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My contribution

I present a mixed network equilibrium model in a time-dependent
setting with implicit constraints formulated in terms of an
infinite-dimensional quasi-variational inequality problem.
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Typical network equilibria

Definition [User Equilibrium principle, Wardrop 1952]

The journey times of paths are equal and less than those which

would be experienced by a single vehicle on any unused path.

Definition

For all (s, d) ∈ D and ∀p, q ∈ P(s,d), a feasible flow x∗ is a User
Equilibrium if it fulfills the following condition:

C i
p(x∗) < C i

q(x∗) ⇒ x∗i
q = 0.
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Definition [System Optimum principle, Wardrop 1952]

The average journey time is minimal.

Definition

A feasible flow x∗ is a System Optimum Equilibrium if it satisfies
the following minimization problem:

min
n
∑

a=1

faca(fa)

∑

p∈P(s,d)

xp = δ(s,d), ∀(s, d) ∈ D

fa =
∑

p∈P

γapxp, ∀a ∈ L

xp ≥ 0, ∀p ∈ P.
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From network equilibria to game theory

One can assume that a finite number of players compete for the
utilization of a common transportation network.

UE game-theoretic model

Infinitely many ”infinitesimal” players aim to find the shortest path
based on the choices of the other players. Users are fully
competitive.

SO game-theoretic model

One player makes the route choices on behalf of all the other users
and attempts to minimize the total cost of the system. Users are
fully cooperative.
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Typical game-theoretic equilibria

Definition [Nash equilibrium, Nash 1950]

The Nash game with N players consists in finding a tuple
x∗ = (x∗i )Ni=1 ∈ R

n, called Nash Equilibrium, such that for each
i = 1, . . . ,N, x∗i is an optimal solution of the convex optimization
problem in the variable x i with x−i fixed at x∗−i :

min ui(x
∗−i , x i )

x i ∈ K i ,

where ui : R
n → R is the utility function, K i ⊂ R

ni is the set of
strategies, ni ∈ N.
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Definition [Generalized Nash equilibrium, Debreu 1952]

The generalized Nash game with N players consists in finding a
tuple x∗ = (x∗i )Ni=1 ∈ R

n, called Generalized Nash Equilibrium,
such that for each i = 1, . . . ,N, x∗i is an optimal solution of the
convex optimization problem in the variable x i with x−i fixed at
x∗−i :

min ui(x
∗−i , x i )

x i ∈ K i (x∗−i ),

where ui : R
n → R is the utility function, K i : Rn−i → 2R

ni is a
given set-valued map, ni ∈ N, n =

∑N
i=1 ni , n−i = n − ni .
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Common framework

All the equilibrium principles presented have a variational or
quasi-variational inequality formulation.
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Mixed network competition

In several equilibrium situations a mixed behavior is observed,
namely there are both competition and cooperation among users
over the network.

Examples

In transportation networks carriers seek to minimize the total
cost of transportation on their exclusive networks (SO model);
smaller shippers look for the shortest path (UE model); larger
shippers minimize their own costs (SO model).

In telecommunication networks routing strategies to ship jobs
are chosen either by a single decision maker (SO model) or
they are determined individually by each user (UE model).
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UE-GN players competition model

In our model we assume that there exist some classes of individual
users and some GN players. Since there is a large number of
individual users and a single driver has a negligible impact on the
load of the network, we assume that for each class a single
integrated UE player controls all the users who satisfy the UE
principle. There are also some GN players whose objective is to
minimize the cost of the users under their control. They have a
significant impact on the load of the network and are responsible
for the delay in which any other user may incur.
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Model description

[0,T ] time horizon

M set of nodes

L set of links

W set of UE players

N set of GN players

I = N ∪W

a typical link

p typical path
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f i
a (t) the flow sent by player i and circulating on link a at time
t

(f i(t))T = (f i
a (t))a∈L, (f (t))T = (f i (t)T )i∈I

x i
p(t) the flow sent by player i and circulating on path p at

time t

(x i (t))T = (x i
p(t))p∈P i , (x(t))T = (x i (t)T )i∈I

(x∗(t))T = (x∗i (t)T )i∈I optimal multiflow

c i
a(f (t)) link cost function

δi
(s,d)(t, x) : [0,T ] × R

n+w
+ → R

m
+, i ∈ I implicit load

balancing for flows routed from s to d and leaving s at time t,
such that

a) Each component of δ(s,d)(t, x) is measurable in t ∀x ∈ R
n+w
+ ,

continuous at x for a.e. t ∈ [0, T ], and

∃γ1 ∈ L2(0, T ) : ‖δ(s,d)(t, x)‖ ≤ γ1(t) + ‖x‖.



Introductory concepts Mixed behavior network equilibrium Existence results Sensitivity analysis

Constraint set
For i ∈ I, let E i be a nonempty, convex, bounded and closed
subset of L2(0,T ; Rn+w ) and let K i :

∏

k 6=i E k → E i be the
set-valued map which represents the set of the strategies of player
i defined as

K i (x−i ) =

{

x i (t) ∈ E i : ∀(s, d) ∈ D i ,∀p ∈ P i
(s,d),

0 ≤ x i
p(t) ≤ x i

p(t),
∑

p∈P i
(s,d)

x i
p(t) = δi

(s,d)(t, x
i (t))

a.e. t ∈ [0,T ]

}

,

where x−i is the vector of all the players’ decision variables except
those of player i , and x i

p(t) is the upper bound on the flow sent
through path p by user i at time t.
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UE players’ behavior

For all i ∈ W, p ∈ P〉, we define the cost function

C i
p(t, x) : [0,T ] × R

n+w
+ → R+.

C (t, x) = (C i
p(t, x))i∈W ,p∈P i .

Assumptions

b) Each component of C (t, x) is measurable in t ∀x ∈ R
n+w
+ ,

continuous at x for a.e. t ∈ [0,T ], and

∃γ2 ∈ L2(0,T ) : ‖C (t, x)‖ ≤ γ2(t) + ‖x‖.
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The aim of UE player i ∈ W is to choose the shortest path based
on the choices of the other players, specifically to satisfy the
following constrained Wardrop principle (Maugeri et al. 1997,
Larsson et al. 1999).

Definition [Constrained Wardrop principle]

For all i ∈ W, ∀(s, d) ∈ D i and ∀p, q ∈ P i
(s,d), x∗(t) ∈ K (x∗−i ) is

a constrained User Equilibrium if it fulfills the following condition,
a.e. on [0,T ]

C i
p(t, x

∗(t)) < C i
q(t, x

∗(t)) ⇒ x∗i
p (t) = x∗i

p (t) or x∗i
q (t) = 0.
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UE players’ QVI

For each player i ∈ W the UE principle is equivalent with the
quasi-variational inequality problem:

∫ T

0

∑

p∈P i

C i
p(t, x∗(t))(x i

p(t) − x∗i
p (t))dt ≥ 0,∀x i ∈ K (x∗−i ). (1)
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GN players’ behavior

For all i ∈ N we define the cost function

J i (t, x) : [0,T ] × R
n+w
+ → R+.

J(t, x) = (J i (t, x))i∈N .

Assumptions

c) Each component of J(t, x) is measurable in t ∀x ∈ R
n+w
+ ,

convex and continuously differentiable with respect to x for
a.e. t ∈ [0,T ], and

∃γ3 ∈ L1(0,T ) : ‖J(t, x)‖ ≤ γ3(t) + ‖x‖2.
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For i ∈ N , let Ψi
p(t, x) be the derivative of J i (t, x) with respect to

x i
p. Then it result Ψ(t, x) = (Ψi

p(t, x))i∈N ,p∈P i ∈ R
n.

Assumptions

d) Each component of Ψ(t, x) is measurable in t ∀x ∈ R
n+w
+ ,

continuous at x for a.e. t ∈ [0,T ], and

∃γ4 ∈ L2(0,T ) : ‖Ψ(t, x)‖ ≤ γ4(t) + ‖x‖.
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Definition

The aim of GN player i ∈ N , given the other players’ strategies
x∗−i , is to choose a Generalized Nash Equilibrium x i that solves
the minimization problem

i ∈ N , min
x i (t)∈K i (x∗−i )

∫ T

0
J i (t, x∗−i (t), x i (t))dt. (2)

Remark

The functional J i is convex and weakly lower semi-continuous,
K i (x∗−i ) is weakly compact, thus the minimization problem admit
at least one solution.
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GN players’ QVI

Under assumptions c) and d) the minimization problem of each GN
player i ∈ N , can be formulated as the quasi-variational inequality:

∫ T

0

∑

p∈P i

Ψi
p(t, x

∗(t))(x i
p(t) − x∗i

p (t))dt ≥ 0,∀x i ∈ K (x∗−i ). (3)
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Remark

It is possible to consider a more complex model, where players’
competition is explicitly taken into account at the level of costs.
We introduce the perceived link costs c i

a(f (t)) of player i ∈ I
given by

c i
a(f (t)) =

{

c i
a(f (t)) if i ∈ W,

c i
a(f (t)) + f i

a (t)c i ′

a (f (t)) if i ∈ N .

We can choose

C i
p(t, x(t)) =

∑

a∈L

γapc
i
a(f (t)), p ∈ P i , i ∈ W,

Ψi
p(t, x(t)) =

∑

a∈L

γapc
i
a(f (t)), p ∈ P i , i ∈ N .
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Mixed network equilibrium

Definition

If the quasi-variational inequality problems for each player

∫ T

0

∑

p∈P i

C i
p(t, x∗(t))(x i

p(t) − x∗i
p (t))dt ≥ 0,∀x i ∈ K (x∗−i ),

∫ T

0

∑

p∈P i

Ψi
p(t, x

∗(t))(x i
p(t) − x∗i

p (t))dt ≥ 0,∀x i ∈ K (x∗−i ),

are solved simultaneously, then the solution is called a Mixed
Equilibrium.
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QVI formulation
The ME can be formulated as a single quasi-variational inequality.

E =
∏

i∈I

E i , K (x) =
∏

i∈I

K i (x−i ), with x = (x i ) ∈ E .

Theorem

x∗(t) ∈ K (x∗) is a ME iff ∀x(t) ∈ K (x∗) the QVI holds:

∫ T

0
〈F (t, x∗(t)), x(t) − x∗(t)〉dt

=
∑

i∈N

∫ T

0

∑

p∈P i

Ψi
p(t, x

∗(t))(x i
p(t) − x∗i

p (t))dt

+
∑

i∈W

∫ T

0

∑

p∈P i

C i
p(t, x

∗(t))(x i
p(t) − x∗i

p (t))dt ≥ 0.
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Existence of solutions

Theorem

Let us assume that a), b), d) and the following assumptions hold

e) ∃ν ∈ L2(0,T ), ν(t) ≥ 0 for a.e. t ∈ [0,T ]:

‖δ(t, x1) − δ(t, x2)‖ ≤ ν(t)‖x1 − x2‖, ∀x1, x2 ∈ R
n+w ;

f) Each component of Ψ(t, x), C (t, x) and δ(t, x) is convex in x

for a.e. t ∈ [0,T ] and upper semi-continuous with respect to
the weak topology in x ∈ E for a.e. t ∈ [0,T ].

Then quasi-variational inequality problem (4) admits a solution.
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Numerical example

P2

P3

P1 P4
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Numerical example
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Time horizon [0,T ] = [0, 1]

origin-destination pairs: (P1,P4) and (P4,P1)

travel demands respectively

δ1(t, x
∗(t)) = 10(1 − t) +

2

3
x∗
1 (t) + 1,

δ2(t, x
∗(t)) = 4(1 − t) +

1

2
x∗
4 (t) + 3.

O/D pair (P1,P4) is controlled by a GN player, O/D pair (P4,P1)
is controlled by a UE player.
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Cost functions

c1(f (t)) = 20 + f1(t), c2(f (t)) = 20 + f2(t), c3(f (t)) = 5 + 2f3(t),

c4(f (t)) = 20 + f4(t), c5(f (t)) = 5 + 2f5(6), c6(f (t)) = 5 + 2f6(t),

c7(f (t)) = 20 + f7(t).

J(x(t)) =
2
∑

p=1

xp(t)
7
∑

a=1

γapca(f (t)),

Cp(x(t)) =
7
∑

a=1

γapca(f (t)), p = 3, 4.
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QVI operator

FME (x(t)) =

(

Ψ(x(t))
C (x(t))

)

,

Ψ(x(t)) =

(
∑

a∈L γa1

(

ca(f (t)) + xa(t)
∂ca(f (t))

∂fa(t)

)

∑

a∈L γa2

(

ca(f (t)) + xa(t)
∂ca(f (t))

∂fa(t)

)

)

,

C (x(t)) =

(

C3(x(t))
C4(x(t))

)

.

FME
1 (x(t)) = 4x1(t) + 2x2(t) + 40,

FME
2 (x(t)) = 2x1(t) + 10x2(t) + 4x4(t) + 30,

FME
3 (x(t)) = 2x3(t) + x4(t) + 40,

FME
4 (x(t)) = 2x2(t) + x3(t) + 5x4(t) + 30.
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QVI formulation

Set of feasible flows:

K (x∗) =
{

x(t) ∈ L2(0, 1; R4) : xi(t) ≥ 0, i = 1, . . . , 4;

x1(t) + x2(t) = δ1(t, x
∗(t)), x3(t) + x4(t) = δ2(t, x

∗(t))

a.e. in [0,T ]
}

.

The ME is a solution to the quasi-variational inequality

∫ 1

0
〈FME (x∗

ME (t)), x(t) − x∗
ME (t)〉dt ≥ 0, ∀x(t) ∈ K (x∗). (4)
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Solutions

ME Solution

x∗
ME (t) =

(

−
888

55
t +

993

55
,−

254

55
t +

274

55
,−

252

55
t +

342

55
,
64

55
t +

86

55

)

SO Solution

x∗
SO(t) =

(

−
888

55
t +

933

55
,−

254

55
t +

294

55
,−

252

55
t +

377

55
,
64

55
t +

16

55

)
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Graphical illustration
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Parametric perturbations

Original problem:

(QVI ) 〈F (x∗), x − x∗〉 ≥ 0, ∀x ∈ K (x∗),

Suppose that F is perturbed by means of a parameter µ, whereas
the map δ is perturbed by a parameter λ. Given a pair (µ, λ) of
parameters around the initial value (µ̄, λ̄), the corresponding
parametric quasi-variational inequality QVI(µ,λ) is: Find
x∗(µ, λ) ∈ Kλ(x∗(µ, λ)) such that

(QVIµ,λ) 〈F (x∗(µ, λ), µ), x − x∗(µ, λ)〉 ≥ 0, ∀x ∈ Kλ(x∗(µ, λ)).

The above problem can be considered as a perturbed form of the
problem (QVI ), so that x̄∗ = x∗(µ̄, λ̄) is a solution to (QVIµ̄,λ̄).
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Assumptions

(h0) δ is Hölder continuous, i.e., for some L1,L2 > 0 and
ξ, ξ′ ∈]0, 1[, and ∀x∗, x ∈ X ,∀λ, λ′ ∈ V(λ̄)

|δλ(x∗) − δλ′(x)| ≤ L1‖λ − λ′‖ξ′ + L2|x
∗ − x |ξ ;

(h1) F is uniformly strongly monotone, i.e., for some m > 0,

〈F (x∗, µ)−F (x , µ), x∗−x〉 ≥ m|x∗−x |2, ∀x∗, x ∈ X , ∀µ ∈ V(µ̄);

(h2) for some b0 > 0, for all µ ∈ V(µ̄) and all x∗ ∈ X one has
|F (x∗, µ)| ≤ b0;

(h3) for some γ ∈]0, 1[ and c > 0, µ 7→ F (·, µ) is uniformly (in x∗)
(γ, c)-Hölder, i.e., for all x∗ ∈ X and all µ, µ′ ∈ V(µ̄),

|F (x∗, µ) − F (x∗, µ′)| ≤ c‖µ − µ′‖γ .



Introductory concepts Mixed behavior network equilibrium Existence results Sensitivity analysis

Analysis of constraints

Proposition

Assume that (h0) holds. Then, there exist k1, k2 > 0 such that
∀λ, λ′ ∈ V(λ̄), and ∀x∗, x ∈ E one has:

Kλ(x∗) ⊂ Kλ′(x) + (k1‖λ − λ′‖ξ′ + k2|x
∗ − x |ξ)B̄m, (5)

where B̄m denotes the unit closed ball in R
m.
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Hölder continuity of solutions

Theorem [Ait Mansour and S. 2008]

Assume that x̄∗ = x∗(µ̄, λ̄) is a solution to (QVI ) = (QVIµ̄,λ̄),

conditions (h0) − (h4) hold and m > 2bk
β
2 , where b = ( 2

δ0
)β−1b0

and β = 2
ξ
. Then, the solution x∗(µ, λ) to (QVIµ,λ) is unique in a

neighborhood X of the solution and verifies the following
condition: there exist c1, c2 > 0, d1, d2 ∈]0, 1[ such that

|x∗(µ, λ) − x∗(µ′, λ′)| ≤ c1‖µ − µ′‖d1 + c2‖λ − λ′‖d2 , (6)

for all µ, µ′ ∈ V(µ̄), λ, λ′ ∈ V(λ̄).
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