Supernetworks: Decision-Making in a New Era

Anna Nagurney
John F. Smith Memorial Professor
and
Director
The Virtual Center for Supernetworks

http://supernet.som.umass.edu
Funding provided by:

AT&T Foundation

National Science Foundation

John F. Smith Memorial Fund - University of Massachusetts at Amherst

THE ROCKEFELLER FOUNDATION
We are in a New Era of Decision-Making characterized by:

• increasing risk and uncertainty;
• importance of dynamics and realizing a fast and sound response to evolving events;
• complex interactions among decision-makers in organizations;
• alternative and at times conflicting criteria used in decision-making;
• global reach of many decisions, and
• high impact of many decisions.
The complexity of today's decision-making environments in organizations requires the development and harnessing of *appropriate and rigorous scientific tools* which must be based on *information technology* since only such technology provides one with the speed and accuracy needed to model complex interactions and to optimize accordingly.
The New Era is Network-Based with the Internet providing critical infrastructure along with transportation/logistical networks as well as other telecommunication networks and energy networks. No longer are networks independent of one another but critically linked with major questions arising regarding decision-making and appropriate management tools.
Indeed, the events of 9/11 coupled with the recent computer worm and viruses along with the biggest blackout in US history demonstrate irrevocably that we must as a nation harness the best and most powerful methodologies for the modeling, analysis, and solution of complex decision-making problems.
Background
Throughout history, **networks** have served as the foundation for connecting humans to one another and their activities.

- Roads were laid, bridges built, and waterways crossed so that humans, be they on foot, on animal, or vehicle could traverse physical distance through **transportation**. The airways were conquered through flight.

- **Communications** were conducted using the available means of the period, from smoke signals, drum beats, and pigeons, to the telegraph, telephone, and computer networks of today.
Importance of Networks to the Economy and the Nation

• US consumers, businesses, and governments spent $950 billion on transportation in 1998 (US DOT).

• Corporate buyers spent $517.6 billion on telecommunications in 1999 (Purchasing).

• Energy expenditures in the United States were $515.8 billion in 1995 (US Dept. of Commerce).
Information technology has transformed the ways in which individuals work, travel, and conduct their daily activities, with profound implications for existing and future networks.

The decision-making process itself has been altered due to the addition of alternatives and options which were not possible or even feasible.

The boundaries for decision-making have been redrawn as individuals can now work from home or purchase products from work.
We live in an era in which the freedom to choose is weighted by the immensity of choices and possibilities:

- Where should one live?
- Where should one work? And when?
- How should one travel? Or communicate? And with whom?
- Where should one shop? And how?
Not only has individual decision-making been transformed in this new era but organizations have as well.

How do we capture in a scientific manner cooperation vs. competition and the ramifications, centralized control vs. decentralized control, and different criteria in decision-making?

Moreover, what are the results on the flows on the networks be they in the form of vehicles, messages, products, and/or services, as well as financial?

Who wins and who loses?
Classical Networks

<table>
<thead>
<tr>
<th>Network System</th>
<th>Nodes</th>
<th>Links</th>
<th>Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation Urban</td>
<td>Intersections, Homes, Places of Work</td>
<td>Roads</td>
<td>Autos</td>
</tr>
<tr>
<td>Air Ridge</td>
<td>Airports</td>
<td>Airline Routes</td>
<td>Planes</td>
</tr>
<tr>
<td>Rail</td>
<td>Railyards</td>
<td>Railroad Track</td>
<td>Trains</td>
</tr>
<tr>
<td>Manufacturing and Logistics</td>
<td>Distribution Points, Processing Points</td>
<td>Routes</td>
<td>Parts, Products</td>
</tr>
<tr>
<td>Communication</td>
<td>Computers, Satellites, Phone Exchanges</td>
<td>Cables, Radio</td>
<td>Messages</td>
</tr>
<tr>
<td>Energy</td>
<td>Pumping Stations, Plants</td>
<td>Pipelines</td>
<td>Water</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gas, Oil</td>
</tr>
</tbody>
</table>
Reality of Today’s Networks
Reality of Today's Networks:

- **large-scale nature** and complexity of network topology;
- **congestion**;
- alternative behavior of users of the network, which may lead to *paradoxical phenomena*;
- the *interactions among networks* themselves such as in transportation versus telecommunications networks;
- **policies** surrounding networks today may have a *major impact* not only economically but also *socially, politically, and security-wise*.
Large-Scale Nature and Complexity

• Chicago's Regional Transportation Network has 12,982 nodes, 39,018 links, and 2,297,945 origin/destination pairs.

• AT&T's domestic network has 100,000 origin/destination pairs. In the detail graph applications in which nodes are phone numbers and edges are calls, there are 300 million nodes and 4 billion edges.
Congestion

• In the case of *transportation networks* in the United States alone, congestion results in $100 billion in lost productivity, whereas the figure in Europe is estimated to be $150 billion.

• In terms of the *Internet*, the FCC reports that the volume of traffic is doubling every 100 days, which is remarkable given that telephone traffic has typically increased only by about 5 percent a year.
System-Optimization versus User-Optimization

In transportation networks, travelers select their routes of travel from an origin to a destination so as to minimize their own travel cost or travel time, which although optimal from an individual's perspective (user-optimization) may not be optimal from a societal one (system-optimization) where one has control over the flows on the network.
The Braess’ Paradox

Assume a network with a single O/D pair (1,4). There are 2 paths available to travelers: \(p_1 = (a,c) \) and \(p_2 = (b,d) \).

For a travel demand of 6, the equilibrium path flows are \(x_{p_1}^* = x_{p_2}^* = 3 \) and

The equilibrium path travel cost is \(C_{p_1} = C_{p_2} = 83 \).

\[
\begin{align*}
\text{c}_a(f_a) &= 10f_a \\
\text{c}_b(f_b) &= 10f_b + 50 \\
\text{c}_c(f_c) &= f_c + 50 \\
\text{c}_d(f_d) &= 10f_d
\end{align*}
\]
Adding a Link Increased Travel Cost for All!

Adding a new link creates a new path $p_3=(a,e,d)$.
The original flow distribution pattern is no longer an equilibrium pattern, since at this level of flow the cost on path p_3, $C_{p_3}=70$.
The new equilibrium flow pattern network is $x_{p_1}^* = x_{p_2}^* = x_{p_3}^* = 2$.
The equilibrium path travel costs:
$C_{p_1} = C_{p_2} = C_{p_3} = 92$.
This phenomenon is also relevant to telecommunications networks and, in particular, to the Internet which is another example of a noncooperative network.
Recently, we have discovered paradoxes in networks with zero emission links such as telecommunication networks:

- The addition of a zero emission link may result in an increase in total emissions with no change in demand!

- A decrease in demand on a network with a zero emission link may result in an increase in total emissions!
One must incorporate the network topology, the relevant cost and demand structure, as well as the behavior of the users of the network(s) into any network-based policy!

These paradoxes further illustrate the interconnectivity among distinct network systems and that they cannot be studied simply in isolation!!!
A New Paradigm
Supernetworks: A New Paradigm
Supernetworks

• Supernetworks may be comprised of such networks as transportation, telecommunication, logistical, and/or financial networks.

• They may be multilevel as when they formalize the study of supply chain networks or multitiered as in the case of financial networks with intermediation.

• Decision-makers may be faced with multiple criteria; thus, the study of supernetworks also includes the study of multicriteria decision-making.
New Tools
The tools that we have been using in our supernetworks research include:

- network theory
- optimization theory
- game theory
- variational inequality theory and
- projected dynamical systems theory (which we have been instrumental in developing)
- network visualization tools.
A Multidisciplinary Paradigm

Supernetworks

Computer Science Engineering
Management Science Economics and Finance
We are interested not only in addressing topological issues in terms of connectivity but in predicting the various flows on the networks whether physical or abstract subject to human decision-making under the associated constraints, be they budget, time, security, risk, and/or cost-related.
Some Successes
• We were the first to lay down the theoretical foundations for dynamical systems with constraints (called projected dynamical systems) which allows for the qualitative analysis of such systems including stability analysis along with discrete-time algorithms.

• The applications that we have studied range from dynamic transportation networks to global supply chains and international financial networks with risk management.
• We have demonstrated through several distinct network systems how *risk and stochastic components* could be directly incorporated into a variational inequality framework.

• We were the first to quantify and model decision-making on *multitiered networks* as well as *multilevel networks* (along with the dynamics).

• We have made fundamental extensions to *multicriteria decision-making* on networks with *multiple decision-makers*.
Novel Applications
Applications of Supernetworks

- Telecommuting/Commuting Decision-Making
- Teleshopping/Shopping Decision-Making
- Supply Chain Networks with Electronic Commerce
- Financial Networks with Electronic Transactions.
A Supernetwork Conceptualization of Commuting versus Telecommuting
A Supernetwork Framework for Teleshopping versus Shopping
The Supernetwork Structure of a Supply Chain Network
Supply Chain - Transportation Supernetwork Representation

- Transaction cost information
- Demand or order information
- Travel time information
- Unexpected issues information
- Real-Time Information System

Two-way information exchanges between specific decision-makers
International Financial Networks with Electronic Transactions

Diagram showing the relationships between countries, source agents, intermediaries, and product/currency/country combinations through internet links and non-investment connections.
The Virtual Center for Supernetworks
Some Center

Activities
We at the *Isenberg School of Management* have established the *Virtual Center for Supernetworks*, which along with our new *Supernetworks Laboratory for Computation and Visualization*, serves as a resource for researchers, educators, and practitioners.

The center emphasizes the importance of critical infrastructure networks, their modeling, and analysis, and at the same time expands upon *scientific network tools for decision-making*.
Our research has yielded entirely new results and has been recognized by both the *AT&T Foundation* and the *Rockefeller Foundation* through additional support and fellowships as well as by the *Fulbright Commission*.

The center's goal is to serve as a resource for the dissemination of knowledge surrounding network systems which underpin our nation.
The center team is multidisciplinary and multicultural and at present consists of doctoral students from three different countries.

The center supports undergraduates in research since they are our future and provide new and fresh perspectives.

Center associates from different academic institutions and industry work closely with the center director and student associates.
In the past year alone, one of the center’s undergraduate associates was selected as one of eleven *UMASS Leaders of the 21st Century* and two center associates went on to win the *President's Award* and the *Provost's Award* in recognition of their research at their respective institutions.
To further promote knowledge about networks we have established a new book series, *New Dimensions in Networks*, with Edward Elgar Publishers.

Professor Anna Nagurney has just been appointed co-editor of the journal *Netnomics: Economic Research and Electronic Networking*, published by Kluwer Academic Publishers.
New Directions
The **knowledge supernetwork theory** that we are developing is **multidimensional** in scope and **conceptualizes** and **abstracts** complex dynamic business processes and their outcomes as **multitiered and multilevel networks on which multicriteria decision-makers interact**, both competitively and cooperatively, and the effects of their decisions may affect a variety of flows.

The framework is rigorous in its foundations and both qualitative and computational in its perspective.
Summary and Conclusions

We have described the *realities* surrounding networks today and the challenges and *complexities* posed for their analysis and study.

We have argued for *new paradigms* to capture decision-making in the Information Age.

We have focused on the concept of *supernetworks* and have discussed a variety of applications.

We are now focusing our research on *Knowledge Supernetworks*.
Thank you!

For more information, see http://supernet.som.umass.edu