Bicycle Transportation at UMass

Matt Brewster
Dave Miller

Introduction

- Objective
- Observations of the As-Is Network
- Research Findings
- Current Problems
- Recommended Solutions
- Costs of Improvement
- Conclusion

Objective: Increase Bicycle Commuting

- Shorter commute time on bike than driving Considering: Warming up your car, traffic lights, pedestrians, parking, paying, walking to class...
- Health Benefits
- Less Pollutions
- Don't pay for gas or parking
- Closer parking spot
- Quicker on-campus movement

Observations: Volume of Traffic

2004 to 2006 statistics:

Source: Sareo Transportation Surveys

- 2004
 - 62.3% live within 5 miles of campus
 - 41.2% own a bike
 - 86.7% own a car
- 2005
 - 67.9% live within 5 miles
- 2006
 - 71.8% live within 5 miles of campus
 - 31.5% own a bike
 - 77.5% own a car

Note: 5 miles is a 20 minute to ½ hour bike commute for the average person.

Observations: The as-is condition and hypothesis

Campus enrollment has risen:

2004: 22,498.2 (full-time equivalent)

2006: 23,410.7

- 1000 person increase
- Likely to be many more in the future
- Off-campus students live closer to campus
- Bike commuting is down
- Hypothesis: The condition of the network paths is the primary user cost.

Observations: What Paths are there Now

To Campus

North Pleasant*
Eastman Lane
Triangle Street
Lincoln Street
UMass Bike Way
North Hadley Rd

On Campus

Walking paths!

The condition of these paths is so poor that they are resulting in a very high user cost...

Problems:

To-Campus Path Conditions

To-Campus Path Options

UMass Bikeway

Lincoln Street

To-Campus Path Options

Triangle Street

Eastman Lane

North Pleasant Street

Problems: N. Pleasant is best among Paths

- Among all path options
 North Pleasant is the best
 - To campus, the bike lane is the cleanest and least damaged, but it is still not great
 - On campus the road is damaged and vehicle interference is high.

VIDEO: "The Typical Commute"

This video (avi) is available for download at this link: Click Here

Problems: On-Campus Paths = Sidewalks

Campus Perimeter:

Bicycle traffic flows on the sidewalks

Campus Core:

Bicycle traffic flows on the walking paths

This condition is <u>frustrating</u> and <u>dangerous</u> for both pedestrians and bicycles

- No organized flow
- No designated paths to separate bikes and pedestrians
- Interference with each others movements
- Path intersections are congested and dangerous

Video: "Bikes on Sidewalks"

This video (avi) is available for download at this link: Click Here

Problems: On-Campus Path Mess

- New buildings
 - Limited physical space
 - Vehicle congestion
 - Limited Parking
 - Disrupt travel paths
- Add-hoc addition of paths created by users and campus planners
 - Braess' Paradox likely to occur as paths are added and intersect in suboptimal manner

Recommendations:

- 1. <u>Improve</u> the condition of the to-campus paths
- 2. Educate about the benefits of bicycle commuting and etiquette
- 3. Address user costs to <u>reduce objections</u> to commuting
- 4. Miscellaneous secondary improvements

Recommendations: Path Conditions

- Repair the roads
- Add adequate bike lanes
 - Clearly marked and wide
- Add signage to signal bikers where correct paths are
 - Around and within campus core

Recommendations: Educate the Commuter Population

- UMass Parking Services: Bicycle Commuter Program
 - Exists but not utilized
- PVTA "Rack & Roll"
- Student orientation meetings:
 - Encourage Bicycle Commuting
 - Bike Riding Rules & Etiquette
- Campus "Bicycle Commuter Day"
 - Involve the police, bike Co-Op, UMass Bike Team
- Partner with the Bike Co-op
 - There is on-campus service for repairs and flat fixes

Recommendations:

Educate to overcome perceived costs

- Cost: Bad weather
 - Solution1: Its okay to be a fair weather commuter
 - Solution2: Weather appropriate clothes and equipment are available at local bike shops
- Cost: Daylight
 - Solution1: Lights and reflectors are cheap and easy to put on
 - Solution2: Multi-modal commute: e.g. bike in then "rack & roll" home
- Cost: Long Distance Commutes
 - Solution1: Multi-modal commuting
 - Satellite parking areas provided by UMass that are close enough to bike
 - Take the bus for a distance then ride your bike
- Cost: Don't want to ride and work in the same clothes
 - Solution1: May not really get all that sweaty
 - Solution2: Leave clothes at work, enough for a week or a couple days
 - Solution3: There are lockers and showers on campus to refresh and change

Recommendations: Secondary Improvements

- "Yellow Bike"
 - Take abandoned bikes and make them campus bikes
- Create Official Satellite Parking
 - Near enough to campus to bike but for people driving from a distance
- Logical link additions
 - Separated Paths on campus
 - Added routes into campus
- Covered bike parking
- Clearing snow from racks and from paths

Recommendations: System Costs vs Benefits

- These infrastructure changes will cost the school:
 - Adding signs and path markers
 - Community education
 - Maintaining roads
- But the benefits include:
 - Increased overall health of students and faculty
 - Healthy people are happier and more productive
 - Reduced vehicle congestion
 - Less pollution
 - Increased safety for the commuting population

Conclusion:

- **Problem:** The current bicycle commuting network is in extremely poor shape
- Result: The number of bicycle commuters is decreasing
- **Solution:** The first thing to do is make repairs to the network and educate the community
 - It would be impossible to overcome other inhibitions if safety is not addressed
- Justification: The return on the investment (health, pollution, etc.) is worth the expense

Thank you.

Questions?

References:

- www.msnbc.msn.com. Accessed on December 14, 2006.
- Kolek, Ethan. Project Pulse, F04 Transportation Survey. Sareo.
- Kolek, Ethan. Project Pulse, F05 Transportation Survey. Sareo.
- Kolek, Ethan. Project Pulse, F06 Transportation Survey. Sareo.
- Office of Institutional Research, University of Massachusetts Amherst.
 Instructional Service Matrix, Full-time Equivalent Instructed Students.
 Fall Semester 2004
- Office of Institutional Research, University of Massachusetts Amherst.
 Instructional Service Matrix, Full-time Equivalent Instructed Students.
 Fall Semester 2006
- How to Have a Successful Bike Commute Week. Pioneer Valley Planning Commission. June 2001.
- Steinkamp, Judith; Vinskey, Heather; Lerch, Mark. UMass / Five College Bicycle Master Plan, University of Massachusetts Amherst. August 2003.
- UMass Bicycle Commuter Program, UMass Parking Services. Available online at: http://parking.umass.edu/bike/
- Special thanks to Robert Hendry, UMass Transportation Coordinator, for his help collecting research materials and shared knowledge of the bicycle commuter network at UMass.