(\rho_t^2, \delta_{co}) = 20 - 1.5\rho_{ijot}^2 + 0.5\sum_{c \neq o} \rho_{ijct}^2 + 3\delta_{co}, \qquad i = 1, 2; j = 1, 2; o = 1, 2; t = 1, \dots, 5. \\ &CC_{ijot}(q_{ijot}^2, \delta_{co}) = 1.1q_{ijot}^2 + 0.003q_{ijot}^2 - \delta_{co}q_{ijot}^2, \qquad i = 1, 2; j = 1, 2; o = 1, 2; t = 1, \dots, 5. \\ &AC_{iot}(B_{iot}, \delta_{co}) = B_{iot} + 0.001(B_{iot})^2 - \delta_{co}B_{iot}, \qquad i = 1, 2; o = 1, 2; t = 1, \dots, 5. \end{aligned}$$

The investment cost functions for manufacturers, retailers, and carriers are defined, respectively, as:

$$TSI_{i}^{1} = 500 + 300(\delta_{mi})^{2}, \qquad i = 1, 2.$$

$$TSI_{j}^{3} = 500 + 200(\delta_{ij})^{2}, \qquad j = 1, 2.$$

$$TSI_{o}^{2} = 500 + 200(\delta_{co})^{2}, \qquad o = 1, 2.$$

The cost functions are:

$$\begin{split} & PC_{it}(S_{it}, \delta_{mi}) = \alpha^{it} S_{1t} + 0.05(S_{it})^2 - \delta_{mi}S_{it}, \qquad i = 1, 2, t = 1, \dots, 5. \\ & \alpha^{1t} = [2, 2.5, 3, 3.5, 4], \qquad \alpha^{2t} = [3, 4, 4.5, 5, 5.5]. \\ & WC_{it}(I_{it}, \delta_{mi}) = 1.05I_{it} + 0.002(I_{it})^2 - \delta_{mi}I_{it} + 10, \qquad i = 1, 2; t = 1, \dots, 5. \\ & TC_{ijt}(q_{ijt}, \delta_{mi}) = 1.5q_{ijt} + 0.8(q_{ijt})^2 - \delta_{mi}q_{ijt}, \qquad i = 1, 2; t = 1, \dots, 5. \\ & HC_{jt}(Y_{jt}, \delta_{rj}) = 3Y_{jt} + 0.05(Y_{jt})^2 - \delta_{rj}Y_{jt}, \qquad j = 1, 2; t = 1, \dots, 5. \\ & HC_{jt}(Z_{jt}, \delta_{rj}) = 1.01Z_{jt} + 0.002(Z_{jt})^2 - \delta_{rj}Z_{jt}, \qquad t = 1, \dots, 5. \\ & R_{ijot}(p_t^2, \delta_{co}) = 20 - 1.5p_{ijot}^2 + 0.5\sum_{c \neq o} p_{ijct}^2 + 3\delta_{co}, \qquad i = 1, 2; j = 1, 2; o = 1, 2; t = 1, \dots, 5. \\ & CC_{ijot}(q_{ijot}^2, \delta_{co}) = 1.1q_{ijot}^2 + 0.003q_{ijot}^2 - \delta_{co}q_{ijot}^2, \qquad i = 1, 2; j = 1, 2; o = 1, 2; t = 1, \dots, 5. \\ & AC_{iot}(B_{iot}, \delta_{co}) = B_{iot} + 0.001(B_{iot})^2 - \delta_{co}B_{iot}, \qquad i = 1, 2; o = 1, 2; t = 1, \dots, 5. \end{split}$$

The investment cost functions for manufacturers, retailers, and carriers are defined, respectively, as:

$$TSI_i^1 = 500 + 300(\delta_{mi})^2, \qquad i = 1, 2.$$

$$\begin{split} TSI_{j}^{3} &= 500 + 200 (\delta_{ij})^{2}, \qquad j = 1, 2. \\ TSI_{o}^{2} &= 500 + 200 (\delta_{co})^{2}, \qquad o = 1, 2. \end{split}$$

The cost functions are:

$$\begin{split} & PC_{it}(S_{it}, \delta_{mi}) = \alpha^{it}S_{1t} + 0.05(S_{it})^2 - \delta_{mi}S_{it}, \qquad i = 1, 2, t = 1, \dots, 5. \\ & \alpha^{1t} = [2, 2.5, 3, 3.5, 4], \qquad \alpha^{2t} = [3, 4, 4.5, 5, 5.5]. \\ & WC_{it}(I_{it}, \delta_{mi}) = 1.05I_{it} + 0.002(I_{it})^2 - \delta_{mi}I_{it} + 10, \qquad i = 1, 2; t = 1, \dots, 5. \\ & TC_{ijt}(q_{ijt}, \delta_{mi}) = 1.5q_{ijt} + 0.8(q_{ijt})^2 - \delta_{mi}q_{ijt}, \qquad i = 1, 2; t = 1, \dots, 5. \\ & HC_{jt}(Y_{jt}, \delta_{rj}) = 3Y_{jt} + 0.05(Y_{jt})^2 - \delta_{rj}Y_{jt}, \qquad j = 1, 2; t = 1, \dots, 5. \\ & HC_{jt}(Z_{jt}, \delta_{rj}) = 1.01Z_{jt} + 0.002(Z_{jt})^2 - \delta_{rj}Z_{jt}, \qquad t = 1, \dots, 5. \\ & R_{ijot}(\rho_t^2, \delta_{co}) = 20 - 1.5\rho_{ijot}^2 + 0.5\sum_{c \neq o} \rho_{ijct}^2 + 3\delta_{co}, \qquad i = 1, 2; j = 1, 2; o = 1, 2; t = 1, \dots, 5. \\ & CC_{ijot}(q_{ijot}^2, \delta_{co}) = 1.1q_{ijot}^2 + 0.003q_{ijot}^2 - \delta_{co}q_{ijot}^2, \qquad i = 1, 2; j = 1, 2; o = 1, 2; t = 1, \dots, 5. \\ & AC_{iot}(B_{iot}, \delta_{co}) = B_{iot} + 0.001(B_{iot})^2 - \delta_{co}B_{iot}, \qquad i = 1, 2; o = 1, 2; t = 1, \dots, 5. \end{split}$$

The investment cost functions for manufacturers, retailers, and carriers are defined, respectively, as:

$$TSl_i^1 = 500 + 300(\delta_{mi})^2, \qquad i = 1, 2.$$

$$TSl_j^3 = 500 + 200(\delta_{rj})^2, \qquad j = 1, 2.$$

$$TSl_o^2 = 500 + 200(\delta_{co})^2, \qquad o = 1, 2.$$

The demand functions for customers within demand market 1 are defined to be less sensitive to future product prices, while customers within demand market 2 are defined to be more sensitive to future product prices.

$$\begin{split} D_{1j1}(p^4, \delta_{ij}) &= 130 - 1.3p_{1j1}^4 + 2\delta_{ij}, \quad D_{1j2}(p^4, \delta_{ij}) = 110 - 1.1p_{1j2}^4 + 2\delta_{ij}, \\ D_{1j3}(p^4, \delta_{ij}) &= 80 - 0.9p_{1j3}^4 + 2\delta_{ij}, \quad D_{1j4}(p^4, \delta_{ij}) = 50 - 0.7p_{1j4}^4 + 2\delta_{ij}, \\ D_{1j5}(p^4, \delta_{ij}) &= 40 - 0.4p_{1j5}^4 + 2\delta_{ij}, \quad j = 1, 2. \end{split}$$

$$\begin{split} D_{2j1}(p^4,\delta_{ij}) &= 80 - 0.7p_{2j1}^4 + 2\delta_{ij}, \quad D_{2j2}(p^4,\delta_{ij}) = 120 - 1p_{2j2}^4 + 2\delta_{ij}, \\ D_{2j3}(p^4,\delta_{ij}) &= 150 - 1.2p_{2j3}^4 + 2\delta_{ij}, \quad D_{2j4}(p^4,\delta_{ij}) = 180 - 1.7p_{2j4}^4 + 2\delta_{ij}, \\ D_{2j5}(p^4,\delta_{ij}) &= 200 - 2p_{2j5}^4 + 2\delta_{ij}, \quad j = 1, 2. \end{split}$$

Example 1: Equilibrium Solution

(a) Supplies at manufacturers

(c) Carriers' service backlogs

(b) Manufacturers' inventories

(d) Carriers' orders and shipment services from manufacturers

Figure: Retailers' and customers' product flow

Energy rating level

 $\delta_m = 1, \qquad \qquad \delta_c = 1, \qquad \qquad \delta_r = 0$

Baseline is Example 1, but the time periods have been extended (T = 10). The demand functions for periods 6 to 10 are:

$$\begin{split} D_{1j6}(p^4,\delta_{ij}) &= 40 - 0.4p_{1j6}^4 + 2\delta_{ij}, \quad D_{1j7}(p^4,\delta_{ij}) = 40 - 0.4p_{1j7}^4 + 2\delta_{ij}, \\ D_{1j8}(p^4,\delta_{ij}) &= 40 - 0.4p_{1j8}^4 + 2\delta_{ij}, \quad D_{1j9}(p^4,\delta_{ij}) = 40 - 0.4p_{1j9}^4 + 2\delta_{ij}, \\ D_{1j10}(p^4,\delta_{ij}) &= 40 - 0.4p_{1j10}^4 + 2\delta_{ij}, \quad j = 1, 2. \end{split}$$

$$\begin{aligned} D_{2j6}(p^4, \delta_{ij}) &= 200 - 2p_{2j6}^4 + 2\delta_{ij}, \quad D_{2j7}(p^4, \delta_{ij}) &= 160 - 1.7p_{2j7}^4 + 2\delta_{ij}, \\ D_{2j8}(p^4, \delta_{ij}) &= 130 - 1.5p_{2j8}^4 + 2\delta_{ij}, \quad D_{2j9}(p^4, \delta_{ij}) &= 130 - p_{2j9}^4 + 2\delta_{ij}, \\ D_{2j10}(p^4, \delta_{ij}) &= 100 - p_{2j10}^4 + 2\delta_{ij}, \quad j = 1, 2. \end{aligned}$$

Baseline is Example 1, but the time periods have been extended (T = 10). The demand functions for periods 6 to 10 are:

$$\begin{split} D_{1j6}(p^4, \delta_{ij}) &= 40 - 0.4p_{1j6}^4 + 2\delta_{ij}, \quad D_{1j7}(p^4, \delta_{ij}) = 40 - 0.4p_{1j7}^4 + 2\delta_{ij}, \\ D_{1j8}(p^4, \delta_{ij}) &= 40 - 0.4p_{1j8}^4 + 2\delta_{ij}, \quad D_{1j9}(p^4, \delta_{ij}) = 40 - 0.4p_{1j9}^4 + 2\delta_{ij}, \\ D_{1j10}(p^4, \delta_{ij}) &= 40 - 0.4p_{1j10}^4 + 2\delta_{ij}, \quad j = 1, 2. \end{split}$$

$$\begin{split} D_{2j6}(p^4,\delta_{ij}) &= 200 - 2p_{2j6}^4 + 2\delta_{ij}, \quad D_{2j7}(p^4,\delta_{ij}) = 160 - 1.7p_{2j7}^4 + 2\delta_{ij}, \\ D_{2j8}(p^4,\delta_{ij}) &= 130 - 1.5p_{2j8}^4 + 2\delta_{ij}, \quad D_{2j9}(p^4,\delta_{ij}) = 130 - p_{2j9}^4 + 2\delta_{ij}, \\ D_{2j10}(p^4,\delta_{ij}) &= 100 - p_{2j10}^4 + 2\delta_{ij}, \quad j = 1, 2. \end{split}$$

Energy rating level

 $\delta_m = 1, \qquad \delta_c = 1, \qquad \delta_r = 1$

Follows the same network structure as Example 1 but with varying cost functions for all network parties in order to focus on constraints

$$\delta_{mi} \leq \delta_{co}, \quad \forall o \tag{5}$$
$$\delta_{rj} \leq \delta_{mi}, \quad \forall i \tag{17}$$

Here, we vary the coefficient of δ in cost functions

$$TSI_i^1 = 500 + 360(\delta_{mi})^2, \qquad i = 1, 2.$$

$$TSI_o^2 = 500 + 360(\delta_{co})^2, \qquad o = 1, 2.$$

$$TSI_i^3 = 500 + 360(\delta_{rj})^2, \qquad j = 1, 2.$$

from 360 to 560 by increment of 20 and analyze the companies' capability in acquiring green technology.

Follows the same network structure as Example 1 but with varying cost functions for all network parties in order to focus on constraints

$$\delta_{mi} \leq \delta_{co}, \quad \forall o$$
 (5)
 $\delta_{rj} \leq \delta_{mi}, \quad \forall i$ (17)

Here, we vary the coefficient of δ in cost functions

$$TSI_i^1 = 500 + 360(\delta_{mi})^2, \qquad i = 1, 2.$$

$$TSI_o^2 = 500 + 360(\delta_{co})^2, \qquad o = 1, 2.$$

$$TSI_i^3 = 500 + 360(\delta_{rj})^2, \qquad j = 1, 2.$$

from 360 to 560 by increment of 20 and analyze the companies' capability in acquiring green technology.

Example 3: Equilibrium Solution

(a) In an obliged network

Figure: Energy rating of all entities for different investment levels

Example 3: Equilibrium Solution

(a) In an obliged network (b) In an uncommitted network

Figure: Energy rating of all entities for different investment levels

• Sustainability and greenness in supply chain should be viewed holistically

- The decisions to manage supply chain must be conditioned by the structure of any game that underlies the determination of decisions by supply chain partners
- Time and the cost of investment affect firms' decisions, profitability, competitive advantage, and their environmental impact
- Governments can bring down the barrier of entry for green energy by taking steps to subsidize the green technology adoption and protect the posterity of our planet

- Sustainability and greenness in supply chain should be viewed holistically
- The decisions to manage supply chain must be conditioned by the structure of any game that underlies the determination of decisions by supply chain partners
- Time and the cost of investment affect firms' decisions, profitability, competitive advantage, and their environmental impact
- Governments can bring down the barrier of entry for green energy by taking steps to subsidize the green technology adoption and protect the posterity of our planet

- Sustainability and greenness in supply chain should be viewed holistically
- The decisions to manage supply chain must be conditioned by the structure of any game that underlies the determination of decisions by supply chain partners
- Time and the cost of investment affect firms' decisions, profitability, competitive advantage, and their environmental impact
- Governments can bring down the barrier of entry for green energy by taking steps to subsidize the green technology adoption and protect the posterity of our planet

- Sustainability and greenness in supply chain should be viewed holistically
- The decisions to manage supply chain must be conditioned by the structure of any game that underlies the determination of decisions by supply chain partners
- Time and the cost of investment affect firms' decisions, profitability, competitive advantage, and their environmental impact
- Governments can bring down the barrier of entry for green energy by taking steps to subsidize the green technology adoption and protect the posterity of our planet

Thank you!

The price that manufacturer i; i = 1, ..., M charges retailer j; j = 1, ..., N at time period t; t = 1, ..., T:

$$p_{ijt}^{1*} = (1+r)^{t} (\mu_{it}^{*} + \theta_{ijt}^{*}) + \frac{\partial T C_{ijt} (q_{ijt}^{1*}, \delta_{mi}^{*})}{\partial q_{ijt}^{1}},$$
(23)

The prices of products at the retailers:

$$p_{jt}^{3*}=(1+r)^t \mu_{jt}^*+rac{\partial \mathit{TC}_{jkt}(q_{jkt}^{3*},\delta_{rj}^*)}{\partial q_{jkt}},$$

The price that manufacturer i; i = 1, ..., M charges retailer j; j = 1, ..., N at time period t; t = 1, ..., T:

$$p_{ijt}^{1*} = (1+r)^{t} (\mu_{it}^{*} + \theta_{ijt}^{*}) + \frac{\partial T C_{ijt} (q_{ijt}^{1*}, \delta_{mi}^{*})}{\partial q_{ijt}^{1}},$$
(23)

The prices of products at the retailers:

$$p_{jt}^{3*} = (1+r)^t \mu_{jt}^* + \frac{\partial T C_{jkt}(q_{jkt}^{3*}, \delta_{rj}^*)}{\partial q_{jkt}},$$
(24)

The feasible set underlying the variational inequality problem is not compact. However, by imposing a rather weak condition, we can guarantee the existence of a solution pattern. Let

$$\begin{split} \mathcal{K}_{b} &= \{ (q^{1}, q^{2}, q^{3}, S, I, \delta_{m}, p^{2}, B, \delta_{c}, Y, Z, \delta_{r}, p^{4}, \mu^{1}, \mu^{2}, \mu^{3}, \theta, \eta^{1}, \eta^{2}, \nu^{1}, \nu^{2}, \gamma) | 0 \leqslant q^{1} \leqslant b_{1}; \\ 0 \leqslant q^{2} \leqslant b_{2}; 0 \leqslant q^{3} \leqslant b_{3}; 0 \leqslant S \leqslant b_{4}; 0 \leqslant I \leqslant b_{5}; 0 \leqslant \delta_{m} \leqslant \delta_{max}^{b}; 0 \leqslant p^{2} \leqslant b_{6}; 0 \leqslant B \leqslant b_{7}; \\ 0 \leqslant \delta_{c} \leqslant \delta_{max}^{b}; 0 \leqslant Y \leqslant b_{8}; 0 \leqslant Z \leqslant b_{9}; 0 \leqslant \delta_{r} \leqslant \delta_{max}^{b}; 0 \leqslant p^{4} \leqslant b_{10}; 0 \leqslant \mu^{1} \leqslant b_{11}; 0 \leqslant \mu^{2} \leqslant b_{12}; \\ 0 \leqslant \mu^{3} \leqslant b_{13}; -b_{14} \leqslant \theta \leqslant b_{15}; 0 \leqslant \eta^{1} \leqslant b_{16}; 0 \leqslant \eta^{2} \leqslant b_{17}; 0 \leqslant \nu^{1} \leqslant b_{18}; -b_{19} \leqslant \nu^{2} \leqslant b_{20}, \\ &-b_{21} \leqslant \gamma \leqslant b_{22} \} \end{split}$$

Hence, the following variational inequality admits at least one solution $X^b \in \mathcal{K}_b$ since \mathcal{K}_b is compact and F is continuous.

$$\langle F(X^b), X - X^b \rangle \ge 0, \qquad \forall X^b \in \mathcal{K}_b.$$
 (26)

The feasible set underlying the variational inequality problem is not compact. However, by imposing a rather weak condition, we can guarantee the existence of a solution pattern. Let

$$\begin{split} \mathcal{K}_{b} &= \{ (q^{1}, q^{2}, q^{3}, S, I, \delta_{m}, p^{2}, B, \delta_{c}, Y, Z, \delta_{r}, p^{4}, \mu^{1}, \mu^{2}, \mu^{3}, \theta, \eta^{1}, \eta^{2}, \nu^{1}, \nu^{2}, \gamma) | 0 \leqslant q^{1} \leqslant b_{1}; \\ 0 \leqslant q^{2} \leqslant b_{2}; 0 \leqslant q^{3} \leqslant b_{3}; 0 \leqslant S \leqslant b_{4}; 0 \leqslant I \leqslant b_{5}; 0 \leqslant \delta_{m} \leqslant \delta_{max}^{b}; 0 \leqslant p^{2} \leqslant b_{6}; 0 \leqslant B \leqslant b_{7}; \\ 0 \leqslant \delta_{c} \leqslant \delta_{max}^{b}; 0 \leqslant Y \leqslant b_{8}; 0 \leqslant Z \leqslant b_{9}; 0 \leqslant \delta_{r} \leqslant \delta_{max}^{b}; 0 \leqslant p^{4} \leqslant b_{10}; 0 \leqslant \mu^{1} \leqslant b_{11}; 0 \leqslant \mu^{2} \leqslant b_{12}; \\ 0 \leqslant \mu^{3} \leqslant b_{13}; -b_{14} \leqslant \theta \leqslant b_{15}; 0 \leqslant \eta^{1} \leqslant b_{16}; 0 \leqslant \eta^{2} \leqslant b_{17}; 0 \leqslant \nu^{1} \leqslant b_{18}; -b_{19} \leqslant \nu^{2} \leqslant b_{20}, \\ &-b_{21} \leqslant \gamma \leqslant b_{22} \} \end{split}$$

Hence, the following variational inequality admits at least one solution $X^b \in \mathcal{K}_b$ since \mathcal{K}_b is compact and F is continuous.

$$\langle F(X^b), X - X^b \rangle \ge 0, \qquad \forall X^b \in \mathcal{K}_b.$$
 (26)

The feasible set underlying the variational inequality problem is not compact. However, by imposing a rather weak condition, we can guarantee the existence of a solution pattern. Let

$$\begin{split} \mathcal{K}_{b} &= \{ (q^{1}, q^{2}, q^{3}, S, I, \delta_{m}, p^{2}, B, \delta_{c}, Y, Z, \delta_{r}, p^{4}, \mu^{1}, \mu^{2}, \mu^{3}, \theta, \eta^{1}, \eta^{2}, \nu^{1}, \nu^{2}, \gamma) | 0 \leqslant q^{1} \leqslant b_{1}; \\ 0 \leqslant q^{2} \leqslant b_{2}; 0 \leqslant q^{3} \leqslant b_{3}; 0 \leqslant S \leqslant b_{4}; 0 \leqslant I \leqslant b_{5}; 0 \leqslant \delta_{m} \leqslant \delta_{max}^{b}; 0 \leqslant p^{2} \leqslant b_{6}; 0 \leqslant B \leqslant b_{7}; \\ 0 \leqslant \delta_{c} \leqslant \delta_{max}^{b}; 0 \leqslant Y \leqslant b_{8}; 0 \leqslant Z \leqslant b_{9}; 0 \leqslant \delta_{r} \leqslant \delta_{max}^{b}; 0 \leqslant p^{4} \leqslant b_{10}; 0 \leqslant \mu^{1} \leqslant b_{11}; 0 \leqslant \mu^{2} \leqslant b_{12}; \\ 0 \leqslant \mu^{3} \leqslant b_{13}; -b_{14} \leqslant \theta \leqslant b_{15}; 0 \leqslant \eta^{1} \leqslant b_{16}; 0 \leqslant \eta^{2} \leqslant b_{17}; 0 \leqslant \nu^{1} \leqslant b_{18}; -b_{19} \leqslant \nu^{2} \leqslant b_{20}, \\ -b_{21} \leqslant \gamma \leqslant b_{22} \} \end{split}$$
(25)

Hence, the following variational inequality admits at least one solution $X^b \in \mathcal{K}_b$ since \mathcal{K}_b is compact and F is continuous.

$$\langle F(X^b), X - X^b \rangle \ge 0, \qquad \forall X^b \in \mathcal{K}_b.$$
 (26)