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Background

• Products today are produced in one part of the globe and then
transported not only to different regions but often even across
oceans to different continents in order to satisfy demanding
consumers.

• In addition, producers must compete and the reality today is that
transportation costs must be considered.

• Hence, economic trade has the structure of networks.

• Spatial price equilibrium models serve as the foundation for a
plethora of models for different commodities and applications.
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Spatial Price Equilibrium

In the spatial price equilibrium (SPE) problem, one seeks to
compute the commodity supply prices, demand prices, and
trade flows satisfying the equilibrium condition that the
demand price is equal to the supply price plus the cost of
transportation, if there is trade between the pair of supply
and demand markets; if the demand price is less than the
supply price plus the transportation cost, then there will be
no trade.
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Spatial Price Equilibrium

• Enke (1951) established the connection between spatial price
equilibrium problems and electronic circuit networks.

• Samuelson (1952) and Takayama and Judge (1964, 1971) showed
that the prices and commodity flows satisfying the spatial price
equilibrium conditions could be determined by solving an extremal
problem, in other words, a mathematical programming problem.

• There have been numerous advances since these fundamental
contributions, with many models making use of variational
inequalities.
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Spatial Price Equilibrium

Spatial price equilibrium models have been used to study
problems in:

• agriculture,

• energy markets,

• and mineral economics, as well as in finance.

We will study a variety of spatial price equilibrium models, along
with the fundamentals of the qualitative theory and computational
procedures.
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An SPE Application: Agriculture
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An SPE Application: Fuel
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Ecological Predator-Prey Networks Are Also Spatial Price
Equilibrium Problems
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Network Structure of Classical SPE Models
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Figure: Bipartite Network Structure of Classical SPE Models
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Spatial Price Equilibrium Models

The distinguishing characteristic of spatial price equilibrium (SPE)
models lies in their recognition of the importance of space and
transportation costs associated with shipping a commodity from a
supply market to a demand market.

These models are perfectly competitive partial equilibrium
models, in that one assumes that there are many producers
and consumers involved in the production and consumption,
respectively, of one or more commodities.

As noted in Takayama and Judge (1971) distinct model
formulations are needed, in particular, both quantity and
price formulations, depending upon the availability and
format of the data.
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Spatial Price Equilibrium Models as Precursors to Today’s
Supply Chains
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Quantity Formulation

In quantity versions of spatial price equilibrium models it is
assumed that the supply price functions and demand price
functions, which are a function of supplies and demands (that is,
quantities), respectively, are given.

First, a simple model is described and the variational inequality
formulation of the equilibrium conditions derived. Then it is shown
how this model can be generalized to multiple commodities.
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Quantity Formulation

Consider m supply markets and n demand markets involved in the
production / consumption of a commodity.

Denote a typical supply market by i and a typical demand market
by j .

Let si denote the supply of the commodity associated with supply
market i and let πi denote the supply price of the commodity
associated with supply market i .

Let dj denote the demand associated with demand market j and
let ρj denote the demand price associated with demand market j .
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Quantity Formulation

Group the supplies and supply prices, respectively, into a column
vector s ∈ Rm and a column vector π ∈ Rm. Similarly, group the
demands and the demand prices, respectively, into a column vector
d ∈ Rn and a column vector ρ ∈ Rn.

Let Qij denote the nonnegative commodity shipment between the
supply and demand market pair (i , j) and let cij denote the
nonnegative unit transaction cost associated with trading the
commodity between (i , j). Assume that the transaction cost
includes the cost of transportation; depending upon the
application, one may also include a tax/tariff, fee, duty, or subsidy
within this cost. Group then the commodity shipments into a
column vector Q ∈ Rmn and the transaction costs into a column
vector c ∈ Rmn.
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The Spatial Price Equilibrium Conditions

The market equilibrium conditions, assuming perfect competition,
take the following form: For all pairs of supply and demand
markets (i , j) : i = 1, . . . ,m; j = 1, . . . , n:

πi + cij

{
= ρj , if Q∗

ij > 0

≥ ρj , if Q∗
ij = 0.

(1)

This condition states that if there is trade between a market pair
(i , j), then the supply price at supply market i plus the transaction
cost between the pair of markets must be equal to the demand
price at demand market j in equilibrium; if the supply price plus
the transaction cost exceeds the demand price, then there will be
no shipment between the supply and demand market pair.

Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar



The Spatial Price Equilibrium Conditions

The following feasibility conditions must hold for every i and j :

si =
n∑

j=1

Qij (2)

and

dj =
m∑

i=1

Qij . (3)

K≡{(s,Q, d)|Q ≥ 0, and (2) and (3) hold}.
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Quantity Formulation

The supply price, demand price, and transaction cost structure is
now discussed. Assume that the supply price associated with any
supply market may depend upon the supply of the commodity at
every supply market, that is,

π = π(s) (4)

where π is a known smooth function.

Similarly, the demand price associated with a demand market may
depend upon, in general, the demand of the commodity at every
demand market, that is,

ρ = ρ(d) (5)

where ρ is a known smooth function.
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Quantity Formulation

The transaction cost between a pair of supply and demand markets
may, in general, depend upon the shipments of the commodity
between every pair of markets, that is,

c = c(Q) (6)

where c is a known smooth function.
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A Special Case

In the special case where the number of supply markets m is equal
to the number of demand markets n, the transaction cost functions
are assumed to be fixed, and the supply price functions and
demand price functions are symmetric, i.e., ∂πi

∂sk
= ∂πk

∂si
, for all

i = 1, . . . , n; k = 1, . . . , n, and
∂ρj

∂dl
= ∂ρl

∂dj
, for all j = 1, . . . , n;

l = 1, . . . , n, then the above model with supply price functions and
demand price functions collapses to a class of single commodity
models introduced in Takayama and Judge (1971) for which an
equivalent optimization formulation exists.
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Variational Inequality Formulation

We now present the variational inequality formulation of the
equilibrium conditions.

Theorem 1 (Variational Inequality Formulation of the
Quantity Model)
A commodity production, shipment, and consumption pattern
(s∗,Q∗, d∗)∈K is in equilibrium if and only if it satisfies the
variational inequality problem:

〈π(s∗), s − s∗〉+ 〈c(Q∗),Q − Q∗〉 − 〈ρ(d∗), d − d∗〉 ≥ 0,

∀(s,Q, d) ∈ K . (7)
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Variational Inequality Formulation

Proof: First it is shown that if (s∗,Q∗, d∗) ∈ K satisfies (1) then
it also satisfies (7).

Note that for a fixed market pair (i , j), one must have that

(πi (s
∗) + cij(Q

∗)− ρj(d
∗))× (Qij − Q∗

ij ) ≥ 0 (8)

for any nonnegative Qij . Indeed, if Q∗
ij > 0, then according to (1),

(πi (s
∗) + cij(Q

∗)− ρj(d
∗)) = 0 and (8) must hold. On the other

hand, if Q∗
ij = 0, then according to (1),

(πi (s
∗) + cij(Q

∗)− ρj(d
∗)) ≥ 0; and, consequently, (8) also holds.

But it follows that (8) will hold for all (i , j); hence, summing over
all market pairs, one has that

m∑
i=1

n∑
j=1

(πi (s
∗)+ cij(Q

∗)−ρj(d
∗))× (Qij −Q∗

ij ) ≥ 0, ∀Qij ≥ 0,∀i , j .

(9)
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Variational Inequality Formulation

Using now constraints (2) and (3), and some algebra, (9) yields

m∑
i=1

πi (s
∗)× (si − s∗i ) +

m∑
i=1

n∑
j=1

cij(Q
∗)× (Qij − Q∗

ij )

−
n∑

j=1

ρj(d
∗)× (dj − d∗j ) ≥ 0, ∀(s,Q, d) ∈ K , (10)

which, in vector notation, gives us (7).
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Variational Inequality Formulation

It is now shown that if (s∗,Q∗, d∗) ∈ K satisfies (7) then it also
satisfies equilibrium conditions (1).

For simplicity, utilize (7) expanded as (9). Let Qij = Q∗
ij , ∀ij 6= kl .

Then (9) simplifies to:

(πk(s∗) + ckl(Q
∗)− ρl(d

∗))× (Qkl − Q∗
kl) ≥ 0 (11)

from which (1) follows for this kl and, consequently, for every
market pair. �

Variational inequality (7) may be put into standard form by
defining the vector x ≡ (s,Q, d) ∈ Rm+mn+n and the vector
F (x)T ≡ (π(s), c(Q), ρ(d)) which maps Rm+mn+n into Rm+mn+n.
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Qualitative Properties

Theorem 2
F (x) as defined above is monotone, strictly monotone, or strongly
monotone if and only if π(s), c(Q), and ρ(d) are each monotone,
strictly monotone, or strongly monotone in s,Q, d, respectively.

Since the feasible set K is not compact, existence of an equilibrium
pattern (s∗,Q∗, d∗) does not immediately follow. Nevertheless, it
follows from standard VI theory that if π, c , and ρ are strongly
monotone, then existence and uniqueness of the equilibrium
production, shipment, and consumption pattern are guaranteed.
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An Example

The model is now illustrated with a simple example consisting of 2
supply markets and 2 demand markets.

Example 1

The supply price functions are:

π1(s) = 5s1 + s2 + 2 π2(s) = 2s2 + s1 + 3.

The transaction cost functions are:

c11(Q) = Q11 + .5Q12 + 1, c12(Q) = 2Q12 + Q22 + 1.5

c21(Q) = 3Q21 + 2Q11 + 15, c22(Q) = 2Q22 + Q12 + 10.

The demand price functions are:

ρ1(d) = −2d1 − d2 + 28.75, ρ2(d) = −4d2 − d1 + 41.
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An Example

The equilibrium production, shipment, and consumption pattern is
then given by:

s∗1 = 3, s∗2 = 2

Q∗
11 = 1.5, Q∗

12 = 1.5, Q∗
21 = 0, Q∗

22 = 2

d∗1 = 1.5, d∗2 = 3.5,

with equilibrium supply prices, costs, and demand prices:

π1 = 19, π2 = 10

c11 = 3.25, c12 = 6.5, c21 = 18, c22 = 15.5

ρ1 = 22.25, ρ2 = 25.5.

Note that supply market 2 does not ship to demand market 1.
This is due, in part, to the high fixed cost associated with trading
between this market pair.
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Relationship of the SPEP with the TNEP

The spatial price equilibrium problem can be reformulated as
a transportation network equilibrium problem over an
appropriately constructed abstract network or supernetwork.

By making such a transformation, we can then apply the
methodological tools developed for transportation networks to the
formulation, analysis, and computation of solutions to spatial price
equilibrium problems.

We will now establish how this is done (due to Dafermos and
Nagurney; see the book by Nagurney (1999) for more details).
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Construction of the Isomorphic Traffic Network Equilibrium
Problem
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Construction of the Isomorphic Traffic Network Equilibrium
Problem

The O/D pairs are:

w1 = (0, 1), ...,wn = (0, n).

The travel disutilities are:

λw1 = ρ1(d1), ..., λwn = ρn(dn).

The flow on a path pij = Qij .
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A Spatial Price Model on a General Network

Consider a spatial price equilibrium problem that takes place on a
general network. Markets at the nodes are denoted by i , j , etc.,
links are denoted by a, b, etc., paths connecting a pair of markets
by p, q, etc. Flows in the network are generated by a commodity.
Denote the set of nodes in the network by Z . Denote the set of H
links by L and the set of paths by P. Let Pij denote the set of
paths joining markets i and j .

The supply price vectors, supplies, and demand price vectors and
demands are defined as in the previous spatial price equilibrium
model.

The transportation cost associated with shipping the commodity
across link a is denoted by ca. Group the costs into a row vector
c ∈ RH . Denote the load on a link a by fa and group the link loads
into a column vector f ∈ RH .
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A Spatial Price Model on a General Network

Consider the general situation where the cost on a link may depend
upon the entire link load pattern, that is,

c = c(f ) (12)

where c is a known smooth function.

Furthermore, the commodity being transported on path p incurs a
transportation cost

Cp =
∑
a∈L

caδap, (13)

where δap = 1, if link a is contained in path p, and 0, otherwise,
that is, the cost on a path is equal to the sum of the costs on the
links comprising the path.
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A Spatial Price Model on a General Network

A flow pattern Q, where Q now, without any loss of generality,
denotes the vector of path flows, induces a link load f through the
equation

fa =
∑
p∈P

Qpδap. (14)

Conditions (2) and (3) become now, for each i and j :

si =
∑

j∈Z ,p∈Pij

Qp (15)

and
dj =

∑
i∈Z ,p∈Pij

Qp. (16)

Any nonnegative flow pattern Q is termed feasible. Let K denote
the closed convex set where

K ≡ {(s, f , d)| such that (14)−−(16) hold for Q ≥ 0}.
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Spatial Price Equilibrium on a General Network

Equilibrium conditions (1) now become in the framework of this
model: For every market pair (i , j), and every path p ∈ Pij :

πi + Cp(f
∗)

{
= ρj , if Q∗

p > 0
≥ ρj , if Q∗

p = 0.
(17)

In other words, a spatial price equilibrium is obtained if the supply
price at a supply market plus the cost of transportation is equal to
the demand price at the demand market, in the case of trade
between the pair of markets; if the supply price plus the cost of
transportation exceeds the demand price, then the commodity will
not be shipped between the pair of markets.

In this model, a path represents a sequence of trade or
transportation links; one may also append links to the
network to reflect steps in the production process. This model
was developed by Dafermos and Nagurney (1984).
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Variational Inequality Formulation

Now the variational inequality formulation of the equilibrium
conditions is established. In particular, we have:

Theorem 3 (Variational Inequality Formulation of the
Quantity Model on a General Network)
A commodity production, link load, and consumption pattern
(s∗, f ∗, d∗) ∈ K, induced by a feasible flow pattern Q∗, is a spatial
price equilibrium pattern if and only if it satisfies the variational
inequality:

〈π(s∗), s−s∗〉+〈c(f ∗), f −f ∗〉−〈ρ(d∗), d−d∗〉 ≥ 0, ∀(s, f , d) ∈ K .
(18)
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Variational Inequality Formulation

Proof: It is first established that a pattern (s∗, f ∗, d∗) ∈ K
induced by a feasible Q∗ and satisfying equilibrium conditions (17)
also satisfies the variational inequality (18).

For a fixed market pair (i , j), and a path p connecting (i , j) one
must have that

(πi (s
∗) + Cp(f

∗)− ρj(d
∗))× (Qp − Q∗

p) ≥ 0, (19)

for any Qp ≥ 0.

Summing now over all market pairs (i , j) and all paths p
connecting (i , j), one obtains∑

ij

∑
p∈Pij

(πi (s
∗) + Cp(f

∗)− ρj(d
∗))× (Qp − Q∗

p) ≥ 0. (20)
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Variational Inequality Formulation

Applying now (13)-(16) to (20), after some manipulations, yields∑
i

πi (s
∗)×(si −s∗i )+

∑
a

ca(f
∗)×(fa− f ∗a )−

∑
j

ρj(d
∗)×(dj−d∗j )

≥ 0, (21)

which, in vector notation, is variational inequality (18).
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Variational Inequality Formulation

To prove the converse, utilize (21) expanded as (20). Specifically,
set Qp = Q∗

p for all p 6= q, where q ∈ Pkl . Then (20) reduces to

(πk(s∗) + Cq(f
∗)− ρl(d

∗))× (Qq − Q∗
q) ≥ 0, (22)

which implies equilibrium conditions (17) for any market pair k, l .
The proof is complete. �

Note that if there is only a single path p joining a market pair (i , j)
and no paths in the network share links then this model collapses to
the spatial price model on a bipartite network depicted in Figure 1.
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Handling Multiple Commodities

Both the above models can be generalized to multiple
commodities. Let k denote a typical commodity and assume that
there are J commodities in total. Then equilibrium conditions (1)
would now take the form: For each commodity k; k = 1, . . . , J,
and for all pairs of markets (i , j); i = 1, . . . ,m; j = 1, . . . , n:

πk
i + ck

ij

{
= ρk

j , if Qk
ij
∗

> 0

≥ ρk
j , if Qk

ij
∗

= 0
(23)

where πk
i denotes the supply price of commodity k at supply

market i , ck
ij denotes the transaction cost associated with trading

commodity k between (i , j), ρk
j denotes the demand price of

commodity k at demand market j , and Qk
ij
∗

is the equilibrium flow
of commodity k between i and j .
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Handling Multiple Commodities

The conservation of flow equations (2) and (3) now become

sk
i =

n∑
j=1

Qk
ij (24)

and

dk
j =

m∑
i=1

Qk
ij (25)

where sk
i denotes the supply of commodity k at supply market i ,

dk
j denotes the demand for commodity k at demand market j , and

all Qk
ij are nonnegative.
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Handling Multiple Commodities

The variational inequality formulation of multicommodity spatial
price equilibrium conditions (23) will have the same structure as
the one governing the single commodity problem (cf. (7)), but now
the vectors increase in dimension by a factor of J to accommodate
all the commodities, that is, π ∈ RJm, s ∈ RJm, ρ ∈ RJn, d ∈ RJn,
and Q ∈ RJmn. The feasible set K now contains (s,Q, d) such
that (24) and (25) are satisfied. Note that the feasible set K can
be expressed as a Cartesian product of subsets, where each subset
corresponds to the constraints of the commodity.
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Optimization Reformulation in the Symmetric Case

If the supply price functions (4), demand price functions (5), and
the transaction cost functions (6) have symmetric Jacobians, and
the supply price and transaction cost functions are monotonically
nondecreasing, and the demand price functions are monotonically
nonincreasing, then the spatial price equilibrium supplies, flows,
and demands could be obtained by solving the convex optimization
problem:

Minimize
m∑

i=1

∫ si

0
πi (x)dx +

m∑
i=1

n∑
j=1

∫ Qij

0
cij(y)dy

−
n∑

j=1

∫ dj

0
ρj(z)dz (26)

subject to constraints (2) and (3) where Qij ≥ 0, for all i and j .
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Price Formulation

Now we consider spatial price equilibrium models in which
the supply and demand functions are available and are
functions, respectively, of the supply and demand prices.

First consider the bipartite model. Assume, that there are m
supply markets and n demand markets involved in the
production/consumption of a commodity.

Consider the situation where the supply at a supply market may
depend upon the supply prices at every supply market, that is,

s = s(π), (27)

where s is a known smooth function.

The demand at a demand market, in turn, may depend upon the
demand prices associated with the commodity at every demand
market, i.e.,

d = d(ρ) (28)

where d is a known smooth function.

The transaction costs are as in (6).
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Price Formulation

The equilibrium conditions (1) remain, but since the prices are now
to be computed, because they are no longer functions as
previously, but, rather, variables, one may write the conditions as:
For all pairs of markets (i , j): i = 1, . . . ,m; j = 1, . . . , n:

π∗i + cij

{
= ρ∗j , if Q∗

ij > 0

≥ ρ∗j , if Q∗
ij = 0,

(29)

to emphasize this point.
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Price Formulation

In view of the fact that one now has supply and demand functions,
feasibility conditions (2) and (3) are now written as, in equilibrium:

si (π
∗)

{
=

∑n
j=1 Q∗

ij , if π∗i > 0

≥
∑n

j=1 Q∗
ij , if π∗i = 0

(30)

and

dj(ρ
∗)

{
=

∑m
i=1 Q∗

ij , if ρ∗j > 0

≤
∑m

i=1 Q∗
ij , if ρ∗j = 0.

(31)
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Variational Inequality of the Price Formulation

Theorem 4 (Variational Inequality Formulation of the Price
Model)
The vector x∗ ≡ (π∗,Q∗, ρ∗) ∈ Rm

+ × Rmn
+ × Rn

+ is an equilibrium
price and shipment vector satisfying (29) – (31) if and only if it
satisfies the variational inequality

〈F (x∗), x − x∗〉 ≥ 0, ∀x ∈ Rm
+ × Rmn

+ × Rn
+ (32)

where F : Rmn+m+n
+ 7→ Rmn+m+n is the function defined by the

column vector
F (x) = (S(x),D(x),T (x)) (33)

where S : Rmn+m+n
+ 7→ Rm, T : Rmn+m+n

+ 7→ Rmn, and
D : Rmn+m+n

+ 7→ Rn are defined by:

Si = si (π)−
n∑

j=1

Qij Tij = πi + cij(Q)− ρj , Dj =
m∑

i=1

Qij − dj(ρ).

(34)
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Variational Inequality of the Price Formulation

Proof: Assume that x∗ = (π∗,Q∗, ρ∗) satisfies (29) – (31). We
will show, first, that x∗ must satisfy variational inequality (32).
Note that (29) implies that

(π∗i + cij(Q
∗)− ρ∗j )× (Qij − Q∗

ij ) ≥ 0, (35)

(30) implies that

(si (π
∗)−

n∑
j=1

Q∗
ij )× (πi − π∗i ) ≥ 0, (36)

and (31) implies that

(
m∑

i=1

Q∗
ij − dj(ρ

∗))× (ρj − ρ∗j ) ≥ 0. (37)
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Variational Inequality of the Price Formulation

Summing now (35) over all i , j , (36) over all i , and (37) over all j ,
one obtains

m∑
i=1

si (π
∗)−

n∑
j=1

Q∗
ij

× [πi − π∗i ] +
m∑

i=1

n∑
j=1

[
π∗i + cij(Q

∗)− ρ∗j
]

×
[
Qij − Q∗

ij

]
+

n∑
j=1

[
m∑

i=1

Q∗
ij − dj(ρ

∗)

]
×

[
ρj − ρ∗j

]
≥ 0, (38)

which is variational inequality (32).
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Variational Inequality of the Price Formulation

Now the converse is established. Assume that x∗ = (π∗,Q∗, ρ∗)
satisfies (32). We will show that it also satisfies conditions
(29)-(31). Indeed, fix market pair kl , and set π = π∗, ρ = ρ∗, and
Qij = Q∗

ij , for all ij 6= kl . Then variational inequality (32) reduces
to:

(π∗k + ckl(Q
∗)− ρ∗l )× (Qkl − Q∗

kl) ≥ 0, (39)

which implies that (29) must hold.

Now construct another feasible x as follows. Let Qij = Q∗
ij , for all

i , j , ρj = ρ∗j , for all j , and let πi = π∗i for all i 6= k. Then (32)
reduces to

(sk(π∗)−
n∑

j=1

Q∗
kj)× (πk − π∗k) ≥ 0, (40)

from which (30) follows.
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Variational Inequality of the Price Formulation

A similar construction on the demand price side yields

(
m∑

i=1

Q∗
il − dl(ρ

∗))× (ρl − ρ∗l ) ≥ 0, (41)

from which one can conclude (31).
The proof is complete. �
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The Price Model

We emphasize that, unlike the quantity model, the Jacobian matrix[
∂F
∂x

]
for the price model can never be symmetric, and, hence, (29)

– (31) can never be cast into an equivalent convex minimization
problem.

Recall that, strict monotonicity will guarantee uniqueness, provided
that a solution exists. An existence condition is now presented that
is weaker than coercivity or strong monotonicity.
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Qualitative Properties

Theorem 5
Assume that s, d, and c are continuous functions. Variational
inequality (32) has a solution if and only if there exist positive
constants r1, r2, and r3, such that the variational inequality

〈F (x̄), x − x̄〉 ≥ 0, ∀x ∈ Kr (42)

where

Kr = {

 π
Q
ρ

 ∈ Rmn+m+n|π ≤ r1,Q ≤ r2, ρ ≤ r3} (43)

has a solution x̄ =

 π̄
Q̄
ρ̄

 with the property: π̄ < r1, Q̄ < r2,

ρ̄ < r3, componentwise. Furthermore, such an x̄ is a solution to
variational inequality (32).
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Qualitative Properties

Under the following conditions it is possible to construct r1, r2, and
r3 large enough so that the solution to the restricted variational
inequality (43) will satisfy the boundedness condition with r1, r2,
and r3, and, thus, existence of an equilibrium will follow.

Theorem 6 (Existence)
If there exist µ,M, and N > 0, µ < N, such that

si (π) > nM for anyπ with πi ≥ N, ∀i ,

cij(Q) > µ ∀i , j ,Q,

dj(ρ) < M, for any ρ with ρj ≥ µ, and ∀i ,

then there exists an equilibrium point.
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Sensitivity Analysis

Consider the network model governed by variational inequality (7)
and subject to changes in the supply price functions, demand price
functions, and transaction cost functions. In particular, change the
supply price functions from π(·) to π∗(·), the demand price
functions from ρ(·) to ρ∗(·), and the transaction cost functions
from c(·) to c∗(·); what can be said about the corresponding
equilibrium patterns (s,Q, d) and (s∗,Q∗, d∗)?
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Sensitivity Analysis

The following strong monotonicity condition is imposed on π(·),
c(·), and ρ(·):

〈π(s1)− π(s2), s1 − s2〉+ 〈c(Q1)− c(Q2),Q1 − Q2〉

−〈ρ(d1)−ρ(d2), d1−d2〉 ≥ α(‖s1−s2‖2+‖Q1−Q2‖2+‖d1−d2‖2),
(44)

for all (s1,Q1, d1), (s2,Q2, d2) ∈ K , where K was defined for this
model earlier, and α is a positive constant.
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Sensitivity Analysis

A sufficient condition for (44) to hold is that for all
(s1,Q1, d1) ∈ K , (s2,Q2, d2) ∈ K ,

〈π(s1)− π(s2), s1 − s2〉 ≥ β‖s1 − s2‖2

〈c(Q1)− c(Q2),Q1 − Q2〉 ≥ γ‖Q1 − Q2‖2

−〈ρ(d1)− ρ(d2), d1 − d2〉 ≥ δ‖d1 − d2‖2, (45)

where β > 0, γ > 0, and δ > 0.

The following theorem establishes that small changes in the supply
price, demand price, and transaction cost functions induce small
changes in the supplies, demands, and commodity shipment
pattern.
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Sensitivity Analysis

Theorem 7
Let α be the positive constant in the definition of strong
monotonicity. Then

‖((s∗ − s), (Q∗ − Q), (d∗ − d))‖

≤ 1

α
‖((π∗(s∗)− π(s∗)), (c∗(Q∗)− c(Q∗)),−(ρ∗(d∗)− ρ(d∗)))‖.

(46)

Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar



Sensitivity Analysis

Proof: The vectors (s,Q, d), (s∗,Q∗, d∗) must satisfy,
respectively, the variational inequalities

〈π(s), s ′−s〉+〈c(Q),Q ′−Q〉−〈ρ(d), d ′−d〉 ≥ 0, ∀(s ′,Q ′, d ′) ∈ K
(47)

and

〈π∗(s∗), s ′ − s∗〉+ 〈c∗(Q∗),Q ′ − Q∗〉 − 〈ρ∗(d∗), d ′ − d∗〉 ≥ 0,

∀(s ′,Q ′, d ′) ∈ K . (48)
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Sensitivity Analysis

Writing (47) for s ′ = s∗, Q ′ = Q∗, d ′ = d∗, and (48) for s ′ = s,
Q ′ = Q, d ′ = d , and adding the two resulting inequalities, one
obtains

〈π∗(s∗)− π(s), s − s∗〉+ 〈c∗(Q∗)− c(Q),Q − Q∗〉

−〈ρ∗(d∗)− ρ(d), d − d∗〉 ≥ 0 (49)

or
〈π∗(s∗)− π(s∗) + π(s∗)− π(s), s − s∗〉

+〈c∗(Q∗)− c(Q∗) + c(Q∗)− c(Q),Q − Q∗〉

−〈ρ∗(d∗)− ρ(d∗) + ρ(d∗)− ρ(d), d − d∗〉 ≥ 0. (50)
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Sensitivity Analysis

Using now the monotonicity condition (44), (50) yields

〈π∗(s∗)− π(s∗), s − s∗〉+ 〈c∗(Q∗)− c(Q∗),Q − Q∗〉

−〈ρ∗(d∗)− ρ(d∗), d − d∗〉

≥ 〈π(s∗)− π(s), s∗ − s〉+ 〈c(Q∗)− c(Q),Q∗ − Q〉

−〈ρ(d∗)− ρ(d), d∗ − d〉

≥ α(‖s∗ − s‖2 + ‖Q∗ − Q‖2 + ‖d∗ − d‖2). (51)

Applying the Schwarz inequality to the left-hand side of (51) yields

‖((π∗(s∗)− π(s∗)), (c∗(Q∗)− c(Q∗)),−(ρ∗(d∗)− ρ(d∗)))‖

‖((s−s∗), (Q−Q∗), (d−d∗))‖ ≥ α‖((s−s∗), (Q−Q∗), (d−d∗))‖2

(52)
from which (46) follows, and the proof is complete. �
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Sensitivity Analysis

The problem of how changes in the supply price, demand price,
and transaction cost functions affect the direction of the change in
the equilibrium supply, demand, and shipment pattern, and the
incurred supply prices, demand prices, and transaction costs is now
addressed.

Theorem 8
Consider the spatial price equilibrium problem with two supply
price functions π(·), π∗(·), two demand price functions ρ(·), ρ∗(·),
and two transaction cost functions c(·), c∗(·). Let (s,Q, d) and
(s∗,Q∗, d∗) be the corresponding equilibrium supply, shipment,
and demand patterns.
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Sensitivity Analysis

Then

m∑
i=1

[π∗i (s
∗)− πi (s)]× [s∗i − si ] +

m∑
i=1

n∑
j=1

[
c∗ij (Q

∗)− cij(Q)
]

×
[
Q∗

ij − Qij

]
−

n∑
j=1

[
ρ∗j (d

∗)− ρj(d)
]
×

[
d∗j − dj

]
≤ 0 (53)

and

m∑
i=1

[π∗i (s
∗)− πi (s

∗)]× [s∗i − si ] +
m∑

i=1

n∑
j=1

[
c∗ij (Q

∗)− cij(Q
∗)

]

×
[
Q∗

ij − Qij

]
−

n∑
j=1

[
ρ∗j (d

∗)− ρj(d
∗)

]
×

[
d∗j − dj

]
≤ 0. (54)
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Sensitivity Analysis

Proof: The above inequalities have been established in the course
of proving the preceding theorem.

The following corollary establishes the direction of a change of the
equilibrium supply at a particular supply market and the incurred
supply price, subject to a specific change in the network.
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Sensitivity Analysis

Corollary 1
Assume that the supply price at supply market i is increased
(decreased), while all other supply price functions remain fixed,
that is, π∗i (s

′) ≥ πi (s
′), (π∗i (s

′) ≤ πi (s
′)) for some i, and s ′ ∈ K,

and π∗j (s
′) = πj(s

′) for all j 6= i , s ′ ∈ K. Assume also that
∂πj (s

′)
∂si

= 0, for all j 6= i . If we fix the demand functions for all
markets, that is, ρ∗j (d

′) = ρj(d
′), for all j , and d ′ ∈ K, and the

transaction cost functions, that is, c∗ij (Q
′) = cij(Q

′), for all i , j , and
Q ′ ∈ K, then the supply at supply market i cannot increase
(decrease) and the incurred supply price cannot decrease
(increase), i.e., s∗i ≤ si (s∗i ≥ si ), and π∗i (s

∗) ≥ πi (s)
(πi (s

∗) ≤ πi (s)).

One can also obtain similar corollaries for changes in the
demand price functions at a fixed demand market, and
changes in the transaction cost functions, respectively, under
analogous conditions.
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Policy Interventions

Now policy interventions are incorporated directly into both
quantity and price formulations of spatial price equilibrium models
within the variational inequality framework. First, a quantity model
with price controls is presented, and then a price model with both
price controls and trade restrictions.
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Policy Interventions

The notation for the bipartite network model is retained, but now,
introduce ui to denote the nonnegative possible excess supply at
supply market i and vj the nonnegative possible excess demand at
demand market j . Group then the excess supplies into a column
vector u in Rm and the excess demands into a column vector v in
Rn.

The following equations must now hold:

si =
n∑

j=1

Qij + ui , i = 1, . . . ,m (55)

and

dj =
m∑

i=1

Qij + vj , j = 1, . . . , n. (56)

Let K 1 = {(s, d ,Q, u, v)|Q ≥ 0, u ≥ 0, v ≥ 0, and (55), (56) hold}.
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Policy Interventions

Assume that there is a fixed minimum supply price πi for each
supply market i and a fixed maximum demand price ρ̄j at each
demand market j . Thus πi represents the price floor imposed upon
the producers at supply market i , whereas ρ̄j represents the price
ceiling imposed at the demand market j . Group the supply price
floors into a column vector π in Rm and the demand price ceilings
into a column vector ρ̄ in Rn. Also, define the vector π̃ in Rmn

consisting of m vectors, where the i-th vector, {π̃i}, consists of n
components {πi}. Similarly, define the vector ρ̃ in Rmn consisting
of m vectors {ρ̃j} in Rn with components {ρ1, ρ2, . . . , ρn}.
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Disequilibrium with Policy Interventions

The economic market conditions for the above model, assuming
perfect competition, take the following form: For all pairs of supply
and demand markets (i , j); i = 1, . . . ,m; j = 1, . . . , n :

πi + cij

{
= ρj , if Q∗

ij > 0

≥ ρj , if Q∗
ij = 0

(57)

πi

{
= πi , if u∗i > 0
≥ πi , if u∗i = 0

(58)

ρj

{
= ρ̄j , if v∗j > 0

≤ ρ̄j , if v∗j = 0.
(59)

Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar



An Example

Example 2
The supply price functions are:

π1(s) = 2s1 + s2 + 5, π2(s) = s2 + 10.

The transportation cost functions are:

c11(Q) = 5Q11 + Q21 + 9, c21(Q) = 3Q21 + 2Q11 + 19.

The demand price function is:

ρ1(d) = −d1 + 80.

The supply price floors are:

π1 = 21 π2 = 16.

The demand price ceiling is:

ρ̄1 = 60.
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An Example

The production, shipment, consumption, and excess supply and
demand pattern satisfying conditions (57)–(59) is:

s∗1 = 5, s∗2 = 6, Q∗
11 = 5, Q∗

21 = 5, d∗1 = 20,

u∗1 = 0, u∗2 = 1, v∗1 = 10,

with induced supply prices, transaction costs, and demand prices:

π1 = 21, π2 = 16, c11 = 39 c21 = 44, ρ1 = 60.
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An Example

Define now the vectors π̂ = π ∈ Rm, and ρ̂ = ρ ∈ Rn. In view of
conditions (55) and (56), one can express π̂ and ρ̂ in the following
manner:

π̂ = π̂(Q, u) and ρ̂ = ρ̂(Q, v). (60)

Also define the vector ˜̂π ∈ Rmn consisting of m vectors, where the
i-th vector, { ˜̂

iπ}, consists of n components {π̂i} and the vector
˜̂ρ ∈ Rmn consisting of m vectors { ˜̂

jρ} ∈ Rn with components
{ρ̂1, ρ̂2, . . . , ρ̂n}.
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Variational Inequality Formulation

The above system (57), (58), and (59) can be formulated as a
variational inequality problem, as follows.

Theorem 11 (Variational Inequality Formulation of the
Quantity Model with Price Floors and Ceilings)
A pattern of total supplies, total demands, and commodity
shipments, and excess supplies and excess demands
(s∗, d∗,Q∗, u∗, v∗) ∈ K 1 satisfies inequalities (57), (58), and (59)
governing the disequilibrium market problem if and only if it
satisfies the variational inequality

〈π(s∗), s − s∗〉 − 〈π, u − u∗〉+ 〈c(Q∗),Q − Q∗〉

−〈ρ(d∗), d − d∗〉+ 〈ρ̄, v − v∗〉 ≥ 0, ∀(s, d ,Q, u, v) ∈ K 1 (61)
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Variational Inequality Formulation

or, equivalently, the variational inequality

〈˜̂π(Q∗, u∗) + c(Q∗)− ˜̂ρ(Q∗, v∗),Q − Q∗〉

+〈π̂(Q∗, u∗)− π, u − u∗〉+ 〈ρ̄− ρ̂(Q∗, v∗), v − v∗〉 ≥ 0,

∀(Q, u, v) ∈ K 2 ≡ Rmn
+ × Rm

+ × Rn
+. (62)
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Variational Inequality Formulation

Proof: Assume that a vector (s∗, d∗,Q∗, u∗, v∗) ∈ K 1 satisfies
(57), (58), and (59). Then for each pair (i , j), and any Qij ≥ 0:

(πi (s
∗) + cij(Q

∗)− ρj(d
∗))× (Qij − Q∗

ij ) ≥ 0. (63)

Summing over all pairs (i , j), one has that

〈π̃(s∗) + c(Q∗)− ρ̃(d∗),Q − Q∗〉 ≥ 0. (64)
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Variational Inequality Formulation

Using similar arguments yields

〈(π(s∗)− π), u − u∗〉 ≥ 0 and 〈(ρ̄− ρ(d∗)), v − v∗〉 ≥ 0. (65)

Summing then the inequalities (64) and (65), one obtains

〈π̃(s∗) + c(Q∗)− ρ̃(d∗),Q − Q∗〉+ 〈π(s∗)− π, u − u∗〉

+〈ρ̄− ρ(d∗), v − v∗〉 ≥ 0, (66)

which, after the incorporation of the feasibility constraints (55) and
(56), yields (61).
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Variational Inequality Formulation

Also, by definition of π̂ and ρ̂, one concludes that if (Q∗, u∗, v∗)
∈K 2 satisfies (57), (58), and (59), then

〈˜̂π(Q∗, u∗) + c(Q∗)− ˜̂ρ(Q∗, v∗),Q − Q∗〉

+〈π̂(Q∗, u∗)− π, u − u∗〉+ 〈(ρ̄− ρ̂(Q∗, v∗)), v − v∗〉 ≥ 0. (67)
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Variational Inequality Formulation

Assume now that variational inequality (61) holds. Let u = u∗ and
v = v∗. Then

〈π̃(s∗) + c(Q∗)− ρ̃(d∗),Q − Q∗〉 ≥ 0, (68)

which, in turn, implies that (57) holds. Similar arguments
demonstrate that (58) and (59) also then hold.

By definition, the same inequalities can be established when
utilizing the functions π̂(Q, u) and ρ̂(Q, v). �
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Qualitative Properties

First, the existence conditions are given.

Denote the row vector F (Q, u, v) by

F (Q, u, v) ≡ (˜̂π(Q, u) + c(Q)− ˜̂ρ(Q, v), π̂(Q, u)− π, ρ̄− ρ̂(Q, v)).
(69)

Theorem 12 (Existence Under Coercivity)
Assume that the function F (Q, u, v) is coercive, that is, there
exists a point (Q0, u0, v0) ∈ K 2, such that

lim
‖(Q,u,v)‖→∞

〈F (Q, u, v)− F (Q0, u0, v0),

 Q − Q0

u − u0

v − v0

〉
‖(Q − Q0, u − u0, v − v0)‖

= ∞,

(70)
∀(Q, u, v) ∈ K 2.

Then variational inequality (62) admits at least one solution or,
equivalently, a disequilibrium solution exists.
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Qualitative Properties

One of the sufficient conditions ensuring (70) in Theorem 12 is
that the function F (Q, u, v) is strongly monotone, that is, the
following inequality holds:

〈F (Q1, u1, v1)− F (Q2, u2, v2),

 Q1

u1

v1

−

 Q2

u2

v2

〉

≥ α‖

 Q1 − Q2

u1 − u2

v1 − v2

 ‖2, (71)

∀(Q1, u1, v1), (Q2, u2, v2) ∈ K 2,

where α is a positive constant.

Under condition (71) uniqueness of the solution pattern (Q, u, v) is
guaranteed.
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Qualitative Properties

Through the subsequent lemmas, it is shown that strong
monotonicity of F (Q, u, v) is equivalent to the strong monotonicity
of the transaction cost c(Q), the supply price π(s), and the
demand price ρ(d) functions, which is a commonly imposed
condition in the study of the spatial price equilibrium problem.

Lemma 1
Let (Q, s, d) be a vector associated with (Q, u, v) ∈ K 2 via (55)
and (56). There exist positive constants m1 and m2 such that:

‖(Q, u, v)T‖2
Rmn+m+n ≤ m1‖(Q, s, d)T‖2

Rmn+m+n (72)

and
‖(Q, s, d)T‖2

Rmn+m+n ≤ m2‖(Q, u, v)T‖2
Rmn+m+n (73)

where ‖.‖Rk denotes the norm in the space Rk .
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Qualitative Properties

Lemma 2
F (Q, u, v) is a strongly monotone function of (Q, u, v) if and only
if π(s), c(Q), and −ρ(d) are strongly monotone functions of s,Q,
and d, respectively.

At this point, we state the following:

Proposition 1 (Existence and Uniqueness Under Strong
Monotonicity)
Assume that π(s), c(Q), and −ρ(d) are strongly monotone
functions of s,Q, and d, respectively. Then there exists precisely
one disequilibrium point (Q∗, u∗, v∗) ∈ K 2.
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Qualitative Properties

Lemma 3
F (Q, u, v) is strictly monotone if and only if π(s), c(Q), and
−ρ(d) are strictly monotone functions of s,Q, and d, respectively.

It is now clear that the following statement is true:

Theorem 13 (Uniqueness Under Strict Monotonicity)
Assume that π(s), c(Q), and −ρ(d) are strictly monotone in s,Q,
and d, respectively. Then the disequilibrium solution
(Q∗, u∗, v∗) ∈ K 2 is unique, if one exists.

By further observation, one can see that if π(s) and −ρ(d) are
monotone, then the disequilibrium commodity shipment Q∗ is
unique, provided that c(Q) is a strictly monotone function of Q.
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Qualitative Properties

Existence and uniqueness of a disequilibrium solution (Q∗, u∗, v∗),
therefore, crucially depend on the strong (strict) monotonicity of
the functions c(Q), π(s), and −ρ(d). If the Jacobian matrix of the
transaction cost function c(Q) is positive-definite (strongly
positive-definite), that is,

xT∇c(Q)x > 0 ∀x ∈ Rmn, Q ∈ K1, x 6= 0 (74)

xT∇c(Q)x ≥ α‖x‖2, α > 0, ∀x ∈ Rmn, Q ∈ K1, (75)

then the function c(Q) is strictly (strongly) monotone.
Monotonicity of c(Q) is not economically unreasonable, since the
transaction cost cij from supply market i to demand market j can
be expected to depend mainly upon the shipment Qij which implies
that the Jacobian matrix ∇c(Q) is diagonally dominant; hence,
∇c(Q) is positive definite.
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Qualitative Properties

Next, the economic meaning of monotonicity of the supply price
function π(s) and the demand price function ρ(d) is explored.

Lemma 4
Suppose that f : D 7→ V is continuously differentiable on set D.
Let f −1 : V 7→ D be the inverse function of f , where D and V are
subsets of Rk . ∇f (x) is positive definite for all x ∈ D if and only if
∇(f −1(y)) is positive definite for all y ∈ V .
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Qualitative Properties

Proof: Since ∇f (x) is positive definite, we have that

wT∇f (x)w > 0 ∀w ∈ Rk , x ∈ D, w 6= 0. (76)

It is well-known that

∇(f −1) = (∇f )−1. (77)

(76) can be written as:

wT (∇f )T (∇f )−1(∇f )w > 0, ∀w ∈ Rk , x ∈ D,w 6= 0. (78)

Letting z = ∇f · w in (78) and using (77) yields

zT∇(f −1(y))z > 0, ∀z ∈ Rk , z 6= 0, y ∈ V . (79)

Thus, ∇(f −1(y)) is positive definite. Observing that each step of
the proof is convertible, one can easily prove the converse part of
the lemma. �
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Qualitative Properties

Denote the inverse of the supply price function π(s) by π−1 and
the inverse of the demand price function ρ(d) by ρ−1. Then

s = π−1(π), d = ρ−1(ρ). (80)

By virtue of Lemma 4, π(s) is a strictly (strongly) monotone
function of s, provided that ∇πs(π) is positive-definite (strongly
positive-definite) for all π ∈ Rm

+ . Similarly, −ρ(d) is a strictly
(strongly) monotone function of d provided that −∇ρd(ρ) is
positive-definite (strongly positive-definite) for all ρ ∈ Rn

+.
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Qualitative Properties

In reality, the supply si is mainly affected by the supply price πi , for
each supply market i ; i = 1, . . . ,m, and the demand dj is mainly
affected by the demand price ρj for each demand market
j ; j = 1, . . . , n. Thus, in most cases, one can expect the matrices
∇πs(π) and −∇ρd(ρ) to be positive-definite (strongly
positive-definite).
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Summary

We provided an overview of spatial price equilibrium models,
describing both classical ones on bipartite networks, with and
without optimization reformulations. We emphasized the need for
both quantity models and price version models.

We also discussed spatial price equilibrium models on general
networks.

Furthermore, policies, in the form of price floors and ceilings, were
also captured.

Variational inequality formulations were analyzed qualitatively, as
well.

There have been numerous algorithms applied to compute
solutions to SPE problems, some of which can be found in the
references that follow. The most effective ones exploit the
underlying network structure.
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