Weighted variational inequalities in non-pivot Hilbert spaces: existence and regularity results and applications

Annamaria Barbagallo
Joint work with Stéphane Pia

Department of Mathematics and Computer Science,
University of Catania

Workshop on “Complex Networks - Equilibrium and Vulnerability Analysis with Applications”
Catania, 11 March 2008
Outline

1. Introduction
 - Some contributions on variational inequalities
 - Preliminary concepts

2. Existence results
 - Some definitions
 - Existence theorem

3. Regularity results
 - Sets convergence
 - Regularity results for weighted variational inequalities

4. Dynamic weighted traffic equilibrium problem
 - Dynamic weighted traffic equilibrium problem

5. Computational method
 - Discretization method
 - Projection methods
 - Numerical results

6. References
Weighted variational inequalities in non-pivot Hilbert spaces: existence and regularity results and applications

Outlines

Outline

1 Introduction
 - Some contributions on variational inequalities
 - Preliminary concepts

2 Existence results
 - Some definitions
 - Existence theorem

3 Regularity results
 - Sets convergence
 - Regularity results for weighted variational inequalities

4 Dynamic weighted traffic equilibrium problem
 - Dynamic weighted traffic equilibrium problem

5 Computational method
 - Discretization method
 - Projection methods
 - Numerical results

6 References
Part I

Introduction
Some contributions on variational and quasi-variational inequalities

- Fichera (1963–1964): a problem in elasticity with a unilateral boundary condition;
- Brezis (Comptes Rendus de l’Academie des Sciences, 1967): introduction of evolutionary variational inequalities;
Some contributions on variational and quasi-variational inequalities

- Fichera (1963–1964): a problem in elasticity with a unilateral boundary condition;
- Brezis (Comptes Rendus de l’Academie des Sciences, 1967): introduction of evolutionary variational inequalities;
Some contributions on variational and quasi-variational inequalities

- Fichera (1963–1964): a problem in elasticity with a unilateral boundary condition;
- Brezis (Comptes Rendus de l’Academie des Sciences, 1967): introduction of evolutionary variational inequalities;
Introduction

Some contributions on variational inequalities

Some contributions on variational and quasi-variational inequalities

- Fichera (1963–1964): a problem in elasticity with a unilateral boundary condition;
- Brezis (Comptes Rendus de l’Academie des Sciences, 1967): introduction of evolutionary variational inequalities;
Some contributions on variational and quasi-variational inequalities

- Fichera (1963–1964): a problem in elasticity with a unilateral boundary condition;
- Brezis (Comptes Rendus de l’Academie des Sciences, 1967): introduction of evolutionary variational inequalities;
Some contributions on variational and quasi-variational inequalities

- Fichera (1963–1964): a problem in elasticity with a unilateral boundary condition;
- Brezis (Comptes Rendus de l’Academie des Sciences, 1967): introduction of evolutionary variational inequalities;
Some contributions on variational and quasi-variational inequalities

Introduction

Some contributions on variational inequalities

Some contributions on variational and quasi-variational inequalities

Proposition

Let \(\Omega \subset \mathbb{R}^p \) be an open subset of \(\mathbb{R}^n \), \(a : \Omega \rightarrow R^+ \setminus \{0\} \) a continuous and strictly positive function called "weight" and \(s : \Omega \rightarrow R^+ \setminus \{0\} \) a continuous and strictly positive function called "real time density". The bilinear form defined on \(C_0(\Omega) \) (set of continuous functions with compact support on \(\Omega \)) by

\[
\langle x, y \rangle_{a,s} = \int_{\Omega} x(\omega)y(\omega)a(\omega)s(\omega)d\omega
\]

is an inner product.
If a is a weight, $a^{-1} = 1/a$ is also a weight.

Definition

We call $L^2(\Omega, a, s)$ a completion of $C_0(\Omega)$ for the inner product $\langle x, y \rangle_{a,s}$.
If we denote by $V_i = L^2(\Omega, \mathbb{R}, a_i, s_i)$ and $V_i^* = L^2(\Omega, \mathbb{R}, a_i^{-1}, s_i)$, the space

$$V = \prod_{i=1}^{m} V_i$$

is a non pivot Hilbert space for the inner product

$$\langle F, G \rangle_V = \langle F, G \rangle_{a,s} = \sum_{i=1}^{m} \int_{\Omega} F_i(\omega) G_i(\omega) a_i(\omega) s_i(\omega) d\omega.$$
The space

\[V^* = \prod_{i=1}^{m} V_i^* \]

is clearly a non pivot Hilbert space for the following inner product

\[\langle F, G \rangle_{V^*} = \langle F, G \rangle_{a^{-1},s} = \sum_{i=1}^{m} \int_{\Omega} \frac{F_i(\omega)G_i(\omega)s_i(\omega)}{a_i(\omega)} d\omega \]
The bilinear form define a duality between V and V^*:

$$V^* \times V \rightarrow \mathbb{R}$$

$$\langle f, x \rangle_{V^* \times V} = \langle f, x \rangle_s = \sum_{i=1}^{m} \int_{\Omega} f_i(\omega)x_i(\omega)s_i(\omega)d\omega. \quad (3)$$
Proposition

The bilinear form (3) is defined over $V^* \times V$ and define a duality between V^* and V. The duality mapping is given by

$$J(F) = (a_1 F_1, \ldots, a_m F_m).$$
Part II

Existence results
Some definitions

Let V be the Hilbert spaces and let S be a subset of V.

Definition

An operator $C : S \to V^*$ is said to be

- **monotone** on S if
 \[
 \langle C(x_1) - C(x_2), x_1 - x_2 \rangle_s \geq 0, \quad \forall x_1, x_2 \in S;
 \]

- **strictly monotone** on S if
 \[
 \langle C(x_1) - C(x_2), x_1 - x_2 \rangle_s > 0, \quad \forall x_1 \neq x_2;
 \]

- **strongly monotone** on S if for some $\nu > 0$
 \[
 \langle C(x_1) - C(x_2), x_1 - x_2 \rangle_s \geq \nu \|x_1 - x_2\|_V, \quad \forall x_1, x_2 \in S;
 \]
Some definitions

Definition

- **strongly pseudomonotone with degree** $\alpha > 0$ on K (strongly pseudo-monotone on K if $\alpha = 2$), if and only if there exists $\nu > 0$ such that for all $x_1, x_2 \in S$

 $$\langle C(x_2), x_1 - x_2 \rangle_s \geq 0 \implies \langle C(x_1), x_1 - x_2 \rangle_s \geq \nu \|x_1 - x_2\|_V^\alpha,$$

- **strictly pseudomonotone** on S if for all $x_1, x_2 \in S$

 $$\langle C(x_1), x_1 - x_2 \rangle_s \geq 0 \implies \langle C(x_2), x_1 - x_2 \rangle_s < 0.$$

- **pseudomonotone** on S if for all $x_1, x_2 \in S$

 $$\langle C(x_1), x_1 - x_2 \rangle_s \geq 0 \implies \langle C(x_2), x_1 - x_2 \rangle_s \leq 0.$$
Some definitions

Let \mathbb{K} be a convex subset of V.

Definition

An operator $C : \mathbb{K} \to V^*$ is said to be

- **hemicontinuous** if for any $x \in \mathbb{K}$, the function

\[
\mathbb{K} \ni \xi \to \langle C(\xi), x - \xi \rangle_s
\]

is upper semi-continuous on \mathbb{K};

- **hemicontinuous along line segments** if and only if for any $x, y \in \mathbb{K}$, the function

\[
\mathbb{K} \ni \xi \to \langle C(\xi), y - x \rangle_s
\]

is upper semi-continuous on the line segment $[x, y]$.
Evolutionary weighted variational inequality

Definition

Let \mathbb{K} be a nonempty, convex and closed subset of V and let $C : \mathbb{K} \rightarrow V^*$ be a vector-function. The weighted variational inequality is the problem to find a vector $x \in \mathbb{K}$, such that

$$\langle C(x), y - x \rangle_s \geq 0, \quad \forall y \in \mathbb{K}.$$ (4)
Let K be a nonempty, convex and closed subset of V. Let $C : K \to V^*$ such that C is monotone and hemicontinuous. Then there is a $u_0 \in K$ such that

$$\langle C(u_0), v - u_0 \rangle_s \geq 0, \forall v \in K.$$
Existence theorem

Theorem

Let \mathbb{K} be a nonempty, convex and closed subset of V. Let $C : \mathbb{K} \to V^*$ be monotone such that C is continuous on finite dimensional subspaces of \mathbb{K}. Then there is a $u_0 \in \mathbb{K}$ such that

$$\langle C(u_0), v - u_0 \rangle_s \geq 0, \ \forall v \in \mathbb{K}.$$

If C is strictly monotone, u_0 is unique.
Existence theorem

Theorem

Let \mathbb{K} be a nonempty, convex and closed subset of V. Let $C: \mathbb{K} \to V^*$ be a given function such that:

(i) there exist $A \subseteq \mathbb{K}$ nonempty, compact and $B \subseteq \mathbb{K}$ compact, convex such that, for every $y \in \mathbb{K} \setminus A$, there exists $\hat{x} \in B$ with $\langle C(y), \hat{x} - y \rangle_s < 0$;

(ii) C is pseudomonotone and hemicontinuous along line segments.

Then, there exists $x \in A$ such that $\langle C(x), y - x \rangle_s \geq 0$, for all $y \in \mathbb{K}$.

Existence theorem

Theorem

Let \mathbb{K} be a nonempty, convex and closed subset of V. Let $C : \mathbb{K} \to V^*$ be a given function such that:

(i) there exist $A \subseteq \mathbb{K}$ nonempty, compact and $B \subseteq K$ compact, convex such that, for every $y \in \mathbb{K} \setminus A$, there exists $\hat{x} \in B$ with $\langle C(y), \hat{x} - y \rangle_s < 0$;

(ii) C is hemicontinuous.

Then, there exists $x \in A$ such that $\langle C(x), y - x \rangle_s \geq 0$, for all $y \in \mathbb{K}$.

Existence results
Part III

Regularity results
Let \(X \) be a nonempty set endowed with two topologies \(\sigma \subseteq \tau \). Let \(\{K_n\}_{n \in \mathbb{N}} \) be a sequence of subsets of \(X \).

Definition

We say that \(K_n (\sigma, \tau) \)-converges to some subset \(K \subseteq X \), and we briefly write \(K_n \to^{(\sigma, \tau)} K \), if

- for any sequence \(\{x_n\}_{n \in \mathbb{N}} \), with \(x_n \) in \(K_n \) \(\forall n \in \mathbb{N} \), such that \(x_n \to^\sigma x \) for some \(x \in S \), then \(x \in K \);

- for any \(x \in K \) there exists a subsequence \(\{x_{k_n}\}_{n \in \mathbb{N}} \), with \(x_{k_n} \) in \(K_{k_n} \) \(\forall n \in \mathbb{N} \), such that \(x_{k_n} \to^\tau x \).
Sets convergence

Definition

- Let \((X, d)\) be a metric space such that \(\sigma = \tau = \tau_d\) is exactly the metric topology. In this case the \((\sigma, \tau)\)-convergence is called Kuratowski convergence of sets; it will be denoted by \(K_n \rightarrow^K K\).

- Let \(X\) be a normed space, moreover let \(\sigma\) and \(\tau\) be respectively the weak and the strong topology on \(X\). In this case the \((\sigma, \tau)\)-convergence is called Mosco convergence of sets; it will be denoted by \(K_n \rightarrow^M K\).
Sets convergence

Definition

Let (X, d) be a metric space such that $\sigma = \tau = \tau_d$ is exactly the metric topology. In this case the (σ, τ)-convergence is called Kuratowski convergence of sets; it will be denoted by $K_n \rightarrow^K K$.

Let X be a normed space, moreover let σ and τ be respectively the weak and the strong topology on X. In this case the (σ, τ)-convergence is called Mosco convergence of sets; it will be denoted by $K_n \rightarrow^M K$.
Regularity results

Regularity result for nonlinear strongly monotone evolutionary weighted variational inequalities

Theorem

Let V be the non-pivot Hilbert space, let $\Omega \subseteq \mathbb{R}^p$, let $t \in \Omega$ and $K(t)$ be a subset of \mathbb{R}^m verifying Kuratowski’s convergence assumptions, let $C : \Omega \times K \rightarrow V^*$ be a continuous function and $C(t, \cdot)$ strongly pseudo-monotone with degree $\alpha > 1$. Then the solution map $x : \Omega \ni t \rightarrow x(t) \in \mathbb{R}^m$ of the evolutionary weighted variational inequality is continuous on Ω.
Regularity results for weighted variational inequalities

Regularity result for nonlinear strictly evolutionary weighted pseudomonotone evolutionary variational inequalities

For every $\varepsilon > 0$ and for any fixed $t \in \Omega$, let us consider the following perturbed variational inequality

$$\langle C(t, x(t)) + \varepsilon J_m(x(t)), y(t) - x(t) \rangle_{m,s(t)} \geq 0, \quad \forall y(t) \in K(t),$$

where J_m is the duality mapping between $(\mathbb{R}^m, \| \cdot \|_{m,a,s})$ and $(\mathbb{R}^m, \| \cdot \|_{m,a^{-1},s})$.
Regularity results for weighted variational inequalities

Regularity result for nonlinear strictly pseudomonotone evolutionary weighted variational inequalities

Theorem

Let V be the non-pivot Hilbert space, let $\Omega \subseteq \mathbb{R}^n$, let $K(t)$ be a nonempty closed convex and bounded (uniformly with respect to $t \in \Omega$) subset of \mathbb{R}^m, verifying the Kuratowski convergence. Let $C : \Omega \times K \rightarrow V^*$ be a continuous function so that $C(t, \cdot)$ is strictly pseudo-monotone. Then the solution map $x : \Omega \ni t \rightarrow x(t) \in \mathbb{R}^m$ of the evolutionary weighted variational inequality is continuous on Ω.
Part IV

Dynamic weighted traffic equilibrium problem
Let us introduce a network \mathcal{N}:

- $G = [N, L]$ is a graph;
- \mathcal{W} is the set of Origin-Destination (O/D) pairs w_j, $j = 1, 2, \ldots, l$;
- \mathcal{R} is the set of routes R_r, $r = 1, 2, \ldots, m$, which connect the pair $w \in \mathcal{W}$.

The set of all $r \in \mathcal{R}$ which link a given $w \in \mathcal{W}$ is denoted by $\mathcal{R}(w)$.
Let us introduce a network \mathcal{N}:

- $G = [\mathcal{N}, L]$ is a graph;
- \mathcal{W} is the set of Origin-Destination (O/D) pairs w_j, $j = 1, 2, \ldots, l$;
- \mathcal{R} is the set of routes R_r, $r = 1, 2, \ldots, m$, which connect the pair $w \in \mathcal{W}$.

The set of all $r \in \mathcal{R}$ which link a given $w \in \mathcal{W}$ is denoted by $\mathcal{R}(w)$.
Let us introduce a network \mathcal{N}:

- $G = [N, L]$ is a graph;
- \mathcal{W} is the set of Origin-Destination (O/D) pairs w_j, $j = 1, 2, \ldots, l$;
- \mathcal{R} is the set of routes R_r, $r = 1, 2, \ldots, m$, which connect the pair $w \in \mathcal{W}$.

The set of all $r \in \mathcal{R}$ which link a given $w \in \mathcal{W}$ is denoted by $\mathcal{R}(w)$.
Let us introduce a network \mathcal{N}:

- $G = [N, L]$ is a graph;
- \mathcal{W} is the set of Origin-Destination (O/D) pairs w_j, $j = 1, 2, \ldots, l$;
- \mathcal{R} is the set of routes R_r, $r = 1, 2, \ldots, m$, which connect the pair $w \in \mathcal{W}$.

The set of all $r \in \mathcal{R}$ which link a given $w \in \mathcal{W}$ is denoted by $\mathcal{R}(w)$.

Dynamic weighted traffic equilibrium problem
Let be denote by

- Ω an open subset of \mathbb{R},
- $a = \{a_1, \ldots, a_m\}$, $a^{-1} = \{a_1^{-1}, \ldots, a_m^{-1}\}$ and $s = \{s_1, \ldots, s_m\}$ three families of weights such that for each $1 \leq i \leq n$, $a_i, s_i \in C(\Omega, \mathbb{R}^+ \setminus \{0\})$.

We use the framework of a non-pivot Hilbert space which is a multidimensional version of the weighted space $L^2(\Omega, \mathbb{R}, a, s)$, that we denote by V.
Let be denote by

- Ω an open subset of \mathbb{R},
- $\mathbf{a} = \{a_1, \ldots, a_m\}$, $\mathbf{a}^{-1} = \{a_1^{-1}, \ldots, a_m^{-1}\}$ and $\mathbf{s} = \{s_1, \ldots, s_m\}$ three families of weights such that for each $1 \leq i \leq n$, $a_i, s_i \in \mathcal{C}(\Omega, \mathbb{R}^+ \setminus \{0\})$.

We use the framework of a non-pivot Hilbert space which is a multidimensional version of the weighted space $L^2(\Omega, \mathbb{R}, a, s)$, that we denote by V.

Dynamic weighted traffic equilibrium problem

Dynamic weighted traffic equilibrium problem
For a.e. $t \in \Omega =]0, T[$ we consider vector flow $F(t) \in \mathbb{R}^m$. The feasible flows have to satisfy the time dependent capacity constraints and demand requirements, namely for all $r \in \mathcal{R}$, $w \in \mathcal{W}$ and for almost all $t \in \Omega$,

$$\lambda_r(t) \leq F_r(t) \leq \mu_r(t)$$

and

$$\sum_{r \in \mathcal{R}(w)} F_r(t) = \rho_w(t)$$

where $\lambda(t) \leq \mu(t)$ are given in \mathbb{R}^m, $\rho(t) \in \mathbb{R}^l$.
Dynamic traffic equilibrium problem

If $\Phi = (\Phi_w, r)$ is the pair route incidence matrix, with $w \in \mathcal{W}$ and $r \in \mathcal{R}$, that is

$$
\Phi_{w,r} = \begin{cases}
1 & \text{if } w \in \mathcal{R}(r) \\
0 & \text{otherwise},
\end{cases}
$$

the demand requirements can be written in matrix-vector notation as

$$
\Phi F(t) = \rho(t)
$$

The set of all feasible flows is given by

$$
\mathcal{K} := \{ F \in \mathcal{V} | \lambda(t) \leq F(t) \leq \mu(t), \text{a.e. in } \Omega, \\
\Phi F(t) = \rho(t), \text{ a.e in } \Omega \}
$$

Let us denote by

$$
C : \Omega \times \mathbb{R}_+^m \rightarrow \mathbb{R}_+^m
$$

the cost function.
Weighted variational inequalities in non-pivot Hilbert spaces: existence and regularity results and applications
Dynamic weighted traffic equilibrium problem
Dynamic weighted traffic equilibrium problem

Time-dependent weighted variational inequality

Definition

\(H \in V \) is an equilibrium flow if and only if

\[
H \in K : \langle C(t, H(t)), F(t) - H(t) \rangle_s \geq 0, \quad \forall F \in K, \text{ a.e. in } \Omega. \tag{5}
\]
Weighted variational inequalities in non-pivot Hilbert spaces: existence and regularity results and applications
Dynamic weighted traffic equilibrium problem
Dynamic weighted traffic equilibrium problem

Weighted Wardrop condition

Equivalence between condition (5) and what we will call the weighted Wardrop condition

Theorem

\[H \in K \text{ is an equilibrium flow in the sense of (5) if and only if} \]

\[\forall w \in \mathcal{W}, \forall q, m \in \mathcal{R}(w), \text{ a.e. in } \Omega, \]

\[s_q(t)C_q(t, H(t)) < s_m(t)C_m(t, H(t)) \quad (6) \]

\[\Rightarrow H_q(t) = \mu_q(t) \text{ or } H_m(t) = \lambda_m(t). \]
Pointed formulation

Theorem

The evolutionary variational inequality:

$$H \in K : \int_0^T \langle C(t, H(t)), F(t) - H(t) \rangle dt \geq 0, \ \forall F \in K,$$

is equivalent to

$$H \in K : \langle C(t, H(t)), F(t) - H(t) \rangle \geq 0, \ \forall F(t) \in K(t), \ \text{a.e. in } \Omega,$$

where

$$K(t) = \left\{ F(t) \in \mathbb{R}^m : \lambda(t) \leq F(t) \leq \mu(t), \ \Phi F(t) = \rho(t) \right\}.$$
We propose a way to define the Real Time Traffic Density (RTTD) for a route. This data will be the "weight" of the route considered and it will be use to define the duality pairing. Using mobile phone connections data it is possible to establish the density of mobile phone connected over a monitored area. The principle can be generalized to other wireless devices. It is clear that to weight properly a link is really difficult and it is at least necessarily important to take into account network’s geometry, which means for us the position of network’s elements.
We can suppose to have $I \subset \mathbb{R}^2$ closed and large enough to include the monitored area and a parametric continuous function γ_t with $t \in \Omega$ such that:

$$\gamma_t : I \rightarrow \mathbb{R}^+$$

$$\gamma_t : (x, y) \rightarrow \gamma_t(x, y)$$

This function represent a normalized interpolation obtained using the communication data.
Weighted Wardrop condition

For each route we construct a weight in the following way: let us fix \(\vartheta \in \mathbb{R}^+ \setminus \{0\} \), a strict positive number called “resolution”. We introduce the set \(r^\vartheta = r \times \vartheta \), \(r^\vartheta \subset \Omega \).

We propose now a definition of weight which not pretend to be exhaustive, all the contrary. We think that the weights should be calibrate case by case.

For examples one can decide to take into account very exceptional events that are not visible by mobile connection data adding to the definition given bellow, terms that will increase or decrease the weight.
Weighted variational inequalities in non-pivot Hilbert spaces: existence and regularity results and applications
Dynamic weighted traffic equilibrium problem
Dynamic weighted traffic equilibrium problem

Weighted Wardrop condition

Definition

Given \(\mathcal{V} \) a resolution and \(\mathcal{N} \) a finite network, we call weight of the route \(r \), the real positive number \(s_r(t) \) such that

\[
s_r(t) = \int_{r^\mathcal{V}} \gamma_t(x, y) [\chi_{r^\mathcal{V}} \setminus (\bigcup_{p \neq r} p^\mathcal{V})](x, y) + m_\mathcal{V}(x, y, t) \sum_{p \neq r} \chi_{r^\mathcal{V} \cap p^\mathcal{V}}(x, y) \, dx \, dy
\]

where \(m_\mathcal{V} : \Omega \times [0, T] \rightarrow \mathbb{R}^+ \) is continuous and called, proximity contribution weight and \(\chi \) is the standard characteristic function.
Weighted Wardrop condition

We assume that for each $r \in \mathcal{R}$, $s_r(t) \neq 0$ for a.e. $t \in \Omega$.

Definition

A given family of weights $\{s_r(t)\}_{r \in \mathcal{R}}$, is called Normalized Family of Weights if

$$\sum_{r \in \mathcal{R}} s_r(t) = 1, \forall \ t \in \Omega$$

It is clear that each family of weights can be normalized. To define the inner product $\langle \cdot, \cdot \rangle_{a,s}$ we use a normalized family of weights s.
Set of feasible flows: set convergence in Mosco’s sense

Lemma

Let \(\lambda, \mu \in C(\Omega, \mathbb{R}_+^m) \cap L^2(\Omega, \mathbb{R}^m, \mathbf{a}, \mathbf{s}) \), let \(\rho \in C(\Omega, \mathbb{R}_+^l) \cap L^2(\Omega, \mathbb{R}^l, \mathbf{a}, \mathbf{s}) \) and let \(\{t_n\}_{n \in \mathbb{N}} \) be a sequence such that \(t_n \to t \in [0, T] \), as \(n \to +\infty \).

Then, the sequence of sets

\[
K(t_n) = \left\{ F(t_n) \in \mathbb{R}^m : \lambda(t_n) \leq F(t_n) \leq \mu(t_n), \ \Phi F(t_n) = \rho(t_n) \right\},
\]

\(\forall n \in \mathbb{N} \), converges to

\[
K(t) = \left\{ F(t) \in \mathbb{R}^m : \lambda(t) \leq F(t) \leq \mu(t), \ \Phi F(t) = \rho(t) \right\},
\]

as \(n \to +\infty \), in Mosco’s sense.
Regularity Weighted Wardrop condition

Theorem

Let \(\lambda, \mu \in C(\Omega, \mathbb{R}_+^m) \cap L^2(\Omega, \mathbb{R}^m, a, s) \), let \(\rho \in C(\Omega, \mathbb{R}_+^l) \cap L^2(\Omega, \mathbb{R}^l, a, s) \) and let \(C : \Omega \times K \rightarrow V^* \) be a continuous function and \(C(t, \cdot) \) strictly pseudo-monotone. Then the solution map of the dynamic weighted traffic equilibrium problem is continuous on \(\Omega \).
Discretization method

We consider the evolutionary variational inequality

\[H \in K : \langle C(t, H(t)), F(t) - H(t) \rangle \geq 0, \forall F(t) \in K(t), \text{ a.e. in } [0, T], \quad (\star) \]

and we suppose that the assumptions above established are satisfied and hence the solution

\[H \in C([0, T], \mathbb{R}_+^m). \]

As a consequence, (\star) holds for each \(t \in [0, T] \), namely

\[\langle C(t, H(t)), F(t) - H(t) \rangle \geq 0, \forall t \in [0, T]. \]

We consider a partition of \([0, T]\), such that

\[0 = t_0 < \ldots < t_i < \ldots < t_N = T. \]
Then, for each value t_i, for $i = 0, \ldots, N$, we obtain a static variational inequality

$$
\langle C(t_i, H(t_i)), F(t_i) - H(t_i) \rangle \geq 0, \ \forall F(t_i) \in K(t_i), \quad (**)
$$

where

$$
K(t_i) = \left\{ F(t_i) \in \mathbb{R}^m_+ : \lambda(t_i) \leq F(t_i) \leq \mu(t_i), \ \Phi F(t_i) = \rho(t_i) \right\}.
$$

and we apply a projection method to solve it.

After the iterative procedure, we can construct an approximate equilibrium solution by linear interpolation.
If we denote by
\[r(H(t)) = H(t) - P_K(H(t) - J_m^{-1}C(t, H(t))) \]
we can note that \(r(H(t)) = 0 \iff H(t) \in SVI(C, K) \).
Choose $H^0(t_i) \in K$ and two parameters $\gamma \in]0, 1[$ and $\sigma \in]0, 1[$. Having $H^k(t_i)$, compute $r(H^k(t_i))$. If $r(H^k(t_i)) = 0$ stop. Otherwise, compute $G^k(t_i) = H^k(t_i) - \eta_i r(H^k(t_i))$, where $\eta_k = \gamma^{h_k}$, with h_k the smallest nonnegative integer h satisfying

$$\langle C(t_i, H^k(t_i) - \gamma^h r(H^k(t_i))), r(H^k(t_i)) \rangle_{a,s} \geq \sigma \|r(H^k(t_i))\|_s^2 \quad (7)$$

Compute

where

$$\partial H^k(t_i) = \left\{ H(t_i) \in \mathbb{R}^m : \langle C(t_i, G^k(t_i)), H(t_i) - G^k(t_i) \rangle = 0 \right\}$$
Let B be any nonempty closed convex subset of V, a non-pivot Hilbert space V. For any $x, y \in V$ and any $z \in V$ the following properties hold.

- $(x - P_B(x), z - P_B(x))_V \leq 0$.
- $\|P_B(x) - P_B(y)\|_V^2 \leq \|x - y\|_V^2 - \|P_B(x) - x + y - P_B(y)\|_V^2$

where $(\cdot, \cdot)_V$ and $\|\cdot\|_V$ are respectively the inner product and the norm of V.
Lemma

Suppose that the linesearch procedure 7 of Algorithm is well defined. Then it holds that

\[H^{k+1}(t_i) = P_{K(t_i) \cap \partial H^k(t_i)}(\tilde{H}^k(t_i)) \]

where

\[\tilde{H}^k(t_i) = P_{\partial H^k(t_i)}(H^k(t_i)). \]
Let X be strictly convex and smooth Banach space, if we denote f an element of $X^* \setminus \{0\}$, by α a real number and by

$$K_\alpha = \{ x \in V | \langle f, x \rangle_{X^*,X} \leq \alpha \}$$

We have

$$P_{K_\alpha}(x) = x^i - \max\left\{ 0, \frac{\langle f, x \rangle_{X^*,X} - \alpha}{\| f \|_{X^*}^2} \right\} J^{-1}(f). \quad (8)$$
Corollary

For $H^k(t_i)$ construct as specified in Algorithm and V a not necessarily pivot Hilbert space, if

$$\partial H^k(t_i) = \left\{ H(t_i) \in \mathbb{R}^m : \langle C(t_i, G^k(t_i)), H(t_i) - G^k(t_i) \rangle = 0 \right\}$$

then

$$P_{\partial H^k(t_i)}(H^k(t_i)) = H^k(t_i) - \frac{\langle C(t_i, G^k(t_i)), H^k(t_i) \rangle_{V^* \times V} - \alpha}{\| C(t_i, G^k(t_i)) \|_{V^*}^2} J^{-1}(C(t_i, G^k(t_i)))$$

(9)
Let C be continuous and monotone with respect to $\langle \cdot, \cdot \rangle_{V^*, V}$. Suppose \(SVI(C, K) \) is nonempty. Then any sequence \(\{H_k(t_i)\}_k \) generated by Algorithm converges to a solution of \(VI(C, K) \).
Theorem

Assume that the conditions of Theorems above established are satisfied, then the approximate solution given by:

\[
\begin{align*}
 u_k(t) &= \begin{cases}
 0 & \text{if } t \in]0, \epsilon_n[\\
 \sum_{r=1}^{N_k} u(t_k^r) \chi_{[t_k^{r-1}, t_k^r]}(t) & \text{if } t \in [t_k^0, t_k^{N_k}] \\
 0 & \text{if } t \in]T - \epsilon_k, T[
 \end{cases}
\end{align*}
\]

converges to \(u(t) \) in \(L^2(\Omega, \mathbb{R}^m, \alpha, \beta) \) sense.
Extragradient method

The algorithm, starting from any $H^0(t_i) \in K(t_i)$ fixed, generates a sequence $\{H^k(t_i)\}_{k \in \mathbb{N}}$ such that

$$
\overline{H}^k(t_i) = P_{K(t_i)}(H^k(t_i) - \alpha C(H^k(t_i))),
$$

$$
H^{k+1}(t_i) = P_{K(t_i)}(H^k(t_i) - \alpha C(\overline{H}^k(t_i))),
$$

where $P_{K(t_i)}(\cdot)$ denotes the orthogonal projection map onto $K(t_i)$ and α is constant for all iterations.

If C is monotone and Lipschitz continuous on K (with Lipschitz constant L), and if $\alpha \in (0, 1/L)$, the extragradient method determines a sequence $\{H^k(t_i)\}_{k \in \mathbb{N}}$ convergent to the solution to the static variational inequality $\texttt{(**)$.}
Example

- O/D pair of nodes $w = (A, C)$ and three paths;
- set of feasible flows $K = \left\{ F \in L^2([0, 2], \mathbb{R}_+^3, (2t, t, 10t), (2(t + 1), 0.1t, 0.1(t + 2))) : (t + 1, 2t + 1, t + 2) \leq (F_1(t), F_2(t), F_3(t)) \leq (3(t + 1), 4t + 3, 3t + 4), \ F_1(t) + F_2(t) + F_3(t) = 7t + 2, \ \text{in [0, 2]} \right\}$.
- cost vector-function on the path

\[
C_1(H(t)) = \frac{1}{4}tH_1(t) + 3t + 1,
\]
\[
C_2(H(t)) = 3t^2H_2(t) + \sqrt{t^5}H_3^2(t) + t^2 + 2,
\]
\[
C_3(H(t)) = t^2\sqrt{H_1(t)} + \frac{7}{2}t^3H_3(t) + \sqrt{t} + \frac{4}{3}.
\]
Monotonicity condition:
\[\langle C(H(t)) - C(F(t)), (H(t) - F(t)) \rangle > 0, \quad \forall H \neq F, \ a.e. \ in]0, 2[\]

Lipschitz continuity:
\[\| C(H(t)) - C(F(t)) \|_3^2 \leq 27168 \| H(t) - F(t) \|_3^2, \]
Then the extragradient method is convergent for $\alpha \in (0, 0.00003)$.

We can compute an approximate curve of equilibria, by selecting

$$t_i \in \left\{ \frac{k}{15} : k \in \{1, \ldots, 30\} \right\}.$$
Example

Curves of equilibria
References

2. A. Barbagallo and S. Pia, Regularity results for the solution of weighted variational inequalities in non-pivot Hilbert spaces with applications, in progress.