Predictive and Prescriptive Models of Cybercrime and Cybersecurity Investments Under Network Vulnerability

Anna Nagurney

John F. Smith Memorial Professor
Director of the Virtual Center for Supernetworks
Isenberg School of Management
University of Massachusetts
Amherst, Massachusetts 01003

Culverhouse College of Commerce
The University of Alabama
November 17, 2017
I’d like to thank the University of Alabama INFORMS Student Chapter, Dr. Karthik Murtali and colleagues, and the INFORMS Speakers Program for the opportunity to speak with you today.

I acknowledge support for some of the research in this presentation provided by the Advanced Cyber Security Center (ACSC) and the National Science Foundation (NSF) through the projects: Collaborative Research: Network Innovation Through Choice, which envisions a Future Internet Architecture, and: EAGER: Collaborative Research: Enabling Economic Policies in Software-Defined Internet Exchange Points.
Outline

- Background and Motivation
- Networks and Behavior
- Which Nodes and Links Really Matter?
- Game Theory
- A Predictive Network Economic Model of Cybercrime
- Prescriptive Multifirm Models of Cybersecurity Investment: Competition vs. Cooperation
- Case Studies to the Retail and Energy Sectors
- Summary and Conclusions
Background and Motivation
One of my books, written with a UMass Amherst PhD alum, was “hacked” and digital copies of it posted on websites around the globe.

In a sense, this may be viewed as a compliment since clearly someone had determined that it has some sort of value.
The publisher John Wiley & Sons was notified and lawyers got involved but how do you contact and then influence those responsible for postings on rather anonymous websites?

About the same time news about cyberattacks was getting prominent attention in the media and there were those interested in working with us on related research on cybersecurity.
The Internet has transformed the ways in which individuals, groups, organizations communicate, obtain information, access entertainment, and conduct their economic and social activities.

In 2012, there were over 2.4 billion users. In 2016, there were 3.5 billion users, almost half of the world population.

Internet World Penetration Rates by Geographic Regions - June 2016

- **North America**: 89.0%
- **Europe**: 73.9%
- **Australia / Oceania**: 73.3%
- **Latin America / Caribbean**: 61.5%
- **Middle East**: 53.7%
- **World, Avg.**: 49.2%
- **Asia**: 44.2%
- **Africa**: 28.6%

Source: Internet World Stats - www.internetworldstats.com/stats.htm
Some Recent Major Cyberattacks

- **Equifax**: On September 7, 2017, it was revealed that names, SSNs, birthdates, drivers’ license information, and credit card numbers on about 143 million U.S. consumers was compromised in a cybersecurity breach that began in mid-May and was discovered only on July 29, 2017 (Bloomberg (2017)).

- **“WannaCry” ransomware**: Began in mid-May 2017. It crippled National Health Services (NHS) hospitals in the UK, hobbling emergency rooms, delaying vital medical procedures, and creating chaos (WIRED (2017)).
Some Recent Major Cyberattacks

- **Banks:** The Carbanak group, also known as Anunak, was exposed in 2015 after supposedly stealing upwards of $1 billion from more than 100 banks across 30 countries (The New York Times (2015)).

- **US Office of Personnel Management:** In June 2015, OPM discovered that sensitive information, including SSNs of 21.5 million federal employees was stolen (WIRED (2016)).

- **Sony Pictures Entertainment** The attack on Sony in 2014 destroyed data on more than 3,000 computers and disclosed prelease films and embarrassing emails of executives (Fortune (2015)).

- **Target, Home Depot, Michaels Stores, Staples, and eBay:** These were breached in 2014 - card data and personal information of millions of customers were stolen (The New York Times (2015)).
Cost of Cybercrime

- Cybercrimes are costly for organizations. It is estimated that the global costs due to cybercrime in 2016 was $450 billion. All industries fall victim to cybercrime, but to different degrees.

Average annual costs per company caused by global cybercrime as of August 2016 by industry sector (in million US$) (Statista)
Changing Attacker Profiles

McAfee Labs Threats Report, August 2015
Clearly, hackers go where there is money.
The most costly cybercrimes (58% annually) are those caused by denial of service, malicious insider and web-based attacks. Mitigation may require enabling technologies, intrusion prevention systems, applications security testing solutions and enterprise solutions.

Source: Sarnowski for Booz Allen and Hamilton
Putting Malicious Cyber Activity in Context

<table>
<thead>
<tr>
<th>CRIMINAL ACTION</th>
<th>ESTIMATED COST</th>
<th>PERCENT OF GDP</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLOBAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piracy</td>
<td>$1 billion to $16 billion</td>
<td>0.008% to 0.02%</td>
<td>IMB</td>
</tr>
<tr>
<td>Drug Trafficking</td>
<td>$600 billion</td>
<td>5%</td>
<td>UNODC</td>
</tr>
<tr>
<td>Global cyber activity</td>
<td>$300 billion to $1 trillion</td>
<td>0.4% to 1.4%</td>
<td>Various</td>
</tr>
<tr>
<td>US ONLY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car Crashes</td>
<td>$99 billion to $168 billion</td>
<td>0.7% to 1.2%</td>
<td>CDC, AAA</td>
</tr>
<tr>
<td>Pilferage</td>
<td>$70 billion to $280 billion</td>
<td>0.5% to 2%</td>
<td>NRF</td>
</tr>
<tr>
<td>US- cyber activity</td>
<td>$24 billion to $120 billion</td>
<td>0.2% to 0.8%</td>
<td>Various</td>
</tr>
</tbody>
</table>

Source: The Economic Impact of Cybercrime and Cyber Espionage, Center for Strategic and International Studies, July 2013, sponsored by McAfee.
Cyberattacks

The median number of days that attackers were present on a victim’s network before being discovered dropped to 146 days in 2015 from 205 days in 2014 – a trend that shows positive improvement since measuring 416 days back in 2012. However, breaches still often go undetected for years, according to Mandiant.
According to a recent survey cybercrime is placing heavy strains on the global financial sector, with cybercrime now the second most commonly reported economic crime affecting financial services firms.
According to a recent survey cybercrime is placing heavy strains on the global financial sector, with cybercrime now the second most commonly reported economic crime affecting financial services firms.

Cybercrime accounted for 38% of all economic crimes in the financial sector, as compared to an average of 16% across all other industries.
According to a recent survey, cybercrime is placing heavy strains on the global financial sector, with cybercrime now the second most commonly reported economic crime affecting financial services firms.

Cybercrime accounted for 38% of all economic crimes in the financial sector, as compared to an average of 16% across all other industries.

Cyberattacks are intrusive and economically costly. In addition, they may adversely affect a company’s most valuable asset—its reputation.
It’s About Risk Management

Source: Framework for Improving Critical Infrastructure Cybersecurity, National Institute of Standards and Technology (NIST), February 12, 2014
Networks and Behavior
Our enterprises and organizations are critically dependent on infrastructure network systems including the Internet.
Behavior on Congested Networks

Decision-makers select their cost-minimizing routes.

Decentralized vs. Selfish vs. Centralized

Decentralized Selfish vs. Centralized

User-Optimized vs. System-Optimized

Flows are routed so as to minimize total cost to society.
Two fundamental principles of travel behavior, due to Wardrop (1952), with terms coined by Dafermos and Sparrow (1969).

User-optimized (U-O) (network equilibrium) Problem – each user determines his/her cost minimizing route of travel between an origin/destination, until an equilibrium is reached, in which no user can decrease his/her cost of travel by unilateral action (in the sense of Nash).

System-optimized (S-O) Problem – users are allocated among the routes so as to minimize the total cost in the system, where the total cost is equal to the sum over all the links of the link’s user cost times its flow.

The U-O problems, under certain simplifying assumptions, possesses optimization reformulations. But now we can handle cost asymmetries, multiple modes of transport, and different classes of travelers, without such assumptions.
We Can State These Conditions Mathematically!
The U-O and S-O Conditions

Definition: U-O or Network Equilibrium – Fixed Demands

A path flow pattern x^*, with nonnegative path flows and O/D pair demand satisfaction, is said to be U-O or in equilibrium, if the following condition holds for each O/D pair $w \in W$ and each path $p \in P_w$:

$$C_p(x^*) \begin{cases} = \lambda_w, & \text{if } x_p^* > 0, \\ \geq \lambda_w, & \text{if } x_p^* = 0. \end{cases}$$

Definition: S-O Conditions

A path flow pattern x with nonnegative path flows and O/D pair demand satisfaction, is said to be S-O, if for each O/D pair $w \in W$ and each path $p \in P_w$:

$$\hat{C}'_p(x) \begin{cases} = \mu_w, & \text{if } x_p > 0, \\ \geq \mu_w, & \text{if } x_p = 0, \end{cases}$$

where $\hat{C}'_p(x) = \sum_{a \in L} \frac{\partial \hat{c}_a(f_a)}{\partial f_a} \delta_{ap}$, and μ_w is a Lagrange multiplier.
The importance of behavior will now be illustrated through a famous example known as the Braess paradox which demonstrates what can happen under $U-O$ as opposed to $S-O$ behavior.

Although the paradox was presented in the context of transportation networks, it is relevant to other network systems in which decision-makers act in a noncooperative (competitive) manner.
The Braess (1968) Paradox

Assume a network with a single O/D pair (1,4). There are 2 paths available to travelers: \(p_1 = (a, c) \) and \(p_2 = (b, d) \).

For a travel demand of 6, the equilibrium path flows are \(x^*_{p_1} = x^*_{p_2} = 3 \) and

The equilibrium path travel cost is \(C_{p_1} = C_{p_2} = 83 \).

\[
\begin{align*}
c_a(f_a) &= 10f_a, & c_b(f_b) &= f_b + 50, \\
c_c(f_c) &= f_c + 50, & c_d(f_d) &= 10f_d.
\end{align*}
\]
Adding a new link creates a new path \(p_3 = (a, e, d) \).

The original flow distribution pattern is no longer an equilibrium pattern, since at this level of flow the cost on path \(p_3 \), \(C_{p_3} = 70 \).

The new equilibrium flow pattern network is
\[
\begin{align*}
x^*_p &= x^*_p = x^*_p = 2.
\end{align*}
\]

The equilibrium path travel cost: \(C_{p_1} = C_{p_2} = C_{p_3} = 92 \).
The 1968 Braess article has been translated from German to English and appears as:

"On a Paradox of Traffic Planning,"

Dietrich Braess, Anna Nagurney, and Tina Wakolbinger,

Under S-O behavior, the total cost in the network is minimized, and the new route p_3, under the same demand, would not be used.

The Braess paradox never occurs in S-O networks.
Other Networks that Behave like Traffic Networks

The Internet and electric power networks and even supply chains!
Which Nodes and Links Really Matter?

Granger Causality Results: Green Broker, Red Hedge Fund, Black Insurer, Blue Bank Source: Billio, Getmansky, Lo, and Pelizzon (2011)

Granger Causality Results: Green Broker, Red Hedge Fund, Black Insurer, Blue Bank

Source: Billio, Getmansky, Lo, and Pelizzon (2011)
The Financial Network Model

Sources of Financial Funds
Businesses, households, etc.

Internet Links

Intermediaries
Banks, etc.

Physical Links

Demand Markets
Markets for real estate loans, household loans, business loans, etc.

Figure 1: The Structure of the Financial Network with Intermediation
The Nagurney and Qiang (N-Q) Network Performance Measure

Definition: A Unified Network Performance Measure

The network performance/efficiency measure, $E(G, d)$, for a given network topology G and the equilibrium (or fixed) demand vector d, is:

$$E = E(G, d) = \frac{\sum_{w \in W} d_w \lambda_w}{n_W},$$

where recall that n_W is the number of O/D pairs in the network, and d_w and λ_w denote, for simplicity, the equilibrium (or fixed) demand and the equilibrium disutility for O/D pair w, respectively.

Definition: Importance of a Network Component

The importance of a network component \(g \in G \), \(I(g) \), is measured by the relative network efficiency drop after \(g \) is removed from the network:

\[
I(g) = \frac{\Delta \mathcal{E}}{\mathcal{E}} = \frac{\mathcal{E}(G, d) - \mathcal{E}(G - g, d)}{\mathcal{E}(G, d)}
\]

where \(G - g \) is the resulting network after component \(g \) is removed from network \(G \).
Approach to Identifying the Importance of Network Components

The elimination of a link is treated in the N-Q network efficiency measure by removing that link while the removal of a node is managed by removing the links entering and exiting that node.

In the case that the removal results in no path connecting an O/D pair, we simply assign the demand for that O/D pair to an abstract path with a cost of infinity.

The N-Q measure is well-defined even in the case of disconnected networks.
The Ranking of Links in the Braess Network

Table 1: Link Results for the Braess Network

<table>
<thead>
<tr>
<th>Link</th>
<th>N-Q Measure</th>
<th>L-M Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Importance Value</td>
<td>Importance Ranking</td>
</tr>
<tr>
<td>a</td>
<td>0.2069</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0.1794</td>
<td>2</td>
</tr>
<tr>
<td>c</td>
<td>0.1794</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>0.2069</td>
<td>1</td>
</tr>
<tr>
<td>e</td>
<td>-0.1084</td>
<td>3</td>
</tr>
</tbody>
</table>

N-Q (Nagurney-Qiang); L-M (Latora-Marchiori)
Table 2: Nodal Results for the Braess Network

<table>
<thead>
<tr>
<th>Node</th>
<th>N-Q Measure</th>
<th>L-M Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Importance Value</td>
<td>Importance Ranking</td>
</tr>
<tr>
<td>1</td>
<td>1.0000</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>.2069</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>.2069</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1.0000</td>
<td>1</td>
</tr>
</tbody>
</table>
Advantages of the N-Q Network Efficiency Measure

- The measure captures demands, flows, costs, and behavior of users, in addition to network topology.
- The resulting importance definition of network components is applicable and well-defined even in the case of disconnected networks.
- It can be used to identify the importance (and ranking) of either nodes, or links, or both.
- It can be applied to assess the efficiency/performance of a wide range of network systems, including financial systems and supply chains under risk and uncertainty.
- It is applicable also to elastic demand networks.
- It is applicable to dynamic networks, including the Internet.
Financial Networks and Game Theory
Game Theory
There are many game theory problems and tools for solving them. There is noncooperative game theory, in which the players or decision-makers compete with one another, and cooperative game theory, in which players cooperate with one another.

In noncooperative games, the governing concept is that of Nash equilibrium. In cooperative games, we can apply Nash bargaining theory.
A Predictive Network Economic Model of Cybercrime
We lay the foundation for the development of network economics based models for cybercrime in financial services.

Financial services firms as well as hackers are economic agents.

Our view is that financial firms produce/possess commodities (or products) that hackers (criminals) seek to obtain.

We assume that the firms (as well as the hackers) can be located in different regions of a country or in different countries. Financial service firms may also be interpreted as prey and the hackers as predators.
Commodities or products that the hackers seek to acquire may include: credit card numbers, password information, specific documents, etc.

The financial firms are the producers of these commodities whereas the hackers act as agents and “sell” these products, if they acquire them, at the “going” market prices.

There is a “price” at which the hackers acquire the financial commodity from a financial institution and a price at which they sell the hacked product in the demand markets. The former we refer to as the supply price and the latter is the demand price.
In addition, we assume that there is a transaction cost associated between each pair of financial and demand markets for each commodity. These transaction costs can be generalized costs that also capture risk.
Indeed, if the cyber criminals do not find demand markets for their acquired financial commodities (since there are no consumers willing to pay the price) then there is no economic incentive for them to acquire the financial commodities.
Indeed, if the cyber criminals do not find demand markets for their acquired financial commodities (since there are no consumers willing to pay the price) then there is no economic incentive for them to acquire the financial commodities.

To present another criminal network analogue – consider the market for illegal drugs, with the U.S. market being one of the largest, if not the largest one. If there is no demand for the drugs then the suppliers of illegal drugs cannot recover their costs of production and transaction and the flows of drugs will go to zero.
Indeed, if the cyber criminals do not find demand markets for their acquired financial commodities (since there are no consumers willing to pay the price) then there is no economic incentive for them to acquire the financial commodities.

To present another criminal network analogue – consider the market for illegal drugs, with the U.S. market being one of the largest, if not the largest one. If there is no demand for the drugs then the suppliers of illegal drugs cannot recover their costs of production and transaction and the flows of drugs will go to zero.

According to a recent Rand report, for many, the cyber black market can be more profitable than the illegal drug trade.
After the major Target breach, some credit cards obtained thus initially sold for $135 each on the black market, but, within weeks, as banks started to cancel the cards, the price dropped to $8 and, seven months after Target learned about the breach, the cards had essentially no value.
After the major Target breach, some credit cards obtained thus initially sold for $135 each on the black market, but, within weeks, as banks started to cancel the cards, the price dropped to $8 and, seven months after Target learned about the breach, the cards had essentially no value.

In addition, different brands of credit cards can be viewed as different products since they command different prices on the black market. For example, according to Leinwand Leger (2014) credit cards with the highest credit limits, such as an American Express Platinum card, command the highest prices.

Hacked credit card numbers of European credit cards can command prices five times higher than U.S. cards (see Peterson (2013)).
Network Economics of Cybercrime

• After the major Target breach, some credit cards obtained thus initially sold for $135 each on the black market, but, within weeks, as banks started to cancel the cards, the price dropped to $8 and, seven months after Target learned about the breach, the cards had essentially no value.

• In addition, different brands of credit cards can be viewed as different products since they command different prices on the black market. For example, according to Leinwand Leger (2014) credit cards with the highest credit limits, such as an American Express Platinum card, command the highest prices.

• A card number with a low limit might sell for $1 or $2, while a high limit card number can sell for $15 or considerably more, as noted above. Hacked credit card numbers of European credit cards can command prices five times higher than U.S. cards (see Peterson (2013)).
There is a short time window during which the value of a financial product acquired through cybercrime is positive but it decreases during the time window. Hence, financial products such as credit cards that are hacked can be treated as perishable products such as fruits, vegetables, etc.
Perishability and Cybercrime in Financial Products

Figure 2: Structure of the Network Economic Problem
Let Q_{ij}^k denote the nonnegative amount of financial product k obtained from i and shipped to j. Q is the vector of Q_{ij}^ks.

Let s_i^k denote the nonnegative supply of financial product k at i and let d_j^k be the demand for k and j. s is the vector of s_i^ks and d is the vector of d_j^ks.

T_{ij}^k is the time between the acquisition of product k from source location i and its sale at j.

$T_{ave,j}^k$ is the average time for delivery of product k at demand market j, where $T_{ave,j}^k = \frac{\sum_{i=1}^{m} T_{ij}^k Q_{ij}^k}{d_j^k}$. T_{ave} is the vector of $T_{ave,j}^k$s.
Let $\pi_i^k(s)$ denote the price of acquiring product k at source location i.

Let $\rho_j^k(d, T_{ave})$ denote the demand price of financial product k at demand market j.

Let $\hat{c}_{ij}^k(Q)$ denote the unit transaction cost associated with transacting product k between i and j.

Conservation of Flow Equations

The conservation of flow equations are:

\[s_i^k = \sum_{j=1}^{n} Q_{ij}^k, \quad k = 1, \ldots, o; i = 1, \ldots, m, \]

\[d_j^k = \sum_{i=1}^{m} Q_{ij}^k, \quad k = 1, \ldots, o; i = 1, \ldots, n, \]

\[Q_{ij}^k \geq 0, \quad k = 1, \ldots, o; i = 1, \ldots, m; j = 1, \ldots, n. \]

In addition, we introduce the following expression, which captures time:

\[t_{ij}^k Q_{ij}^k + h_{ij}^k = T_{ij}^k, \quad k = 1, \ldots, o; i = 1, \ldots, m; j = 1, \ldots, n. \]
In view of the conservation of flow equations, we can define new demand price functions \(\hat{\rho}_j^k, \forall k, \forall j \) as follows:

\[
\hat{\rho}_j^k(Q) \equiv \rho_j^k(d, T_{ave}), \quad k = 1, \ldots, o; j = 1, \ldots, n.
\]

If the demand at a demand market for a product is equal to zero, we remove that demand market from the network for that product since the corresponding time average would not be defined.

Also, we can define new supply price functions \(\hat{\pi}_i^k, \forall k, \forall i \) as:

\[
\hat{\pi}_i^k(Q) \equiv \pi_i^k(s), \quad k = 1, \ldots, o; j = 1, \ldots, n,
\]

which allow us to construct a variational inequality formulation governing the equilibrium conditions below with nice features for computations. We assume that all the functions in the model are continuous.
The Network Economic Equilibrium Conditions

The network economic equilibrium conditions for cybercrime have been achieved if for all products $k; k = 1, \ldots, o$, and for all pairs of markets $(i, j); i = 1, \ldots, m; j = 1, \ldots, n$, the following conditions hold:

$$\hat{\pi}_i^k(Q^*) + c_{ij}^k(Q^*) \begin{cases} = \hat{\rho}_j^k(Q^*), & \text{if } Q_{ij}^{k*} > 0 \\ \geq \rho_j^k(Q^*), & \text{if } Q_{ij}^{k*} = 0, \end{cases}$$

where recall that $\hat{\pi}_i^k$ denotes the price of product k at source location i, c_{ij}^k denotes the unit transaction cost associated with k between (i, j), and $\hat{\rho}_j^k$ is the demand price of k at demand market j. Q_{ij}^{k*} is the equilibrium flow of product k between i and j with Q^* being the vector of all such flows.

We define the feasible set $K \equiv \{Q \mid Q \in R_{omn}^+\}$.
Theorem: Variational Inequality Formulation

A product flow pattern $Q^* \in K$ is a cybercrime network economic equilibrium if and only if it satisfies the variational inequality problem:

$$\sum_{k=1}^{o} \sum_{i=1}^{m} \sum_{j=1}^{n} \left[\hat{\pi}^k_{ij}(Q^*) + c^k_{ij}(Q^*) - \hat{\rho}^k_{ij}(Q^*) \right] \times (Q^*_k - Q^{k*}_{ij}) \geq 0, \quad \forall Q \in K.$$

The above variational inequality problem can be put into standard form (see Nagurney (1999)): determine $X^* \in \mathcal{K}$, such that

$$\langle F(X^*), X - X^* \rangle \geq 0, \quad \forall X \in \mathcal{K}.$$

We define $\mathcal{K} \equiv K$, $X \equiv Q$, and $F(X) \equiv (F_{kij}(X)); \ k = 1, \ldots, o; \ i = 1, \ldots, m; \ j = 1, \ldots, n$, where $F_{kij} = \hat{\pi}^k_{ij}(Q) + c^k_{ij}(Q) - \hat{\rho}^k_{ij}(Q)$.

We utilize the theory of variational inequalities for the formulation, analysis, and solution of cybercrime as well as cybersecurity investment problems.

Definition: The Variational Inequality Problem

The finite-dimensional variational inequality problem, $\text{VI}(F, K)$, is to determine a vector $X^* \in K$, such that:

$$\langle F(X^*), X - X^* \rangle \geq 0, \quad \forall X \in K,$$

where F is a given continuous function from K to \mathbb{R}^N, K is a given closed convex set, and $\langle \cdot, \cdot \rangle$ denotes the inner product in \mathbb{R}^N.

Anna Nagurney

Cybercrime and Cybersecurity
The vector X consists of the decision variables – typically, the flows (products, prices, investments, security levels, etc.).

\mathcal{K} is the feasible set representing how the decision variables are constrained – for example, the flows may have to be nonnegative; budget constraints may have to be satisfied; similarly, quality and/or time constraints may have to be satisfied.

The function F that enters the variational inequality represents functions that capture the behavior in the form of the functions such as costs, profits, risk, etc.
The variational inequality problem contains, as special cases, such mathematical programming problems as:

- systems of equations,
- optimization problems,
- complementarity problems,
- game theory problems, operating under Nash equilibrium,
- and is related to the fixed point problem.

Hence, it is a natural methodology for a spectrum of supply chain network problems from centralized to decentralized ones as well as to design problems.
Geometric Interpretation of VI(F, K) and a Projected Dynamical System (Dupuis and Nagurney, Nagurney and Zhang)

In particular, $F(X^*)$ is “orthogonal” to the feasible set K at the point X^*.

Associated with a VI is a Projected Dynamical System, which provides natural underlying dynamics associated with travel (and other) behavior to the equilibrium.
To model the *dynamic behavior of complex networks*, we utilize *projected dynamical systems* (PDSs) advanced by Dupuis and Nagurney (1993) in *Annals of Operations Research* and by Nagurney and Zhang (1996) in our book *Projected Dynamical Systems and Variational Inequalities with Applications*.

Such nonclassical dynamical systems are now being used in *evolutionary games* (Sandholm (2005, 2011)), *ecological predator-prey networks* (Nagurney and Nagurney (2011a, b)), and even *neuroscience* (Girard et al. (2008)).

dynamic spectrum model for cognitive radio networks (Setoodeh, Haykin, and Moghadam (2012)).
The Algorithm

The Euler Method
At each iteration τ one solves the following problem:

$$X^{\tau+1} = P_K(X^\tau - a_\tau F(X^\tau)),$$

where P_K is the projection operator.

As shown in Dupuis and Nagurney (1993) and Nagurney and Zhang (1996), for convergence of the general iterative scheme, which induces the Euler method, among other methods, the sequence $\{a_\tau\}$ must satisfy: $\sum_{\tau=0}^{\infty} a_\tau = \infty$, $a_\tau > 0$, $a_\tau \to 0$, as $\tau \to \infty$.

Explicit Formulae
In particular, we have the following closed form expression for the product flows $k = 1, \ldots, m; \ i = 1, \ldots, m; \ j = 1, \ldots, n$:

$$Q_{ij}^{k\tau+1} = \max\{0, Q_{ij}^{k\tau} + a_\tau (\hat{\rho}_{j}^{k}(Q^\tau) - c_{ij}^{k}(Q^\tau) - \hat{\pi}_{i}^{k}(Q^\tau))\}.$$
Numerical Examples: 2 Financial Products, 2 Supply Markets, and 2 Demand Markets

The network topology of the examples is as in Figure 3.

Figure 3: Topology of Examples
Example 1

The supply price functions are:

\[\pi_1^1(s) = 5s_1^1 + s_2^1 + 2, \quad \pi_1^2(s) = 2s_2^1 + s_1^1 + 1, \]
\[\pi_2^1(s) = 2s_2^2 + s_1^1 + 1, \quad \pi_2^2(s) = s_2^2 + 0.5s_2^1 + 1. \]

The unit transaction cost functions are:

\[c_{11}^1(Q) = 0.03Q_1^{1^2} + 3Q_{11}^1 + 1, \quad c_{21}^1(Q) = 0.02Q_2^{1^2} + 2Q_{21}^1 + 2, \]
\[c_{11}^2(Q) = 0.01Q_1^{2^2} + Q_{11}^2 + 1, \quad c_{21}^2(Q) = 0.001Q_2^{2^2} + 1Q_{21}^2 + 1, \]
\[c_{12}^1(Q) = 0.01Q_1^{1^2} + Q_{12}^1 + 1, \quad c_{22}^1(Q) = 0.01Q_2^{1^2} + Q_{22}^1 + 1, \]
\[c_{12}^2(Q) = 0.01Q_1^{2^2} + Q_{12}^2 + 1, \quad c_{22}^2(Q) = 0.02Q_2^{2^2} + 2Q_{22}^2 + 2. \]
Example 1

The demand price functions are:

\[\rho_1^1(d, T_{ave}) = -2d_1^1 - d_1^2 - 0.5T_{ave,1} + 500, \]
\[\rho_1^2(d) = -3d_1^2 - d_1^1 - 0.1T_{ave,1} + 300, \]
\[\rho_2^1(d, T_{ave}) = -d_2^1 - 0.5d_2^2 - 0.2T_{ave,2} + 200, \]
\[\rho_2^2(d, T_{ave}) = -2d_2^2 - d_2^1 - 0.1T_{ave,2} + 100. \]
Numerical Examples: 2 Financial Products, 2 Supply Markets, and 2 Demand Markets

Example 1 The time expressions are:

\[
\begin{align*}
T_{11}^1 &= 0.1Q_{11}^1 + 10, & T_{21}^1 &= 0.5Q_{21}^1 + 5, \\
T_{12}^1 &= 0.1Q_{12}^1 + 10, & T_{22}^1 &= 0.1Q_{22}^1 + 10, \\
T_{11}^2 &= 0.1Q_{11}^2 + 20, & T_{21}^2 &= 0.5Q_{21}^2 + 15, \\
T_{12}^2 &= 0.5Q_{12}^2 + 5, & T_{22}^2 &= 0.5Q_{22}^2 + 10,
\end{align*}
\]

so that

\[
\begin{align*}
T_{ave,1}^1 &= \frac{T_{11}^1 Q_{11}^1 + T_{21}^1 Q_{21}^1}{d_1^1}, & T_{ave,1}^2 &= \frac{T_{11}^2 Q_{11}^2 + T_{21}^2 Q_{21}^2}{d_1^2}, \\
T_{ave,2}^1 &= \frac{T_{12}^1 Q_{12}^1 + T_{22}^1 Q_{22}^1}{d_2^1}, & T_{ave,2}^2 &= \frac{T_{12}^2 Q_{12}^2 + T_{22}^2 Q_{22}^2}{d_2^2}.
\end{align*}
\]

The Euler method converged to the solution reported in Tables 1 and 2.
Example 2

Example 2 has the same data as Example 1 except that now we have a modification in the demand price function associated with the second product at demand market 2 so that:

$$\rho_2^2(d, T_{ave}) = -2d_2^2 - d_2^1 - .1T_{ave,2}^2 + 200.$$

Such a change might represent that the value of this financial product has increased at that demand market.
Example 3

Example 3 was constructed from Example 2 and had the same data except that we increased the fixed terms in all the transaction cost functions so that:

\[c_{11}^{1}(Q) = 0.03Q_{11}^{2} + 3Q_{11} + 10, \quad c_{21}^{1}(Q) = 0.02Q_{21}^{2} + 2Q_{21} + 20, \]

\[c_{11}^{2}(Q) = 0.01Q_{11}^{2} + Q_{11} + 10, \quad c_{21}^{2}(Q) = 0.001Q_{21}^{2} + 0.1Q_{21} + 10, \]

\[c_{12}^{1}(Q) = 0.01Q_{12}^{2} + Q_{12} + 10, \quad c_{22}^{1}(Q) = 0.01Q_{22}^{2} + Q_{22} + 10, \]

\[c_{12}^{2}(Q) = 0.01Q_{12}^{2} + Q_{12} + 10, \quad c_{22}^{2}(Q) = 0.02Q_{22}^{2} + 2Q_{22} + 20. \]

This could represent the situation that the cybercriminals have a harder time fencing all the products at all the demand markets. The results are reported in Tables 1 and 2.
Table 3: Equilibrium Solutions for the Examples

<table>
<thead>
<tr>
<th>Financial Flows</th>
<th>Example 1</th>
<th>Example 2</th>
<th>Example 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{11}^1</td>
<td>25.93</td>
<td>26.31</td>
<td>26.21</td>
</tr>
<tr>
<td>Q_{12}^1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Q_{21}^1</td>
<td>46.73</td>
<td>48.28</td>
<td>46.45</td>
</tr>
<tr>
<td>Q_{22}^1</td>
<td>16.77</td>
<td>12.50</td>
<td>11.61</td>
</tr>
<tr>
<td>Q_{11}^2</td>
<td>11.69</td>
<td>4.81</td>
<td>3.47</td>
</tr>
<tr>
<td>Q_{12}^2</td>
<td>6.09</td>
<td>23.46</td>
<td>23.59</td>
</tr>
<tr>
<td>Q_{21}^2</td>
<td>37.56</td>
<td>39.27</td>
<td>39.57</td>
</tr>
<tr>
<td>Q_{22}^2</td>
<td>0.00</td>
<td>12.67</td>
<td>9.69</td>
</tr>
</tbody>
</table>
Table 4: Incurred Equilibrium Prices and Average Times

<table>
<thead>
<tr>
<th>Prices</th>
<th>Example 1</th>
<th>Example 2</th>
<th>Example 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho_1^1(d^, T_{ave}^)$</td>
<td>294.07</td>
<td>295.07</td>
<td>300.35</td>
</tr>
<tr>
<td>$\rho_2^2(d^, T_{ave}^)$</td>
<td>76.52</td>
<td>89.85</td>
<td>94.87</td>
</tr>
<tr>
<td>$\rho_1^2(d^, T_{ave}^)$</td>
<td>175.51</td>
<td>164.94</td>
<td>167.28</td>
</tr>
<tr>
<td>$\rho_2^1(d^, T_{ave}^)$</td>
<td>69.98</td>
<td>113.86</td>
<td>120.52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average Times</th>
<th>Example 1</th>
<th>Example 2</th>
<th>Example 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{ave,1}^1$</td>
<td>22.74</td>
<td>23.32</td>
<td>22.59</td>
</tr>
<tr>
<td>$T_{ave,1}^2$</td>
<td>30.78</td>
<td>33.09</td>
<td>33.62</td>
</tr>
<tr>
<td>$T_{ave,2}^1$</td>
<td>23.35</td>
<td>22.50</td>
<td>22.32</td>
</tr>
<tr>
<td>$T_{ave,2}^2$</td>
<td>10.61</td>
<td>13.75</td>
<td>13.08</td>
</tr>
</tbody>
</table>
Managerial Insights

- The above numerical examples, although stylized, provide important managerial insights that cybersecurity professionals may take advantage of in securing their data.
Managerial Insights

- The above numerical examples, although stylized, provide important managerial insights that cybersecurity professionals may take advantage of in securing their data.

- The examples show the quantified impacts of changes in the data on the equilibrium financial product flows, and on the incurred demand prices and average times for product delivery.

For example, Goncharov (2012) reports that the cost, that is, the supply price, of hacking into various accounts can range anywhere from $16 to over $325. Also, as reported in Ablon, Libicki, and Golay (2014), following an initial breach, the markets may get flooded with cybercrime products leading to a decrease in prices, which the structure of our demand price functions capture.
Managerial Insights

• The above numerical examples, although stylized, provide important managerial insights that cybersecurity professionals may take advantage of in securing their data.

• The examples show the quantified impacts of changes in the data on the equilibrium financial product flows, and on the incurred demand prices and average times for product delivery.

• The results are consistent with existing data on hacked credit cards. For example, Goncharov (2012) reports that the cost, that is, the supply price, of hacking into various accounts can range anywhere from $16 to over $325. Also, as reported in Ablon, Libicki, and Golay (2014), following an initial breach, the markets may get flooded with cybercrime products leading to a decrease in prices, which the structure of our demand price functions capture.
Managerial Insights

- Credit cards acquired in the Target breach initially fetched from $20 to $135 depending on the type of card, expiration date as well as limit (cf. Ablon, Libicki, and Golay (2014)). Although our numerical study did not focus on a specific historical data breach, the results are not inconsistent with results obtained in practice.
Managerial Insights

- Credit cards acquired in the Target breach initially fetched from $20 to $135 depending on the type of card, expiration date as well as limit (cf. Ablon, Libicki, and Golay (2014)). Although our numerical study did not focus on a specific historical data breach, the results are not inconsistent with results obtained in practice.

- Finally, the model captures the crucial time element in the demand market pricing of products obtained through cybercrime with a focus on financial services.
Prescriptive Multifirm Models of Cybersecurity Investment
Competition vs. Cooperation
Multifirm Models of Cybersecurity Investment

This part of the presentation is based on the paper, Multifirm Models of Cybersecurity Investment Competition vs. Cooperation and Network Vulnerability,” Anna Nagurney and Shivani Shukla, European Journal of Operational Research 260(2) (2017) pp 588-600, where many references and additional theoretical and numerical results can be found.
There is a growing interest in developing rigorous frameworks for cybersecurity investments.

As reported in Morgan (2016), JPMorgan doubled its cybersecurity spending in 2015 to $500 million from $250 million previously.

Gartner predicts that worldwide spending on information security products and services will reach $81.6 billion in 2016 – an increase of 7.9% from last year.

It is clear that making the best cybersecurity investments is a very timely problem and issue.
We describe three different models of multifirm cybersecurity investments.

The first model is a Nash Equilibrium (NE) one capturing noncooperative behavior; the second and third are cooperative models, using Nash Bargaining (NB) and System-Optimization (S-O) concepts, respectively.
There are m firms in the “network.” These firms can be financial service firms, energy firms, manufacturing firms, or even retailers.

Each firm $i; i = 1, \ldots, m$, in the network is interested in determining how much it should invest in cybersecurity with the cybersecurity level or, simply, security level of firm i denoted, wlog, by $s_i; i = 1 \ldots, m$.
The cybersecurity level s_i of each firm i must satisfy the following constraint:

$$0 \leq s_i \leq u_{s_i}, \quad i = 1, \ldots, m,$$

where $u_{s_i} < 1$, and is also greater than zero, is the upper bound on the security level for firm i.

A value of a cybersecurity level of 1 would imply perfect security, which is not achievable. When $s_i = 0$ the firm has no security. We group the security levels of all firms into the m-dimensional vector s.

Anna Nagurney
Cybercrime and Cybersecurity
Common Features of the Models

In order to attain security level s_i, firm i encumbers an investment cost $h_i(s_i)$ with the function assumed to be continuously differentiable and convex.

For a given firm i, $h_i(0) = 0$ denotes an entirely insecure firm and $h_i(1) = \infty$ is the investment cost associated with complete security for the firm, as in Shetty et al. (2009) and Shetty (2010). An example of a suitable $h_i(s_i)$ function that we use in this paper is

$$h_i(s_i) = \alpha_i \left(\frac{1}{\sqrt{1 - s_i}} - 1 \right)$$

with $\alpha_i > 0$. Such a function was utilized in Nagurney and Nagurney (2015), in Nagurney, Nagurney, and Shukla (2015), and in Nagurney, Daniele, and Shukla (2015).
The network security level, \bar{s}, is the average security, given by:

$$\bar{s} = \frac{1}{m} \sum_{j=1}^{m} s_j.$$

The vulnerability of firm i, $\nu_i = (1 - s_i)$, and the network vulnerability, $\bar{\nu} = (1 - \bar{s})$.

Common Features of the Models
Following Shetty (2010), the probability p_i of a successful attack on firm $i; i = 1, \ldots, m$ is

$$p_i = (1 - s_i)(1 - \bar{s}), \quad i = 1, \ldots, m,$$

where $(1 - \bar{s})$ is the probability of an attack on the network and $(1 - s_i)$ is the probability of success of such an attack on firm i.
Common Features of the Models

Each firm $i; i = 1, \ldots, m$ has a utility associated with its wealth W_i, denoted by $f_i(W_i)$, which is increasing, and is continuous and concave. The form of the $f_i(W_i)$ that we use is $\sqrt{W_i}$ (see Shetty et al. (2009)).

Also, a firm i is faced with damage D_i if there is a successful cyberattack on it.
The expected utility $E(U_i)$ of firm $i; i = 1, \ldots, m$, is given by the expression:

$$E(U_i) = (1 - p_i)f_i(W_i) + p_i(f_i(W_i - D_i)) - h_i(s_i).$$

We may write $E(U_i) = E(U_i(s)), \forall i$. Each $E(U_i(s))$ is strictly concave with respect to s_i under the assumed functional forms above since we also know that each $h_i(s_i); i = 1, \ldots, m$ is strictly convex.
We seek to determine a security level pattern \(s^* \in K^1 \), where
\[K^1 = \prod_{i=1}^{m} K^1_i \]
and \(K^1_i \equiv \{ s_i | 0 \leq s_i \leq u_{s_i} \} \), such that the firms will be in a state of equilibrium with respect to their cybersecurity levels. \(K^1 \) is convex since it is a Cartesian product of the firms’ feasible sets with each such set being convex since it corresponds to box-type constraints.

Definition: Nash Equilibrium in Cybersecurity Levels

A security level pattern \(s^* \in K^1 \) is said to constitute a cybersecurity level Nash equilibrium if for each firm \(i; i = 1, \ldots, m \):

\[
E(U_i(s_i^*, \hat{s}_i^*)) \geq E(U_i(s_i, \hat{s}_i^*)), \quad \forall s_i \in K^1_i,
\]

where

\[
\hat{s}_i^* \equiv (s_1^*, \ldots, s_{i-1}^*, s_{i+1}^*, \ldots, s_m^*).
\]
Theorem: Variational Inequality Formulation of Nash Equilibrium in Cybersecurity Levels

Since for each firm $i; i = 1, \ldots, m$ the expected profit function $E(U_i(s))$ is concave with respect to the variable s_i, and is continuously differentiable, and the feasible set K^1 is convex, we know that $s^* \in K^1$ is a Nash equilibrium in cybersecurity levels according to the Definition if and only if it satisfies the VI

$$- \sum_{i=1}^{m} \frac{\partial E(U_i(s^*))}{\partial s_i} \times (s_i - s_i^*) \geq 0, \ \forall s \in K^1;$$

or, if and only if it satisfies the VI

$$\sum_{i=1}^{m} \left[\frac{\partial h_i(s_i^*)}{\partial s_i} + [f_i(W_i) - f_i(W_i - D_i)] \left[\frac{1}{m} \sum_{j=1}^{m} s_j^* - 1 - \frac{1}{m} + \frac{s_i^*}{m} \right] \right] \times (s_i - s_i^*) \geq 0, \ \forall s \in K^1.$$
We can apply the Euler method, presented earlier to solve this model.

In view of the simple structure of the underlying feasible set, the Euler method yields at each iteration closed form expressions for the security levels: \(i; i = 1, \ldots, m \), given by:

\[
\begin{align*}
\tau + 1 & = \\
\max\{0, \min\{u_i, s_i^\tau + a_\tau(- \frac{\partial h_i(s_i^\tau)}{\partial s_i^\tau}) - (f_i(W_i) - f_i(W_i - D_i))\} & = \\
& \left[\frac{1}{m} \sum_{j=1}^{m} s_j^\tau - 1 - \frac{1}{m} + \frac{s_i^\tau}{m} \right].
\end{align*}
\]
The bargaining model proposed by Nash (1950b, 1953) is based on axioms and focused on two players, that is, decision-makers. The framework easily generalizes to \(m \) decision-makers, as noted in Leshem and Zehavi (2008). An excellent overview can be found in Binmore, Rubinstein, and Wolinsky (1989) and in the book by Muthoo (1999).

Let \(E(U_j^{NE}) \) denote the expected utility of firm \(j \) evaluated at the Nash equilibrium security level solution. \(E(U_j^{NE}) \) is the disagreement point of firm \(j \), according to the bargaining framework.
The objective function underlying the Nash bargaining model of cybersecurity investments is:

\[Z^1 = \prod_{j=1}^{m} (E(U_j(s)) - E(U_j^{NE})). \]

The optimization problem to be solved is then:

\[
\text{Maximize} \prod_{j=1}^{m} (E(U_j(s)) - E(U_j^{NE}))
\]

subject to:

\[E(U_j(s)) \geq E(U_j^{NE}), \quad j = 1, \ldots, m, \quad s \in K^1. \]

We define the feasible set \(K^2 \) consisting of the above constraints, which we know is convex.
The System-Optimization Model of Cybersecurity Investments

Under system-optimization, the objective function becomes:

\[Z^2 = \sum_{j=1}^{m} E(U_j(s)) \]

and the feasible set remains as for the Nash equilibrium problem, that is, \(s \in K^1 \).

Hence, the system-optimization cybersecurity investment problem is to:

\[
\text{Maximize } \sum_{j=1}^{m} E(U_j(s)) \\
\text{subject to: } s \in K^1.
\]
Solutions of the Nash Equilibrium model were computed by applying the Euler method, with the Euler method implemented in Matlab on a Lenovo G410 laptop with an Intel Core i5 processor and 8GB RAM.

The convergence tolerance was set to 10^{-5}, so that the algorithm was deemed to have converged when the absolute value of the difference between each successively computed security level was less than or equal to 10^{-5}. The sequence $\{a_\tau\}$ was set to:

$1\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\}$.

We initialized the Euler method by setting the security levels at their lower bounds. The upper bounds on the security levels $u_{s_i} = 0.99, \forall i$.
The solutions to the Nash Bargaining and System-Optimization models were computed by applying the Interior Point Method in the SAS NLP Solver. The algorithm was called upon while using SAS Studio, a web browser-based programming environment. The maximum optimality error, in each case example below, was 5×10^{-7} for the S-O solutions.
A Retail Case Study

TARGET

HOME DEPOT

Anna Nagurney
Cybercrime and Cybersecurity
A Retail Case Study

Wealth, damages, and investment costs are given in US dollars in millions. The α_i values in the cybersecurity investment functions across all examples are the number of employees in millions based on the most recently available public data.

We consider two retailers. Firm 1 represents the second largest discount retailer in the United States, Target Corporation. The firm, in January 2014, announced that the security of 70 million of its users was breached and their information compromised. Credit card information of 40 million users was used by hackers to generate an estimated $53.7 million in the black market as per Newsweek (2014).
Firm 2 represents Home Depot, a popular retailer in the home improvement and construction domain. Products available under these categories are also sold through Target which makes them compete for a common consumer base. The company was struggling with high turnover and old software which led to a compromise of 56 million users (Newsweek (2014)).

Firm 1 (Target) suffered $148 million in damages, according to the Consumer Bankers Association and the Credit Union National Association (Newsweek (2014)). Firm 2 (Home Depot) incurred a $62 million in legal fees and staff overtime to deal with their cyberattack in 2014. Additionally, it paid $90 million to banks for re-issuing debit and credit cards to users who were compromised (Newsweek (2014)).
We use the annual revenue data for the firms to estimate their wealth. Hence, in US$ in millions, $W_1 = 72600; W_2 = 78800$. The potential damages these firms stand to sustain in the case of similar cyberattacks as above in the future amount to (in US$ in millions): $D_1 = 148.0; D_2 = 152$.

The wealth functions are of the following form:

$$f_1(W_1) = \sqrt{W_1}; \quad f_2(W_2) = \sqrt{W_2}.$$

The cybersecurity investment cost functions are:

$$h_1(s_1) = 0.25\left(\frac{1}{\sqrt{1-s_1}} - 1\right); \quad h_2(s_2) = 0.30\left(\frac{1}{\sqrt{1-s_2}} - 1\right).$$

The parameters $\alpha_1 = .25$ and $\alpha_2 = .30$ are the number of employees of the respective firms in millions, thereby, representing their size.
Results

Results for the Nash Equilibrium model, the Bargaining Nash model, and the System-Optimization model for cybersecurity investments are summarized in the Table.

<table>
<thead>
<tr>
<th>Solution</th>
<th>NE</th>
<th>NB</th>
<th>S-O</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>0.384</td>
<td>0.443</td>
<td>0.460</td>
</tr>
<tr>
<td>s_2</td>
<td>0.317</td>
<td>0.409</td>
<td>0.388</td>
</tr>
<tr>
<td>ν_1</td>
<td>0.616</td>
<td>0.557</td>
<td>0.540</td>
</tr>
<tr>
<td>ν_2</td>
<td>0.683</td>
<td>0.591</td>
<td>0.612</td>
</tr>
<tr>
<td>\bar{s}</td>
<td>0.350</td>
<td>0.426</td>
<td>0.424</td>
</tr>
<tr>
<td>$\bar{\nu}$</td>
<td>0.650</td>
<td>0.574</td>
<td>0.576</td>
</tr>
<tr>
<td>$E(U_1)$</td>
<td>269.265</td>
<td>269.271</td>
<td>269.268</td>
</tr>
<tr>
<td>$E(U_2)$</td>
<td>280.530</td>
<td>280.531</td>
<td>280.534</td>
</tr>
</tbody>
</table>

Table 5: Results for NE, NB, and S-O for Target and Home Depot
Target Corporation is part of the Retail Cyber Intelligence Sharing Center through which the firm shares cyber threat information with other retailers that are part of the Retail Industry Leaders Association and also with public stakeholders such as the U.S. Department of Homeland Security, and the FBI (RILA (2014)). Even Home Depot has expressed openness towards the sharing threat information.
Sensitivity Analysis

We report the results for sensitivity analysis by increasing the values of the D_i parameters for $i = 1, 2$. The wealth and alpha parameters are fixed as previously: (in US$ in millions) $W_1 = 72600$, $W_2 = 78800$ (in millions); $\alpha_1 = 0.25$, $\alpha_2 = 0.30$. The solutions are reported in the following Tables.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>NE</th>
<th></th>
<th>NB</th>
<th></th>
<th>S-O</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1</td>
<td>D_2</td>
<td>$E(U_1)$</td>
<td>$E(U_2)$</td>
<td>$E(U_1)$</td>
<td>$E(U_2)$</td>
</tr>
<tr>
<td>24800</td>
<td>25200</td>
<td>268.476</td>
<td>279.648</td>
<td>268.485</td>
<td>279.658</td>
</tr>
<tr>
<td>34800</td>
<td>35200</td>
<td>268.377</td>
<td>279.542</td>
<td>268.386</td>
<td>279.551</td>
</tr>
<tr>
<td>44800</td>
<td>45200</td>
<td>268.290</td>
<td>279.451</td>
<td>268.300</td>
<td>279.461</td>
</tr>
</tbody>
</table>

Table 6: Expected Utilities for NE, NB, and S-O for Target and Home Depot for Varying D_i Parameters for $\alpha_1 = .25$ and $\alpha_2 = .30$
Sensitivity Analysis

Table 7: Network Vulnerability $\bar{\nu}$ for NE, NB, and S-O for Target and Home Depot for Varying D_i; Parameters for $\alpha_1 = .25$ and $\alpha_2 = .30$

| Parameters | NE | | | | NB | | | | | | S-O | | | |
|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| | D_1 | D_2 | s_1 | s_2 | $\bar{\nu}$ | s_1 | s_2 | $\bar{\nu}$ | s_1 | s_2 | $\bar{\nu}$ |
| | 24800 | 25200 | .924 | .915 | .08040 | .933 | .924 | .07165 | .933 | .924 | .07166 |
| | 34800 | 35200 | .935 | .927 | .06890 | .943 | .935 | .06144 | .943 | .934 | .06145 |
| | 44800 | 45200 | .943 | .935 | .06090 | .949 | .942 | .05431 | .949 | .942 | .05432 |
Sensitivity Analysis

The network vulnerability is consistently the lowest under the NB solution concept, demonstrating the benefit of bargaining for cooperation in cybersecurity. The increase in expected utilities on employing NB over NE is US$ 10,193 for Target and US$ 10,346 for Home Depot in the scenario with $D_1 = 44800, D_2 = 45200$. Comparison of S-O and NB shows an increase of US$ 515 for Home Depot but a decrease of US$ 513 for Target when $D_1 = 44800, D_2 = 45200$.
We now report the results for additional sensitivity analysis by increasing the values of the D_i parameters for $i = 1, 2$, where the wealth and alpha parameters as follows: (in US$ in millions): $W_1 = 72600$, $W_2 = 78800$ (in millions); $\alpha_1 = 100.00$, $\alpha_2 = 120.00$. The results are reported in the subsequent Tables. The higher alpha parameters result in a significant increase in expected utilities as we move from NE to NB and S-O.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>NE</th>
<th>NB</th>
<th>S-O</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1</td>
<td>D_2</td>
<td>$E(U_1)$</td>
<td>$E(U_2)$</td>
</tr>
<tr>
<td>24800</td>
<td>25200</td>
<td>222.472</td>
<td>235.991</td>
</tr>
<tr>
<td>34800</td>
<td>35200</td>
<td>210.460</td>
<td>223.098</td>
</tr>
<tr>
<td>44800</td>
<td>45200</td>
<td>200.039</td>
<td>212.090</td>
</tr>
</tbody>
</table>

Table 8: Expected Utilities for NE, NB, and S-O for Target and Home Depot for Varying D_i Parameters for $\alpha_1 = 100.00$ and $\alpha_2 = 120.00$
Additional Sensitivity Analysis

Table 9: Network Vulnerability $\bar{\nu}$ for NE, NB, and S-O for Target and Home Depot for Varying D_i Parameters $\alpha_1 = 100.00$ and $\alpha_2 = 120.00$

<table>
<thead>
<tr>
<th>Parameters</th>
<th>NE</th>
<th>NB</th>
<th>S-O</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1</td>
<td>D_2</td>
<td>ν_1</td>
<td>ν_2</td>
</tr>
<tr>
<td>24800</td>
<td>25200</td>
<td>.169</td>
<td>.066</td>
</tr>
<tr>
<td>34800</td>
<td>35200</td>
<td>.289</td>
<td>.197</td>
</tr>
<tr>
<td>44800</td>
<td>45200</td>
<td>.374</td>
<td>.288</td>
</tr>
</tbody>
</table>
Additional Sensitivity Analysis

Figure 4: Representation of Table Showing Comparison of Network Vulnerability \bar{v} for NE, NB, and S-O with Varying D_i Parameters $\alpha_1 = 100.00$ and $\alpha_2 = 120.00$

The network vulnerability is consistently the lowest for the NB solution, signifying the benefits of cooperation for cybersecurity.
An Energy Case Study

Shell

bp

EXXON Mobil
Cyber espionage assaults targeting the energy sector have seen a sharp rise since 2007. Increases in automation and dependency on technology have led to many more vulnerabilities in this sector than the companies envisioned. One such attack on some of the major players in the industry by the Chinese is called Night Dragon.

The attack persisted for more than a few years before being detected in 2011. Proprietary information about oil and gas field operations, related financial transactions, exploratory maps, bidding data, and other sensitive information was compromised (OffShore Engineer (2013)).

The losses emanating from such an assault can be catastrophic.
An Energy Case Study

In this case study, we consider three internationally renowned oil and gas companies.

Firm 1 represents Royal Dutch Shell Plc, an Anglo-Dutch multinational company with operations spanning worldwide. Its sales and revenue make it the third largest in the world.

Firm 2 is British Petroleum (BP) in this case study. The company is the seventh largest in terms of its turnover and is headquartered in the UK.

Firm 3 is Exxon Mobil, the largest oil and gas company in the US and the fourth largest in the world. All of these firms were victims of the Night Dragon attack and suffered critical loss of information.
An Energy Case Study

In millions, we let $W_1 = 293290; W_2 = 234250; W_3 = 437640$. The information that was compromised provided important details such as possible points of exploration, current status, future plans, etc.

Since the actual damage was confidential and not reported, we have estimated it by multiplying the throughput of each of these firms (barrels produced per day for six months) with the oil price of $53.5. As of 2014, the daily production of Shell was 3.9 million barrels, that of BP was 4.1 million barrels, and that of Exxon Mobil was 5.3 million barrels (Statista (2015)).
We added the average costs of detection and escalation, notification and ex-post response for UK (BP and Shell) and US (Exxon Mobil). The averages were obtained from the Ponemon Institute study (2013).

Thus, the potential damages these firms could stand to sustain, from a similar cyberattack to the above, amount to (in millions): $D_1 = 38080.4; D_2 = 40033.1; D_3 = 51750.3$. These are approximate values only.
The wealth functions are:

\[f_1(W_1) = \sqrt{W_1}; \quad f_2(W_2) = \sqrt{W_2}; \quad f_2(W_3) = \sqrt{W_3}. \]

The cybersecurity investment cost functions take the form:

\[h_1(s_1) = 0.094\left(\frac{1}{\sqrt{1 - s_1}} - 1\right); \quad h_2(s_2) = 0.075\left(\frac{1}{\sqrt{1 - s_2}} - 1\right); \]

\[h_1(s_3) = 0.085\left(\frac{1}{\sqrt{1 - s_3}} - 1\right). \]

The \(\alpha_i; \ i = 1, 2, 3, \) values in the cybersecurity investment cost functions above represent the total number of employees of the organizations in millions.
Results

<table>
<thead>
<tr>
<th>Solution</th>
<th>NE</th>
<th>NB</th>
<th>S-O</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>0.936</td>
<td>0.945</td>
<td>0.946</td>
</tr>
<tr>
<td>s_2</td>
<td>0.949</td>
<td>0.957</td>
<td>0.956</td>
</tr>
<tr>
<td>s_3</td>
<td>0.943</td>
<td>0.951</td>
<td>0.951</td>
</tr>
<tr>
<td>v_1</td>
<td>0.064</td>
<td>0.055</td>
<td>0.054</td>
</tr>
<tr>
<td>v_2</td>
<td>0.051</td>
<td>0.043</td>
<td>0.044</td>
</tr>
<tr>
<td>v_3</td>
<td>0.057</td>
<td>0.049</td>
<td>0.049</td>
</tr>
<tr>
<td>\bar{s}</td>
<td>0.942</td>
<td>0.951</td>
<td>0.951</td>
</tr>
<tr>
<td>\bar{v}</td>
<td>0.058</td>
<td>0.049</td>
<td>0.049</td>
</tr>
<tr>
<td>$E(U_1)$</td>
<td>541.151</td>
<td>541.157</td>
<td>541.156</td>
</tr>
<tr>
<td>$E(U_2)$</td>
<td>483.609</td>
<td>483.615</td>
<td>483.617</td>
</tr>
<tr>
<td>$E(U_3)$</td>
<td>661.142</td>
<td>661.150</td>
<td>661.149</td>
</tr>
</tbody>
</table>

Table 10: Results for NE, NB, and S-O for Shell, BP, and Exxon Mobil
Results

Similar to the first case study based on retailers, we observe that, in the results for the Nash Bargaining model, the security levels of all three firms are higher as compared to their respective values in the Nash Equilibrium model.

Once again, the Nash Bargaining solution manages the security of the network and the monetary expectations well for all three firms, benefiting the network and the consumers.
Sharing of cyber information among these companies could be tricky, yet, nevertheless, essential.

LOGIIC, Linking the Oil and Gas Industry to Improve Cybersecurity, was established for collaboration among companies in this sector and the US Department of Homeland Security. BP, Chevron, Shell, Total and others possessing global energy infrastructure are members of the program (Automation Federation (2013)).
Based on these case studies, which describe results for different industrial sectors, it can be stated that the Nash Bargaining model is the most practical and beneficial for firms, the network, and consumers alike in terms of security levels.
Figure 5: Supply chains are also vulnerable to cyberattacks and can serve as entre points.
Figure 6: The Structure of the Supply Chain Network Game Theory Model
Some Other Examples of Our Recent Cybersecurity Work

Our Latest Supply Chain Book

Springer Series in Supply Chain Management

Anna Nagurney
Dong Li

Competing on Supply Chain Quality
A Network Economics Perspective

Springer
In the book, we present supply chain network models and tools to investigate, amongst other topics, information asymmetry, impacts of outsourcing on quality, minimum quality standards, applications to industries such as pharma and high tech, freight services and quality, and the identification of which suppliers matter the most to both individual firms’ supply chains and to that of the supply chain network economy.
In the final part of this presentation, we overviewed our work on network vulnerability from a cybersecurity perspective. Our “clients” were retailers and energy corporations, who have also encountered a growing number of cyberattacks. Additional results we have obtained for case studies in financial services.

The cybersecurity investment models that we prevented included Nash Equilibrium, Nash Bargaining, as well as System-Optimization models. The results demonstrate the relevance of cooperation with the most practical cooperative model being that of Nash Bargaining.
Summary and Conclusions

- In the final part of this presentation, we overviewed our work on network vulnerability from a cybersecurity perspective. Our “clients” were retailers and energy corporations, who have also encountered a growing number of cyberattacks. Additional results we have obtained for case studies in financial services.

- The cybersecurity investment models that we prevented included Nash Equilibrium, Nash Bargaining, as well as System-Optimization models. The results demonstrate the relevance of cooperation with the most practical cooperative model being that of Nash Bargaining.
Summary and Conclusions

• In the final part of this presentation, we overviewed our work on network vulnerability from a cybersecurity perspective. Our “clients” were retailers and energy corporations, who have also encountered a growing number of cyberattacks. Additional results we have obtained for case studies in financial services.

• The cybersecurity investment models that we prevented included Nash Equilibrium, Nash Bargaining, as well as System-Optimization models. The results demonstrate the relevance of cooperation with the most practical cooperative model being that of Nash Bargaining.

• Our research integrates inputs from practitioners with the goal of providing prescriptive analytics for decision-making for cybersecurity investments.
THANK YOU!

For more information, see: http://supernet.isenberg.umass.edu