

Structural properties of urban street patterns and the Multiple Centrality Assessment

Alessio Cardillo

Department of Physics and Astronomy - Università degli studi di Catania

Complex Networks - Equilibrium and Vulnerability Analysis with Applications – Catania Italy

Our Group

University of Catania

- Vito Latora
- Salvatore Scellato
- Alessio Cardillo
- Polytechnic of Milan
 - Sergio Porta
 - Emanuele Strano

http://www.humanspacelab.com
http://www.ct.infn.it/~latora/
http://www.ct.infn.it/~cardillo/

Structural Properties ;

A. Cardillo | Structural properties of urban street patterns and the Multiple Centrality Assessment

Structural Properties ;

Multiple Centrality Assessment (MCA);

- Structural Properties ;
- Multiple Centrality Assessment (MCA);
- Relation between Centrality and Commercial Activity;

Structural Properties ;

- Multiple Centrality Assessment (MCA);
- Relation between Centrality and Commercial Activity;
- Conclusions.

Question:

How can we map a city into a graph?

Answer:

We can follow two ways:

- A Primal Approach;
- 2 A Dual Approach.

Primal Approach

Primal Approach

Intersections as nodes, streets as edges;

Focus on intersection.

Dual Approach

Dual Approach

- Streets as nodes, intersections as edges;
- Focus on streets;
- Not unique (name based, line of sight).

Question:

How to compare a graph?

Question:

How to compare a graph?

Answer:

Usually real networks are compared with their randomized version.

Question:

How to compare a graph?

Answer:

Usually real networks are compared with their randomized version.

Randomization — Loss of Planarity;

Use of extreme cases:

- Minimum Spanning Tree (MST);
- Greedy Triangulation (GT).

An example: the city of Savannah

Definition

The minimum spanning tree (MST) is the shortest tree which connects every node into a single connected component.

Definition

The greedy triangulation (GT) is the planar graph with the highest number of edges K_{max} , and that minimize the total length.

A. Cardillo, S. Scellato, V. Latora, S. Porta, Phys. Rev. E 73 (2006) 066107.

S. Scellato, A. Cardillo, V. Latora, S. Porta, Eur. Phys. Journ. B 50 (2006) 221.

Fractal Dimension *d*_{BOX}

A. Cardillo | Structural properties of urban street patterns and the Multiple Centrality Assessment

Fractal Dimension *d*_{BOX}

Local Properties

Fractal Dimension d_{BOX}
 Local Properties
 Degree k;
 Meshedness M;

Meshedness Coefficient

The Meshedness Coefficient *M* is more general measures of the structure of cycles than the clustering coeficient.

 $M = \frac{f}{f_{max}} = \begin{cases} 0 & \text{if } G \text{ is a tree,} \\ 1 & \text{if } G \text{ is a complete planar graph.} \end{cases}$

where
$$\begin{aligned} f &= m - n + 1 ,\\ f_{max} &= 2n - 5 . \end{aligned}$$

J. Buhl et.al. Eur. Phys. J. B 42, 123 – 129 (2004)

An example of Meshedness:

Motifs

In order to evaluate the complexity of graph inner structure one could count the number of cycles of length three (triangles), four (squares) and five (pentagons). A motif is significant if its number is higher than the number found in an equivalent random graph.

Global Properties

Cost

To take into account the ammount of resources needed to "build" a street one could consider several functional forms. The simplest one is the Euclidean distance between start and arrival node. This is the so called **Cost**.

$$W_{ij} = \sqrt{(x_j - x_i)^2 - (y_j - y_i)^2}$$
;

Global Properties

Global Efficiency

A measure of the typical separation between two nodes in the graph is given by the average shortest path length, also known as characteristic path length *L*, defined as:

$$L = \frac{1}{N(N-1)} \sum_{i,j \in G \ i \neq j} d_{ij};$$

An alternative approach is to consider the harmonic mean of geodesic lengths, and to define the so-called **efficiency** of *G* as:

$$E(G) = rac{1}{N(N-1)} \sum_{i,j \in G \ i \neq j} rac{1}{d_{ij}};$$

V. Latora, M. Marchiori, PRL 87, 198701 (2001)

In order to compare different city we used two quantities: **Relative Efficiency** E_{rel} and **Relative Cost** W_{rel} defined as:

$$E_{rel} = \frac{E - E^{MST}}{E^{GT} - E^{MST}}; \qquad \qquad W_{rel} = \frac{W - W^{MST}}{W^{GT} - W^{MST}};$$

Data Analisys

A. Cardillo, S. Scellato, V. Latora, S. Porta, Phys. Rev. E73 (2006) 066107.

A. Cardillo | Structural properties of urban street patterns and the Multiple Centrality Assessment

Multiple Centrality Assessment (MCA)

Main Scope

Set up a methodology for investigation of spatial systems as complex networks to spot the hot places, the critical components and the central routes of a city.

P. Crucitti, V. Latora, S. Porta, Chaos 16 (2006) 015113

Question:

What does it mean being "Central"? (Bavelas 1948)

It means know "many" people? Degree Centrality; (Nieminem 1974)

 $k_i = \sum_{j=1}^{N} a_{ij};$

Or act like a "bridge" between two nodes? Betweenness Centrality; (Freeman 1977)

$$C_i^B = rac{1}{(N-1)(N-2)} \sum_{\substack{j,k \in G \ i \neq k \neq i}} rac{n_{jk}(I)}{n_{jk}};$$

Or being more "close" to other nodes? Closeness Centrality; (Sabidussi 1966)

 $C_i^C = \frac{1}{\sum \frac{1}{d_{ii}}}$

P. Crucitti, V. Latora and S. Porta Phys. Rev. E 73 (2006) 036125

Or how much you are in a straight line with others? Straightness Centrality; (Crucitti 2006)

 $C_i^S = \frac{1}{N-1} \sum_{j \in G} \frac{d_{ij}^{Luor}}{d_{ij}}$

P. Crucitti, V. Latora and S. Porta Phys. Rev. E 73 (2006) 036125

Or how much your **removal** affect network efficiency Latora (2005)? **Information** Centrality; (Latora 2007)

 $C_i^{l} = \frac{\Delta E}{E} = \frac{E(G) - E(G')}{E(G)} ,$

$$E(G) = \frac{\sum\limits_{i,j\in G} \frac{1}{d_{ij}}}{N(N-1)};$$

V. Latora, M. Marchiori, Phys. Rev. E 71 (2005) 015103R.

V. Latora, M. Marchiori, New. J. Phys 9 (2007) 188

Answer:

All of these features make you "Central" !!!

S. Porta, P. Crucitti, V. Latora, Environmental and Planning B**33** (2006) 705. P. Crucitti, V. Latora, S. Porta, Chaos **16** (2006) 015113.

Relationship Between Centrality and Commerce Retail

The Grocer's Mantra

- Mario runs his business at the street corner just in front of my door.
- He told me that he spent one week in the street before making the choiche for the location of his grocery
- "The first thing he said is where do the people walk"
- Mario is quite good in his work, he says "You have to be central, people are where centrality is".

Relationship Between Centrality and Commerce Retail

Question:

Is there empirical evidence of the correlation between street centrality and economic activities?

A. Cardillo | Structural properties of urban street patterns and the Multiple Centrality Assessment

Relationship Between Centrality and Commerce Retail

 In order to study the relation between centrality and commerce the space has been divided into square cells. Per each cell a Kernel Density Estimator (KDE) function has been calculated. The same operation has been done with centrality.

Some Results Case study: the city of Bologna

Porta S et. al. - Street Centrality and Densities of Retails and Services in Bologna, Italy - physics/0701111. In press in Env. Plann. B

A. Cardillo | Structural properties of urban street patterns and the Multiple Centrality Assessment

Application of MCA to large scale graphs (entire cities);

- Application of MCA to large scale graphs (entire cities);
- Comparison between city structure and biological systems like leafs;

What are we doing

- Application of MCA to large scale graphs (entire cities);
- Comparison between city structure and biological systems like leafs;
- Elaboration of a city growth model based not only on geometrical costraint but also on centrality and retail.

- Analysis of structural properties of planar graphs based on urban street patterns;
- Elaboration of a method to compare different spatial graphs;

Summary

- Analysis of structural properties of planar graphs based on urban street patterns;
- Elaboration of a method to compare different spatial graphs;
- Analysis of city structure based on multiple centrality indices (MCA);

- Analysis of structural properties of planar graphs based on urban street patterns;
- Elaboration of a method to compare different spatial graphs;
- Analysis of city structure based on multiple centrality indices (MCA);
- Relation between centrality and commercial activities —> Geomarketing.

- A. Cardillo, S. Scellato, V. Latora, S. Porta, Phys. Rev. E 73 (2006) 066107
- S. Scellato, A. Cardillo, V. Latora, S. Porta, Eur. Phys. Journ. B 50 (2006) 221
- P. Crucitti, V. Latora and S. Porta Phys. Rev. E 73 (2006) 036125
- S. Porta, P. Crucitti, V. Latora, Enviromental and Planning B **33** (2006) 705
- P. Crucitti, V. Latora, S. Porta, Chaos **16** (2006) 015113
- Porta S et. al. Street Centrality and Densities of Retails and Services in Bologna, Italy – physics/0701111. In press in Env. Plann. B