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Introduction
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Introduction

Some contributions on variational inequalities

Some contributions on variational and quasi-variational
inequalities

Fichera (1963–1964): a problem in elasticity with a unilateral
boundary condition;

Lions-Stampacchia (Commun. Pure Appl. Math., 1967):
study of variational inequalities;

Brezis (Comptes Rendus de l’Academie des Sciences, 1967):
introduction of evolutionary variational inequalities;

Kuratowski (1966) and Mosco (Adv. Math., 1969): study on
convergence of convex sets and of solutions of variational
inequalities;

J-P. Aubin (1987): study on weighted Hilbert spaces.

Daniele-Maugeri-Oettli (C.R. Acad. Sci. Paris, 1998):
applications of evolutionary variational inequalities to dynamic
equilibrium problems;
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Some contributions on variational inequalities

Some contributions on variational and quasi-variational
inequalities

Barbagallo (Math. Models Methods Appl. Sci. 2007): study
on the regularity of solutions to evolutionary variational and
quasi-variational inequalities;

Giuffrè-Pia (2007): introduction of weighted traffic
equilibrium problem.



Weighted variational inequalities in non-pivot Hilbert spaces: existence and regularity results and applications

Introduction

Some contributions on variational inequalities

Some contributions on variational and quasi-variational
inequalities

Barbagallo (Math. Models Methods Appl. Sci. 2007): study
on the regularity of solutions to evolutionary variational and
quasi-variational inequalities;

Giuffrè-Pia (2007): introduction of weighted traffic
equilibrium problem.
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Introduction

Preliminary concepts

Preliminary concepts

Proposition

Let Ω ⊂ Rp be an open subset of Rn, a : Ω → R+ \ {0} a
continuous and strictly positive function called ”weight” and
s : Ω → R+ \ {0} a continuous and strictly positive function called
”real time density”. The bilinear form defined on C0(Ω) (set of
continuous functions with compact support on Ω) by

C0(Ω)× C0(Ω) → R

〈x , y〉a,s =

∫
Ω

x(ω)y(ω)a(ω)s(ω)dω

is an inner product.
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Introduction

Preliminary concepts

Preliminary definitions

If a is a weight, a−1 = 1/a is also a weight.

Definition

We call L2(Ω, a, s) a completion of C0(Ω) for the inner product
< x , y >a,s
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Introduction

Preliminary concepts

Preliminary definitions

If we denote by Vi = L2(Ω, R, ai , si ) and V ∗
i = L2(Ω, R, a−1

i , si ),
the space

V =
m∏

i=1

Vi (1)

is a non pivot Hilbert space for the inner product

〈F ,G 〉V = 〈F ,G 〉a,s =
m∑

i=1

∫
Ω

Fi (ω)Gi (ω)ai (ω)si (ω)dω.



Weighted variational inequalities in non-pivot Hilbert spaces: existence and regularity results and applications

Introduction

Preliminary concepts

Preliminary definitions

The space

V ∗ =
m∏

i=1

V ∗
i (2)

is clearly a non pivot Hilbert space for the following inner product

〈F ,G 〉V ∗ = 〈F ,G 〉a−1,s =
m∑

i=1

∫
Ω

Fi (ω)Gi (ω)si (ω)

ai (ω)
dω
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Introduction

Preliminary concepts

Preliminary definitions

The bilinear form define a duality between V and V ∗:

V ∗ × V → R

〈f , x〉V ∗×V = 〈f , x〉s =
m∑

i=1

∫
Ω

fi (ω)xi (ω)si (ω)dω. (3)
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Introduction

Preliminary concepts

Preliminary results

Proposition

The bilinear form (3) is defined over V ∗ × V and define a duality
between V ∗ and V . The duality mapping is given by

J(F ) = (a1F1, . . . , amFm).
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Existence results

Some definitions

Some definitions

Let V be the Hilbert spaces and let S be a subset of V .

Definition

An operator C : S → V ∗ is said to be

monotone on S if

〈C (x1)− C (x2), x1 − x2〉s ≥ 0, ∀x1, x2 ∈ S ;

strictly monotone on S if

〈C (x1)− C (x2), x1 − x2〉s > 0, ∀x1 6= x2;

strongly monotone on S if for some ν > 0

〈C (x1)− C (x2), x1 − x2〉s ≥ ν‖x1 − x2‖V , ∀x1, x2 ∈ S ;
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Existence results

Some definitions

Some definitions

Definition

strongly pseudomonotone with degree α > 0 on K (strongly
pseudo-monotone on K if α = 2) , if and only if there exists
ν > 0 such that for all x1, x2 ∈ S

〈C (x2), x1 − x2〉s ≥ 0 ⇒ 〈C (x1), x1 − x2〉s ≥ ν‖x1 − x2‖α
V ,

stricly pseudomonotone on S if for all x1, x2 ∈ S

〈C (x1), x1 − x2〉s ≥ 0 =⇒ 〈C (x2), x1 − x2〉s < 0.

pseudomonotone on S if for all x1, x2 ∈ S

〈C (x1), x1 − x2〉s ≥ 0 =⇒ 〈C (x2), x1 − x2〉s ≤ 0.
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Existence results

Some definitions

Some definitions

Let K be a convex subset of V .

Definition

An operator C : K → V ∗ is said to be

hemicontinuous if for any x ∈ K, the function

K 3 ξ → 〈C (ξ), x − ξ〉s

is upper semi-continuous on K;

hemicontinuous along line segments if and only if for any
x , y ∈ K, the function

K 3 ξ → 〈C (ξ), y − x〉s

is upper semi-continuous on the line segment [x , y ].
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Existence results

Some definitions

Evolutionary weighted variational inequality

Definition

Let K be a nonempty, convex and closed subset of V and let
C : K → V ∗ be a vector-function. The weighted variational
inequality is the problem to find a vector x ∈ K, such that

〈C (x), y − x〉s ≥ 0, ∀y ∈ K. (4)
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Existence results

Existence theorem

Existence theorem

Theorem

Let K be a nonempty, convex and closed subset of V . Let
C : K → V ∗ such that C is monotone and hemicontinous. Then
there is a u0 ∈ K such that

〈C (u0), v − u0〉s ≥ 0, ∀v ∈ K.
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Existence results

Existence theorem

Existence theorem

Theorem

Let K be a nonempty, convex and closed subset of V . Let
C : K → V ∗ be monotone such that C is continuous on finite
dimensional subspaces of K. Then there is a u0 ∈ K such that

〈C (u0), v − u0〉s ≥ 0, ∀v ∈ K.

If C is strictly monotone, u0 is unique.
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Existence results

Existence theorem

Existence theorem

Theorem

Let K be a nonempty, convex and closed subset of V . Let
C : K → V ∗ be a given function such that:

(i) there exist A ⊆ K nonempty, compact and B ⊆ K compact,
convex such that, for every y ∈ K \ A, there exists x̂ ∈ B with
〈C (y), x̂ − y〉s < 0;

(ii) C is pseudomonotone and hemicontinuous along line
segments.

Then, there exists x ∈ A such that 〈C (x), y − x〉s ≥ 0, for all
y ∈ K.
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Existence results

Existence theorem

Existence theorem

Theorem

Let K be a nonempty, convex and closed subset of V . Let
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Regularity results

Sets convergence

Sets convergence

Let X be a nonempty set endowed with two topologies σ ⊆ τ .
Let {Kn}n∈N be a sequence of subsets of X .

Definition

We say that Kn (σ, τ)-converges to some subset K ⊆ X , and we
briefly write Kn →(σ,τ) K , if

for any sequence {xn}n∈N, with xn in Kn ∀n ∈ N, such that
xn →σ x for some x ∈ S , then x ∈ K ;

for any x ∈ K there exists a subsequence {xkn}n∈N, with xkn

in Kkn ∀n ∈ N, such that xkn →τ x .
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Regularity results

Sets convergence

Sets convergence

Definition

Let (X , d) be a metric space such that σ = τ = τd is exactly
the metric topology. In this case the (σ, τ)-convergence is
called Kuratowski convergence of sets; it will be denoted by
Kn →K K .

Let X be a normed space, moreover let σ and τ be
respectively the weak and the strong topology on X . In this
case the (σ, τ)-convergence is called Mosco convergence of
sets; it will be denoted by Kn →M K .
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Regularity results

Regularity results for weighted variational inequalities

Regularity result for nonlinear strongly monotone
evolutionary weighted variational inequalities

Theorem

Let V be the non-pivot Hilbert space, let Ω ⊆ Rp, let t ∈ Ω and
K (t) be a subset of Rm verifying Kuratowski’s convergence
assumptions, let C : Ω× K → V ∗ be a continuous function and
C (t, ·) strongly pseudo-monotone with degree α > 1. Then the
solution map x : Ω 3 t → x(t) ∈ Rm of the evolutionary weighted
variational inequality is continuous on Ω.
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Regularity results

Regularity results for weighted variational inequalities

Regularity result for nonlinear strictly evolutionary
weighted pseudomonotone evolutionary variational
inequalities

For every ε > 0 and for any fixed t ∈ Ω, let us consider the
following perturbed variational inequality

〈C (t, x(t)) + εJm(x(t)), y(t)− x(t)〉m,s(t) ≥ 0, ∀y(t) ∈ K (t),

where Jm is the duality mapping between (Rm, ‖.‖m,a,s) and
(Rm, ‖.‖m,a−1,s).
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Regularity results

Regularity results for weighted variational inequalities

Regularity result for nonlinear strictly pseudomonotone
evolutionary weighted variational inequalities

Theorem

Let V be the non-pivot Hilbert space, let Ω ⊆ Rn, let K (t) e a
nonempty closed convex and bounded (uniformly with respect to
t ∈ Ω) subset of Rm, verifying the Kuratowski convergence. Let
C : Ω×K → V ∗ be a continuous function so that C (t, ·) is strictly
pseudo-monotone. Then the solution map x : Ω 3 t → x(t) ∈ Rm

of the evolutionary weighted variational inequality is continuous on
Ω.
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Part IV

Dynamic weighted traffic equilibrium problem
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Dynamic weighted traffic equilibrium problem

Dynamic weighted traffic equilibrium problem

Dynamic weighted traffic equilibrium problem

Let us introduce a network N :

G = [N, L] is a graph;

W is the set of Origin-Destination (O/D) pairs wj ,
j = 1, 2, . . . , l ;

R is the set of routes Rr , r = 1, 2, . . . ,m, which connect the
pair w ∈ W.

The set of all r ∈ R which link a given w ∈ W is denoted by
R(w).
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Dynamic weighted traffic equilibrium problem

Dynamic weighted traffic equilibrium problem

Dynamic weighted traffic equilibrium problem
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Dynamic weighted traffic equilibrium problem

Dynamic weighted traffic equilibrium problem

Dynamic weighted traffic equilibrium problem

Let be denote by

Ω an open subset of R,

a = {a1, .., am}, a−1 = {a−1
1 , .., a−1

m } and s = {s1, .., sm} three
families of weights such that for each 1 ≤ i ≤ n,
ai , si ∈ C(Ω, R+ \ {0}).

We use the framework of a non-pivot Hilbert space which is a
multidimensional version of the weighted space L2(Ω, R, a, s), that
we denote by V .
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Dynamic weighted traffic equilibrium problem

Dynamic weighted traffic equilibrium problem

Dynamic traffic equilibrium problem

For a.e. t ∈ Ω =]0,T [ we consider vector flow F (t) ∈ Rm.
The feasible flows have to satisfy the time dependent capacity
constraints and demand requirements, namely for all r ∈ R,
w ∈ W and for almost all t ∈ Ω,

λr (t) ≤ Fr (t) ≤ µr (t)

and ∑
r∈R(w)

Fr (t) = ρw (t)

where λ(t) ≤ µ(t) are given in Rm, ρ(t) ∈ Rl .
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Dynamic weighted traffic equilibrium problem

Dynamic weighted traffic equilibrium problem

Dynamic traffic equilibrium problem

If Φ = (Φw ,r ) is the pair route incidence matrix, with w ∈ W and
r ∈ R, that is

Φw ,r =

{
1 if w ∈ R(r)

0 otherwise,

the demand requirements can be written in matrix-vector notation
as

ΦF (t) = ρ(t)

The set of all feasible flows is given by

K := {F ∈ V | λ(t) ≤ F (t) ≤ µ(t), a.e. in Ω,

ΦF (t) = ρ(t), a.e in Ω}

Let us denote by
C : Ω× Rm

+ → Rm
+

the cost function.
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Dynamic weighted traffic equilibrium problem

Dynamic weighted traffic equilibrium problem

Time-dependent weighted variational inequality

Definition

H ∈ V is an equilibrium flow if and only if

H ∈ K : 〈C (t,H(t)),F (t)− H(t)〉s ≥ 0, ∀F ∈ K, a.e. in Ω. (5)
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Dynamic weighted traffic equilibrium problem

Dynamic weighted traffic equilibrium problem

Weighted Wardrop condition

Equivalence between condition (5) and what we will call the
weighted Wardrop condition

Theorem

H ∈ K is an equilibrium flow in the sense of (5) if and only if

∀w ∈ W, ∀q,m ∈ R(w), a.e. in Ω,

sq(t)Cq(t,H(t)) < sm(t)Cm(t,H(t)) (6)

⇒ Hq(t) = µq(t) or Hm(t) = λm(t).
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Dynamic weighted traffic equilibrium problem

Dynamic weighted traffic equilibrium problem

Pointed formulation

Theorem

The evolutionary variational inequality:

H ∈ K :

∫ T

0
〈C (t,H(t)),F (t)− H(t)〉dt ≥ 0, ∀F ∈ K,

is equivalent to

H ∈ K : 〈C (t,H(t)),F (t)− H(t)〉 ≥ 0, ∀F (t) ∈ K(t), a.e. in Ω,

where

K(t) =
{

F (t) ∈ Rm) : λ(t) ≤ F (t) ≤ µ(t), ΦF (t) = ρ(t)
}

.
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Dynamic weighted traffic equilibrium problem

Dynamic weighted traffic equilibrium problem

Weighted Wardrop condition

We propose a way to define the Real Time Traffic Density (RTTD)
for a route. This data will be the ”weight” of the route considered
and it will be use to define the duality pairing.
Using mobile phone connections data it is possible to establish the
density of mobile phone connected over a monitored area.
The principle can be generalized to other wireless devices.
It is clear that to weight properly a link is really difficult and it is at
least necessarily important to take into account network’s
geometry, which means for us the position of network’s elements .
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Dynamic weighted traffic equilibrium problem

Dynamic weighted traffic equilibrium problem

Weighted Wardrop condition

We can suppose to have I ⊂ R2 closed and large enough to include
the monitored area and a parametric continuous function γt with
t ∈ Ω such that:

γt : I → R+

γt : (x , y) → γt(x , y)

This function represent a normalized interpolation obtained using
the communication data.
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Dynamic weighted traffic equilibrium problem

Dynamic weighted traffic equilibrium problem

Weighted Wardrop condition

For each route we construct a weight in the following way: let us
fix ϑ ∈ R+ \ {0}, a strict positive number called ”resolution”. We
introduce the set rϑ = r × ϑ, rϑ ⊂ Ω.
We propose now a definition of weight which not pretend to be
exhaustive, all the contrary. We think that the weights should be
calibrate case by case.
For examples one can decide to take into account very exceptional
events that are not visible by mobile connection data adding to the
definition given bellow, terms that will increase or decrease the
weight.
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Dynamic weighted traffic equilibrium problem

Dynamic weighted traffic equilibrium problem

Weighted Wardrop condition

Definition

Given ϑ a resolution and N a finite network, we call weight of the
route r , the real positive number sr (t) such that

sr (t) =

∫
rϑ

γt(x , y)[χrϑ\(
S

p 6=r pϑ)(x , y)

+mϑ(x , y , t)
∑
p 6=r

χrϑ
T

pϑ(x , y)]dxdy

where mϑ : Ω× [0,T ] → R+ is continuous and called, proximity
contribution weight and χ is the standard characteristic function.
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Dynamic weighted traffic equilibrium problem

Dynamic weighted traffic equilibrium problem

Weighted Wardrop condition

We assume that for each r ∈ R, sr (t) 6= 0 for a.e. t ∈ Ω.

Definition

A given family of weights {sr (t)}r∈R, is called Normalized Family
of Weights if ∑

r∈R
sr (t) = 1,∀ t ∈ Ω

It is clear that each family of weights can be normalized. To define
the inner product 〈·, ·〉a,s we use a normalized family of weights s.
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Dynamic weighted traffic equilibrium problem

Dynamic weighted traffic equilibrium problem

Set of feasible flows: set convergence in Mosco’s sense

Lemma

Let λ, µ ∈ C (Ω, Rm
+) ∩ L2(Ω, Rm, a, s), let

ρ ∈ C (Ω, Rl
+) ∩ L2(Ω, Rl , a, s) and let {tn}n∈N be a sequence such

that tn → t ∈ [0,T ], as n → +∞.
Then, the sequence of sets

K(tn) =
{

F (tn) ∈ Rm) : λ(tn) ≤ F (tn) ≤ µ(tn), ΦF (tn) = ρ(tn)
}

,

∀n ∈ N, converges to

K(t) =
{

F (t) ∈ Rm) : λ(t) ≤ F (t) ≤ µ(t), ΦF (t) = ρ(t)
}

,

as n → +∞, in Mosco’s sense.
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Dynamic weighted traffic equilibrium problem

Regularity Weighted Wardrop condition

Theorem

Let λ, µ ∈ C (Ω, Rm
+) ∩ L2(Ω, Rm, a, s), let

ρ ∈ C (Ω, Rl
+) ∩ L2(Ω, Rl , a, s) and let C : Ω×K → V ∗ be a

continuous function and C (t, ·) strictly pseudo-monotone. Then
the solution map of the dynamic weighted traffic equilibrium
problem is continuous on Ω.
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Computational method

Discretization method

Discretization method

We consider the evolutionary variational inequality

H ∈ K : 〈C (t,H(t)),F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), a.e. in [0,T ], (∗)

and we suppose that the assumptions above established are
satisfied and hence the solution

H ∈ C ([0,T ], Rm
+).

As a consequence, (∗) holds for each t ∈ [0,T ], namely

〈C (t,H(t)),F (t)− H(t)〉 ≥ 0, ∀t ∈ [0,T ].

We consider a partition of [0,T ], such that

0 = t0 < . . . < ti < . . . < tN = T .
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Computational method

Discretization method

Discretization method

Then, for each value ti , for i = 0, . . . ,N, we obtain a static
variational inequality

〈C (ti ,H(ti )),F (ti )− H(ti )〉 ≥ 0, ∀F (ti ) ∈ K(ti ), (∗∗)

where

K(ti ) =
{

F (ti ) ∈ Rm
+ : λ(ti ) ≤ F (ti ) ≤ µ(ti ), ΦF (ti ) = ρ(ti )

}
.

and we apply a projection method to solve it.
After the iterative procedure, we can construct an approximate
equilibrium solution by linear interpolation.
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Computational method

Projection methods

Solodov-Svaiter’s method

If we denote by

r(H(t)) = H(t)− PK(H(t)− J−1
m C (t,H(t)))

we can note that r(H(t)) = 0 ⇔ H(t) ∈ SVI (C ,K ).
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Projection methods

Solodov-Svaiter’s method

Choose H0(ti ) ∈ K and two parameters γ ∈]0, 1[ and σ ∈]0, 1[.
Having Hk(ti ), compute r(Hk(ti )). If r(Hk(ti )) = 0 stop.
Otherwise, compute G k(ti ) = Hk(ti )− ηi r(H

k(ti )), where
ηk = γhk , with hk the smallest nonnegative integer h satisfying

〈C (ti ,H
k(ti )− γhr(Hk(ti ))), r(H

k(ti ))〉a,s ≥ σ‖r(Hk(ti ))‖2
s (7)

Compute

where

∂Hk(ti ) =
{

H(ti ) ∈ Rm : 〈C (ti ,G
k(ti )),H(ti )− G k(ti )〉 = 0

}
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Computational method

Projection methods

Discretization method

Lemma

Let B be any nonempty closed convex subset of V, a not necessary
pivot Hilbert space V. For any x , y ∈ V and any z ∈ V the
following properties hold.

(x − PB(x), z − PB(x))V ≤ 0.

‖PB(x)− PB(y)‖2
V ≤ ‖x − y‖2

V − ‖PB(x)− x + y − PB(y)‖2
V

where (., .)V and ‖.‖V are respectively the inner product and the
norm of V .
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Computational method

Projection methods

Discretization method

Lemma

Suppose that the linesearch procedure 7 of Algorithm is well
defined. Then it holds that

Hk+1(ti ) = PK(ti )∩∂Hk (ti )(H̄
k(ti ))

where
H̄k(ti ) = P∂Hk (ti )(H

k(ti )).
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Computational method

Projection methods

Discretization method

Lemma

Let X be strictly convex and smooth Banach space, if we denote f
an element of X ∗ \ {0}, by α a real number and by

Kα = {x ∈ V |〈f , x〉X∗,X ≤ α}

We have

PKα(x) = x i −max{0,
〈f , x〉X∗×X − α

‖f ‖2
X∗

}J−1(f ). (8)
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Computational method

Projection methods

Discretization method

Corollary

For Hk(ti ) construct as specified in Algorithm and V a not
necessarily pivot Hilbert space, if

∂Hk(ti ) =
{

H(ti ) ∈ Rm : 〈C (ti ,G
k(ti )),H(ti )− G k(ti )〉 = 0

}
then

P∂Hk (ti )(H
k(ti )) = Hk(ti )−

〈C (ti ,G
k(ti )),H

k(ti )〉V ∗×V − α

‖C (ti ,G k(ti ))‖2
V ∗

J−1(C (ti ,G
k(ti ))).

(9)
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Computational method

Projection methods

Discretization method

Theorem

Let C be continuous and monotone with respect to 〈., .〉V ∗,V .
Suppose SVI (C ,K ) is nonempty. Then any sequence {Hk(ti )}k

generated by Algorithm converges to a solution of VI (C ,K)
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Computational method

Projection methods

Discretization method

Theorem

Assume that the conditions of Theorems above established are
satisfied, then the approximate solution given by:

uk(t) =


0 if t ∈]0, εn[∑Nk

r=1 u(tr
k)χ[tr−1

k ,tr
k [(t) if t ∈ [t0

k , tNk
k [

0 if t ∈]T − εk ,T [

converges to u(t) in L2(Ω, Rm, a, s) sense
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Computational method

Projection methods

Extragradient method

The algorithm, starting from any H0(ti ) ∈ K(ti ) fixed, generates a
sequence {Hk(ti )}k∈N such that

H
k
(ti ) = PK(ti )(H

k(ti )− αC (Hk(ti ))),

Hk+1(ti ) = PK(ti )(H
k(ti )− αC (H

k
(ti ))),

where PK(ti )(·) denotes the orthogonal projection map onto K(ti )
and α is constant for all iterations.
If C is monotone and Lipschitz continuous on K (with Lipschitz
constant L), and if α ∈ (0, 1/L), the extragradient method
determines a sequence {Hk(ti )}k∈N convergent to the solution to
the static variational inequality (∗∗).
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Example

O/D pair of nodes w = (A,C ) and three paths;

set of feasible flows K =

{
F ∈

L2([0, 2], R3
+, (2t, t, 10t), (2(t +1), 0.1t, 0.1(t +2))) :

(t + 1, 2t + 1, t + 2) ≤ (F1(t),F2(t),F3(t)) ≤
(3(t + 1), 4t + 3, 3t + 4), F1(t) + F2(t) + F3(t) =

7t + 2, in [0, 2]

}
.

cost vector-function on the path

C1(H(t)) =
1

4
tH1(t) + 3t + 1,

C2(H(t)) = 3t2H2(t) +
√

t5H2
3 (t) + t2 + 2,

C3(H(t)) = t2
√

H1(t) +
7

2
t3H3(t) +

√
t +

4

3
.
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Computational method
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Example

Monotonicity condition:

〈C (H(t))− C (F (t)), (H(t)− F (t))〉 > 0, ∀H 6= F , a.e. in]0, 2[

Lipschitz continuity:

‖C (H(t))− C (F (t))‖2
3 ≤ 27168‖H(t)− F (t)‖2

3,
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Computational method

Numerical results

Example

Then the extragradient method is convergent for α ∈ (0, 0.00003).

We can compute an approximate curve of equilibria, by selecting

ti ∈
{ k

15
: k ∈ {1, . . . , 30}

}
.
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Numerical results

Example

Curves of equilibria
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