Urban Travel Forecasting: A 60 Year Retrospective

David Boyce
Northwestern University
In collaboration with Huw Williams

Royal Institute of Technology
Stockholm

September 10, 2013
About the authors

Huw Williams and I met in 1972 at the University of Leeds. We didn’t look much like this 40 years ago.
Actually, we looked more like this.
Why write a Retrospective on Urban Travel Forecasting?

• By 2003, we had each spent 30 years or more conducting research in this field.
• The 50th anniversary of the origins of the travel forecasting field was approaching.
• Writing a retrospective seemed like an interesting way to top off our careers.
• Now, ten years later, our manuscript is nearly complete, and we have largely accomplished what we intended.
Dimensions of our review

• Research and Practice
• Travel Demand (Behavioral) Models and Transportation Network Models
• United States and United Kingdom, and more generally Europe

With a concern for the:
• Constraints imposed by data and computers
• Roles played by the leading contributors
Overview of this Lecture

- Emergence of the traditional approach – US
- Further developments of the approach – UK
- Forecasting with individual choice models
 - Extensions to the discrete choice approach
 - Activity-based travel models
- Forecasting with network equilibrium models
 - Beckmann’s optimization formulation & extensions
 - Generalization of the optimization formulation
- Tradition and innovation in practice – US & UK
- Computing environment and software
- Achievements and current challenges
Getting started – a look at the origins of terms

<table>
<thead>
<tr>
<th>Traditional and evolving terminology of travel forecasting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel Representation</td>
</tr>
<tr>
<td>Traditional: Trips</td>
</tr>
<tr>
<td>Evolving: Tours</td>
</tr>
<tr>
<td>Current: Activity locations</td>
</tr>
<tr>
<td>Spatial representation</td>
</tr>
<tr>
<td>Traditional: Zone</td>
</tr>
<tr>
<td>Evolving: Individual</td>
</tr>
<tr>
<td>Current: Individual/ Household</td>
</tr>
<tr>
<td>Network / cost representation</td>
</tr>
<tr>
<td>Traditional: Link-based</td>
</tr>
<tr>
<td>Evolving: Route-based</td>
</tr>
<tr>
<td>Current: Origin-based</td>
</tr>
<tr>
<td>Choice representation</td>
</tr>
<tr>
<td>Traditional: Aggregate</td>
</tr>
<tr>
<td>Evolving: Disaggregate</td>
</tr>
<tr>
<td>Current: Individual</td>
</tr>
<tr>
<td>Solution procedure</td>
</tr>
<tr>
<td>Traditional: Sequential</td>
</tr>
<tr>
<td>Evolving: Integrated/ combined</td>
</tr>
<tr>
<td>Current: Agent-based simulation</td>
</tr>
</tbody>
</table>
Context of model formulation and use

• Forecasts for a future design year, relative to a base year, both for facility planning and for demand management;
• Tests of the impacts of alternative policies;
• Explanation and exploration of observed travel behavior;
• Design of model systems and evaluation frameworks, given computational feasibility;
• Design of transportation networks and land use patterns.
Drivers of change in modeling in the US

• 1950-1960s:
 – rapid increase in car ownership
 – population growth and urban decentralization
 – major road building, with declining transit use

• 1970-1980s:
 – environmental and financing restrictions
 – demand management
 – expanding rail transit systems

• 1990-2010s:
 – sustainability, climate change, non-motorized modes

• Developing regions now face these drivers of change all at once
The Formative Era – Practice - US

• Surveys and inventories: household travel, land use, road and public transport systems

• Data processing and reduction → early computer models
IBM 407 Accounting Machine

IBM 704 Computer
The Formative Era – Practice - US

- **Surveys and inventories:**
 household travel, land use, road & transit systems

- **Data processing and reduction →**
 computer models

- **Representing travel through aggregation:**
 (zones, 24 hour weekday, trip classes, ..)

- **Partition of travel choices:** frequency, O-D, route;
 daily travel only, and often roads only

- **Role of land use as the determinant of travel**

- **The first sequential procedure flowchart showed how to connect these ‘steps’**
First known travel forecasting flowchart - 1957

Feedback
Planning Process of the Chicago Area Transportation Study, Volume One, 1959
The Formative Era – Practice - US

• Early sequential procedure flowchart showing how to connect these ‘steps’
• Demand – network equilibrium solved intuitively with a ‘feedback’ procedure
• Road network design:
 – expressway spacing formula
 – a strong orientation to road planning, with a secondary concern for transit
 (Chicago Area Transportation Study)
The Formative Era – Practice - US

- Demand – cost equilibrium solved with a simple feedback procedure
- An early attempt at road network design:
 - expressway spacing formula
 - a strong orientation to road planning, with a secondary concern for transit
- A failed attempt to identify a desired land use pattern by forecasting the response of activity locations to road – transit network alternatives (Penn Jersey Transportation Study)
• Detroit (DMATS) – 1953-56
 – early gravity model experiments (J.D. Carroll, Jr.)
 – early attempt at computerized traffic assignment
• Chicago (CATS) – 1956-62
 – intervening opportunities model (M. Schneider)
 – shortest routes on large networks (E. F. Moore)
 – linked distribution & assignment (M. Schneider)
 – expressway spacing (R. Creighton, I. Hoch)
• Philadelphia (PJTS) – 1959-67
 – transportation networks imply land use patterns
 (R. Mitchell and B. Harris)
 – residential location model
 (J. Herbert and B. Stevens)
• U.S. Bureau of Public Roads – 1958-66
 – trip distribution by gravity model
 – Capacity-restrained assignment (G. Brokke et al)
 – zone-based trip generation & modal split

• Alan M. Voorhees and Associates – 1962-69
 – transit forecasting model system (R. Dial)
 – creation of first travel forecasting model system: TRIPS (W. Hansen and T. Deen)

Alan Voorhees, 2000
Britton Harris, 2003
Ben Stevens, 1985
• Land use – transportation programs, 1959-68
 – preparation & evaluation of alternative plans for metropolitan land use and transportation in several regions (Boyce, Day and McDonald, review & synthesis)
 – attempts to apply land use models declared a failure by D. B. Lee, Jr. in his ‘Requiem for Large-scale Models.’
Transfer of Early Practice to the UK

• Early traffic research (Wardrop, 1952)
• Consulting consortia initially transferred US modeling practice to London and Glasgow
• Young British practitioners, and researchers, began to improve their Transport Model, with substantial innovations:
 – variations in trip frequency at household level
 – empirical curves replaced by analytic functions for distribution and mode steps – entropy maximization
– generalized costs based on micro-behavioral foundations
– Questions raised concerning the order of the steps and how to connect the steps: Dest → Mode; Mode → Dest; or Dest – Mode?
– definition of composite cost functions, model interfaces, and specification of nested models
– dispersion of route flows across routes
– line-based Public Transport representation
– trip-based benefit analysis for evaluation
Early contributors, 1960-75

• US-trained British engineers
 – Tony Ridley and John Wootton (UC Berkeley)
 – Brian Martin (MIT)

• UK-trained economists and mathematicians
 – Christopher Foster & Michael Beesley (Oxford)
 – Alan Wilson (Cambridge, and later Oxford)
 – David Quarmby (Cambridge, and later Leeds)

• London Traffic Survey/Transportation Study, 1962-68
 – Household-based generation (category analysis)
 – User benefit analysis – rule of one-half
 – TRANSITNET
• Math. Advisory Unit, Ministry of Transport
 – maximum entropy derivation of share models of logit form for trip distribution and modal split
 – generalized cost functions
 – examination of the proper sequence of models
 – increased emphasis on evaluation
• SELNEC Transportation Study (1967-72) included all major UK innovations to date
• Road Research Laboratory studies
• Next generation of British researchers: Michael Batty, Dirck Van Vliet, Huw Williams, Peter Batey, to name several
Proposed SELNEC Transport Model Structure (Wilson et al, 1969)

- **External Trips**
- **Planning Inputs**
 - **Trip Generation**
 - **Trip Ends**
 - **Trip Distribution**
 - **Trip Matrices by purpose and person type**
 - **Modal Split**
 - **Car Person Trips by purpose and person type**
 - **Growth Factors**
 - **Public transport person trips by purpose**
 - **Economic Evaluation**
- **Network Description**
 - **Build networks and time/cost matrices**
 - **Times and costs**
 - **Routes**
 - **Growth Factors**
 - **Commercial vehicle trips**
 - **Total vehicle trips (exc. bus)**
 - **Load trips**
 - **Total Link Loadings**
 - **Check capacity restraint, adjust link times**
 - **Occupancy Factor**
 - **Bus trips**
 - **Operational Evaluation**
 - **Feedback**
Implemented SELNEC Transport Model Structure

Alan Wilson, 1970

David Quarmby, 2003
SELNEC Model Structure showing Feedback
Individual Choice Models (~1965-75)

• Widening criticism of traditional methods up to 1973
 - lack of behavioral basis for individual travelers
• Improved mathematical specification of systems of models (Manheim)
• Discrete choice models based on random utility maximization (Quandt, McFadden)
• Economic-statistical properties of MNL (McFadden)
• Many applications of MNL to mode choice in US
• Early exploration of nested logit models
 (Charles River Associates, Ben-Akiva)
• Increased recognition of restrictive properties of multinomial logit (IIA property)
Daniel McFadden receiving the Nobel Prize in Economic Science from the King of Sweden in 2000

Moshe Ben-Akiva and Daniel McFadden in Stockholm in 2000
Discrete Choice Models (~1975-85)

- Nested logit models (NL) with parameter restrictions (Williams, Daly-Zachary)
- GEV models with NL as a special case (McFadden)
- Traditional models reconstituted as NL models (Williams and Senior)
- First application of comprehensive micro approach (Bay Area by Ben-Akiva; Holland by Daly et al)
- Early tour-based models introduced in Holland
- Stated Preference methods introduced and slowly gain acceptance (Louviere, Hensher and others).
Activity-based analysis framework

• Widening criticism of both traditional aggregate and disaggregate models:
 – poor behavioral representations of trip-based approach
 – need to represent household interactions and structure of journeys

• Activity-based choices of households:
 – importance of time, space, household constraints (Hagerstrand, What about people?, Jones et al, Oxford)
 – Tour-based representations of travel through the day

• Alternative modeling strategies
 – econometric approaches (Ben-Akiva and Bowman)
 – rule-based approaches (Pas and Kitamura)

• Early fixed travel cost prototypes without congestion effects (Bowman, Bradley & Vovsha)
Network Equilibrium – Optimization-based

• Cowles Commission study: allocation of resources
 ~ 1951-55: T. Koopmans, and others

• Formulation of models of network equilibrium and efficiency based on the Kuhn-Tucker theorem
 ~ 1952-55: Martin Beckmann, & McGuire-Winsten
 – Variable origin-destination demand
 – Link flows with average and marginal cost pricing

• Network equilibrium with fixed demand
 ~ 1954-70: Jorgensen, Charnes, Prager, Braess

• Convergent algorithms for fixed demand
 ~ 1968-76: Dafermos, Florian-Nguyen, LeBlanc
 ~ 1992-06: Larsson-Patriksson, Bar-Gera, Dial, Nie
John Wardrop in 1977
(1920-1989)

Martin Beckmann in 1977
(1924 -)
Michael Florian spoke with Martin Beckmann in 1994 when he received the Robert Herman Lifetime Achievement Award in Transportation Science.
• Stochastic network equilibrium with fixed demand
 ~1977-87: Daganzo, Fisk, Sheffi-Powell, Mirchandani
• Network equilibrium-trip distribution-mode split
 ~1969-79: Murchland, Evans, Erlander
• Location models with endogenous travel costs
• Implementation-validation of combined travel choice
 and network equilibrium models
 ~1980-00: Florian et al, Boyce-LeBlanc-Bar-Gera
• Precise assignment solutions & unique route flows
 ~2000-10: Bar-Gera, Dial, Gentile, Nie
Generalized Network Equilibrium

- Asymmetries in modes and intersection flows:
 ~1977-79: Florian, LeBlanc-Abdulaal
- Nonlinear complementarity and variational inequalities problems
 ~1979-84: Aashtiani, Smith, Dafermos, Fisk-Nguyen
- Solution methods and side constraints:
 ~1980-00: Dafermos-Nagurney, Florian-Spiess, Larsson-Patriksson
- Prototype applications
 ~1990s: Meneguzzer and Berka
- Congested public transport assignment
 ~1990s: Florian-Spiess, De Cea-Fernandez, Santiago
- Network design with equilibrium constraints
Suzanne Evans and Anna Nagurney at 2003 recognition of *Studies in the Economics of Transportation* by Beckmann, McGuire and Winsten

Martin Beckmann & Bart McGuire being honored for *Studies in the Economics of Transportation* at San Francisco INFORMS in 2005
Tradition and Innovation in US Practice

- Lawsuit challenging the Bay Area model (Garrett-Wachs, *Transp. Planning on Trial*, 1996)
- Federal requirements for solving the sequential procedure with feedback, 1991
- Travel Model Improvement Program (TMIP) initiated by Federal Highway Administration
- TMIP funding reallocated to TRANSIMS, a microsimulation software development effort by Los Alamos National Laboratory
- Goods movement models (Southworth)
- Prototype use of activity-based models, and later integration with land use and dynamic traffic assignment simulation methods (Pendyala- Waddell-Chiu, 2008-12)
Tradition and Innovation in UK Practice

- Relative decline in travel modeling since 1980s
- Increased technical guidance of Government for traditional methods and discrete choice theory
- Emphasis on elasticities and journey timing
- A few tour-based and activity-based models (PRISM in West Midlands)
- Incremental nested logit model widely applied
- Traffic management and microsimulation: (SATURN, PARAMICS, VISSIM)
- Integrated land use – transport models: (MEPLAN, TRANUS, DELTA-START)
- Goods transport models (growth factor and spatial input-output; logistics)
Computing Environment and Software

- Mainframes to minis to microcomputers, 1951-2008
- Microcomputer revolution from the 1980s
Apple Lisa, an improved version of Apple II, 1983
IBM PC, model 5150, 1982
Computing Environment and Software

• Origins of travel forecasting software
 – Urban transportation studies: CATS, PJTS, etc.
 – Bureau of Public Roads – distribution & assignment
 – US Dept. of Housing – transit planning package
 – Alan M. Voorhees and Associates – TRIPS, a combination of BPR and HUD packages
 – Control Data Corporation – TRAN/PLAN
 – Martin & Voorhees Associates, moved TRIPS to UK
• US Department of Transportation
 – Urban Transportation Planning System, initially TRIPS, distributed and extended by Urban Mass Transportation Administration
 – PLANPAC, battery of programs developed by the Federal Highway Administration
• Legacy mainframe applications in 1970s
 – UTPS (Robert Dial) UMTA, US DOT
 – PLANPAC, FHWA, US DOT
 – TRANPLAN, James Fennessey, CDC
 – TRACKS, New Zealand
Transition to mini- and microcomputers

– Knowledgeable software developers began developing software from the early 1980s
 • TRANPLAN, James Fennessey, DKS Associates
 • TMODEL, Robert Shull, Professional Solutions
 • MINUTP, Larry Seiders, Comsis
 • MicroTRIPS, PRC Voorhees/MVA Systematica
 • EMME/2, Michael Florian, INRO
 • QRS II, Alan Horowitz, AJH Associates
 • VISUM & VISEM, Tom Schwerdfeger, PTV AG
 • SATURN, Dirck Van Vliet, University of Leeds
 • A few others that did not survive in the marketplace
Travel forecasting software systems today

- **CUBE** (Citilabs, US) – evolved from TRANPLAN, TRIPS, MinUTP and TP+, combining features of those legacy systems

- **EMME** (INRO, Canada)– developed from research of Michael Florian, and continues to be based upon research advances of Florian and his students

- **TransCAD** (Caliper, US) – developed by Howard Slavin and his associates by seeking to incorporate the best available models

- **VISUM** (PTV, Germany) – developed from research at University of Karlsruhe, and later adapted to US travel forecasting practice
Specialized forecasting software systems

- **EVA** (Technical University Dresden, DDR)
- **ESTRAUS** (MCT, Chile)
- **OmniTRANS** (OmniTRANS Int., Netherlands)
- **QRS II** (AJH Associates, US)
- **SATURN** (WS Atkins, UK)
- **STRADA** (Japan Int. Cooperation Agency)
- **TRACKS** (Gabites Porter Consultants, NZ)
- **TRANUS** (Modelistica, Venezuela)
- **UFOSNET** (RST International, US)
- **VENUS** (IVV, Aachen, Germany)
Achievements and current challenges

• The track record for academic research:
 – research was nearly non-existent in the 1950s, whereas practice was offering innovations
 – ongoing improvements in foundations and understanding of models of specific choices
 – less success in advancing the demand-network equilibrium framework
 – lack of empirical validation and progress in understanding of how urban travel has changed over the past 60 years
 – successful use of huge advances in computing power
 – who made the leading innovations?
• The track record for professional practice:
 – following its early innovations, contributions from practice slowed substantially
 – practitioners are able to apply their software tools, but often without understanding of their properties (black box versus glass box)
 – few practitioners understand and are able to explain the properties of the models they apply, and sometimes offer misleading or invalid descriptions of model properties
 – *is this situation a failure of their education?*
 – difficulties of understanding model properties will only become greater in the future
• Partially unaddressed problems of our field:
 – disaggregation in time and space:
 • geographic scale (zones)
 • timing of travel (static vs. dynamic)
 – design of networks and activity location systems
 • basic normative properties of location and networks
 remain unstudied and unknown
 (e.g. land use density and network layout)
 • these questions were studied in the 1960s without
 success, perhaps because the models lacked
 sensitivity; is this still the situation today?
 – overly simplified assumptions of basic models
 • representation of travel delay at intersections
 • cross-elasticities of demand by mode and destination
• What are the ways ahead?
 – How should research and demonstration on design problems be undertaken? Who decides?
 – At what scale should exploratory research be organized and funded?
 – At what scale should experimental implementations be undertaken in practice?
 – How should innovative thinking be rewarded?
 – Who decides what research is supported?
 – How should progress be evaluated in another 25 years?