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e Why alternative fuel vehicles?

— Energy security: transportation heavily depends on imported
oil.

— Environmental concerns: transportation emits roughly a
quarter of the world’s GHG, and a major contributor to most
air pollutants. (Ohnishi, 2008)
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e Why electric vehicles?

— EV are energy efficient: with a well-to-wheel efficiency around
1.15 km/mJ, Evs are almost as twice as efficient as Toyota
Prius (Romm, 2006).

— Electric cars have zero emission at the point of operation
(Samaras &Meisterling, 2008)

— EV could reduce GHG emissions, subject to the source of
electricity.
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EV is gaining market share in the US and around the
world

— Plug-in EV sales are expected o account for 0.3 percent of all
cars sales by 2015 (Newman, 2010)

— President Obama promised “one million electric vehicles on
the road by 2015” (Energy Speech Fact Sheet)

— $2.4 billion in the US federal grants to further development of
EVs (Canis, 2011)
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o the adoption of EVs

e EV batteries are still expensive and limited by range,
owing to the lack of technology breakthrough

 The underdeveloped supporting infrastructure,
particularly the lack of fast refueling facilities, makes
current EVs unsuitable for medium and long distance

travel.
Rapid adoption of EVs can benefit from:
— Better access to charging facilities, and/or

e Cheaper batteries with greater capacity
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Locating charging facilities near the urban activity centers of EV
owners so as to maximize the overall accessibility.

— Set covering or P-median facility location models (Daskin 1995, Dashora et al.,
2010; Frade et al., 2011; Chen et al., 2013; Sweda and Klabjan, 2011)

e Locating charging facilities to intercept flows between origin-
destination pairs.

— Maximize flow captured subject to budget constraint: flow capturing facility
location models (FCLM) (Hodgson,1990, Kuby &Lim,2005,2007, Lim & Kuby,2010)

— Minimize cost while enforcing a recharing logic to ensure all flows are served.
(Wang &Lin,2009; Mak et al.,2013)

e Hybrid models that consider both point and O-D demands (Wang
&Wang ,2010; Hodgson & Rosing ,1992)
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qguestions

e |f the society can freely decide the capacities of
charging facilities and batteries, how that decision
can be made in an optimal way?

 Which factors should have important influences on
the decision?

e What policies may be implemented to facilitate the
optimal allocation of resources for expanding these
capacities?
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approach

 Asimple optimization model

— To minimize the total cost of providing charging facilities
and manufacturing batteries, while ensuring all EV users
can complete their trips with a desired level of service.

* Focus on trips along corridors long enough to trigger
range anxiety

— These medium-range-low-frequency trips traditionally
served by passenger cars are likely one of the main
reasons why single-car families have to say no to the
current generation of EVs.
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out charging stations

Three types of charging facilities available for EVs in the US

(Morrow et al., 2008).
® Level 1:standard 120 VAC, up to 1.44 kW charging power
® Level 2: h 240 VAC, up to 10 kW.
® Level 3: 480 VAC, up to 60 kW — 150 kW.
® EVs may be charged at home, in public areas and at some

work places (Pound, 2012).

® The US now has between 6000 - 7000 charging stations: the
majority (more than 5000) are privately owned.

® Nearly 80% of all existing charging stations are level 2. (US
Department of Energy)
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out batteries

® Many types of batteries are currently available in the market,
with different energy capacities and prices.

® An important performance measure: distance that an EV runs
on each unit of battery energy consumed (f = 2.5).

® Charging time depends on the type of the battery but mostly
on the power of the charging facilities and battery’s charging

efficiency(a): t, = a% (a=1.3)
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etting

e Consider long corridor with a maximum length of |/,
serving EV drivers traveling along one direction.

e Let A denote the density of the EVs (measured in
vehicle per unit distance), and f be the average
frequency of the trips made by each EV for a given
analysis period (typically a day).

 The total number of EV drivers is given as Al, and the
total number of trips in the analysis period is Alf.
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ssumptions

o All trips are concentrated at the two ends of the
corridor.

e All EVs have the same range.

e Each station must have enough charging outlets to
accommodate all trips.

e Stations are uniformly spaced based on the range of
the EVs
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e Choose the energy capacity of each EV’s primary
battery (denoted as E), and the power of the
charging facilities (denoted as P) to minimize total
cost.

e Cost of building a charging station is a function of P,
the number of charging outlets n,, and a fixed
capital cost.

 The cost of each battery is a function of its energy
capacity E
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odel

l
min z(P,E) = (C, + Pn,Cs) (W - 1) + AC,E

Subject to:

[ aHE
,BHE )
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Charging Station Cost

1

l
——1
BOE

)

+ ALCE

min z(P,E) = (Cp + PnOCs)(
Subject to:
[ aHE
,BHE )
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odel
Battery Cost

1

l
min z(P,E) = (C, + Pn,Cs) (&W - 1) AMC,E

Subject to:

[ aHE
,BHE )
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odel

l
min z(P,E) = (C, + Pn,Cs) (— - 1) + AC,E

BOE

Subject to:

[ ) aHE : Level of Service
,BQE Constraint
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al Solution

e The model is not convex, so multiple local optimums
are possible.

. * * Ccc3—C . .
Solution 1: Ey” = ¢3; Py = % (no charging station
1
needed)
. *k *k 9 1 . .
Solution 2: E;" = Cn—3; P, = C3Ta (1-— ;) (charging stations
0

will needed)

c1 = nyCy: variable cost of charging facility
¢y = Al C,: Unit cost to manufacture all batteries

c3 = ﬁ_le: battery energy needed to travel the corridor without charging
= M A constant
T] - a9C1C3+T0(:p )
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rom the analysis

* A higher battery construction cost leads to smaller
battery and larger charging capacity. Conversely, a
higher construction cost results in larger batteries
and smaller charging capacity.

* Alower level of service requirement (i.e. larger T,)
reduces the optimal battery size

 The growth in the EV population (1) makes it more
desirable to have a smaller battery size and larger
charging capacity.
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rom the analysis

 Higher long-distance trip frequency will lead to larger
optimal battery size and reduce the capacity of
charging facility.

* Aslong as the density of EV demand exceeds certain
threshold (about 0.1 vehicle/mile), it is always
beneficial to provide charging facilities
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charging capacity

l
min z(P,E) = (C, + Pn,Cs) (— - 1) + AC,E

POE
Subject to:
[ TyP [
— <E<—
po  ab o
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illustration
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swapping

, l
min z(P,E) = (C', + rP3n,C;) (&W - 1) +n,C,E

l

BO  p < b

(€—2+1) - pé6

Subject to:

l

ny, = Al + (&W — 1) Alf:number of batteries

P; - the power of level-3 charging
r - charger/battery ratio

t, — time spent on swapping (estimated at 5 minutes)
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ry Swapping

( \/ (C'p+7rP3C1)C3
c2(1=1)

C3
( +1)
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C3
( +1)

J

(C'p+rP3c1)C3

<

c2(1-f1) =3

(C'p+TrP3c1)C3 C3

c2(1-1) < ( +1)

(C,p +T'P3 C1)C3

J

c2(1-1)
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Chicago, IL- Madison, WI
150 miles

75 EVs

Range anxiety (0.8)

Once a week
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Level  of Total travel Energy E Battery Charging Number of
service time (hr) (kwh) range Power P charging
1006 (mile) (kW) stations m
0% 2.7 75.0 187.50 0 0

5% 2.9 37.5 93.75 286.0 1

15% 3.1 37.5 93.75 95.3 1

25% 3.4 25.0 62.50 76.3 2

50% 4.1 25.0 62.50 38.1 2

85% 5.0 18.7 46.87 25.2 3

100% 5.5 18.7 46.87 21.4 3
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lvity of Technology (Baseline model)
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te capacity for Charging Facility
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e Level 2 charging is socially optimal for very low EV market
penetrate rates.

e Level 3 charging is needed to achieve a reasonable level of
service.

 The optimal solution is more sensitive to the cost of battery
than to the cost of chargers.

e Battery swapping enables the use of smaller batteries and to
achieve higher level of service.

e Charging could be a socially optimal solution for modest
levels of service.
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udy

e Consider more realistic arriving pattern of EVs at charging
and/or swapping stations.

 More realistic charging cost and battery cost functions.

e Network wide application with multiple corridors between
different origin destination pairs.

 Hybrid models that consider both point and O-D flows.
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e presentation is based on

Yu (Marco) Nie, Mehrnaz Ghamami, A corridor-centric approach
to planning electric vehicle charging infrastructure,
Transportation Research Part B: Methodological, Available online
19 September 2013, ISSN 0191-2615,

Thank You

Questions?
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Ca

eters values

Parameter =~ Description Unit Value
l Corridor length mile 150
f Average trip frequency % 0.13
A EV fleet density "”‘;:fele 0.5
o Energy Efficiency (Converting energy/Power - 1.3
ratio to charging time)
B Battery performance ’,%ﬁ 2.5
J Delay tolerance - 15%
Ao Minimum construction area sqf 2000
ao Per spot construction area sqf 300
Ca Unit construction cost for new stations (charg- 57 104
ing or swapping)
Unit construction cost for existing charging sta- % 20
tions
Ce Unit manufacturing cost of battery % 650
Cs Per spot construction cost of charging outlet % 500
6 Range tolerance (Confident range) - 0.8
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y Efficiency

. E i
Vehicle Type dwh | aonp) 7 (V) P(kW) E/P(h) ¢t (h) 2

12 110 132 27 26.00 0.98

BMW Mini E 35 32 240 7.68 5 450 0.99

48 240 11.52 3 3.00 1.00

12 120 1.44 11 10.00 0.90

Enevy Yokt 16 20 240 48 3 4.00 1.20

Tord FocisEY 238 20 230 16 5 7.00 1.40

12 110 132 12 12.50 1.03

Mitsubishi iMiEV 16 20 220 44 4 7.00 1.93

60 480 28.8 0.6 250 450

. 20 220 14 5 8.00 147

Nissan LEAF 24 60 480 78.8 0.8 0.60 0.72

Volvo C30 24 16 230 37 7 8.00 1.23

12 110 132 1.0 3.00 2.9

Toyota PRIUS  1.34 | - 200 4 0.3 1.67 498

I - electric current; E - battery energy; V - electric potential; P - power.
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n construction cost
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n construction cost
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Ca

ry Performance

Tested six different types of vehicles in urban versus highway driving under

various conditions (e.g. headlight setting, auxiliary loads, and A/C).

On average an EV can travel 2.5 miles for each kWh (kilo Watt hour) of energy.

U.S. Department of Energy (Electric Vehicle Operation Program, 1999)
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r Cost Relation
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r Cost Relation
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Case
ruction cost

The per spot cost of building a charging station excluding the acquisition cost of the charger varies widely
depending on installation area, electric circuit, etc.

Construction cost is calculated based on the cost for building a gas station,
including construction, contract and architectural fees.

* unit construction cost 104(S/sqf ). (Reed Construction Data, 2008)

e The average construction area of a gas station is about 4000(sqgf).
(LoopNetData, 2012)

2000(sqgf ) fixed area and 300(sqf ) area for each charging spot
e The per spot cost of building a charging station excluding the acquisition
cost of the charger is $6000. (NREL, 2012)
300(sqgf ) for each charging spot and per unit area cost 20( S/sqf )
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