
Topic 3: Traffic Network Equilibrium

Professor Anna Nagurney

John F. Smith Memorial Professor
and

Director – Virtual Center for Supernetworks
Isenberg School of Management

University of Massachusetts
Amherst, Massachusetts 01003

SCH-MGMT 825
Management Science Seminar

Variational Inequalities, Networks, and Game Theory
Spring 2016
c©Anna Nagurney 2016

Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar



Traffic Network Equilibrium

The problem of users of a congested transportation network
seeking to determine their travel paths of minimal cost from origins
to their respective destinations is a classical network equilibrium
problem.

It appears as early as 1920 in the work of Pigou, who considered a
two-node, two-link (or path) transportation network, and was
further developed by Knight (1924).
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Traffic Network Equilibrium

The problem has an interpretation as an economic equilibrium
problem where the demand side corresponds to potential travelers,
or consumers, of the network, whereas the supply side is
represented by the network itself, with prices corresponding to
travel costs.

The equilibrium occurs when the number of trips between an
origin and a destination equals the travel demand given by
the market price, that is, the travel time for the trips.
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Wardrop’s Principles of Traffic

Wardrop (1952) stated the traffic equilibrium conditions through
two principles:

First Principle: The journey times of all routes actually used are
equal, and less than those which would be experienced by a single
vehicle on any unused route.

Second Principle: The average journey time is minimal.

The first principle is referred to as user-optimization whereas the
second is referred to as system-optimization.
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Traffic Network Equilibrium

Beckmann, McGuire, and Winsten (1956) were the first to
rigorously formulate these conditions mathematically, as had
Samuelson (1952) in the framework of spatial price equilibrium
problems in which there were, however, no congestion effects.

In particular, Beckmann, McGuire, and Winsten (1956) established
the equivalence between the equilibrium conditions and the
Kuhn-Tucker conditions of an appropriately constructed
optimization problem, under a symmetry assumption on the
underlying functions. Hence, in this case, the equilibrium link and
path flows could be obtained as the solution of a mathematical
programming problem.
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Celebrating to 50th anniversary of the publication of Studies in
the Economics of Transportation, by Beckann, McGuire, and
Winsten at the INFORMS San Francisco meeting on November 14,
2005.
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Traffic Network Equilibrium Models - Multimodal

Consider now a transportation network. Let a, b, c , etc., denote
the links; p, q, etc., the paths. Assume that there are J O/D pairs,
with a typical O/D pair denoted by w , and k modes of
transportation on the network with typical modes denoted by i , j ,
etc. G denotes the graph G = [N, L], where N is the set of nodes
and L the set of links. P denotes the set of paths.
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The Link Cost Structure

The flow on a link a generated by mode i is denoted by f i
a , and the

user cost associated with traveling by mode i on link a is denoted
by c i

a. Group the link flows into a column vector f ∈ RknL , where
nL is the number of links in the network. Group the link costs into
a row vector c ∈ RknL . Assume now that the user cost on a link
and a particular mode may, in general, depend upon the flows of
every mode on every link in the network, that is,

c = c(f ), (1)

where c is a known smooth function.
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The Travel Demands and O/D Pair Travel Disutilities

The travel demand of potential users of mode i traveling between
O/D pair w is denoted by d i

w and the travel disutility associated
with traveling between this O/D pair using the mode is denoted by
λi

w . Group the demands into a vector d ∈ RkJ and the travel
disutilities into a vector λ ∈ RkJ .

The flow on path p due to mode i is denoted by x i
p. Group the

path flows into a column vector x ∈ RknP , where nP denotes the
number of paths in the network.
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Conservation of Flow Equations

The conservation of flows equations are as follows. The demand
for a mode and O/D pair must be equal to the sum of the flows of
the mode on the paths joining the O/D pair, that is,

d i
w =

∑
p∈Pw

x i
p, ∀i ,w (2)

where Pw denotes the set of paths connecting w .

A nonnegative path flow vector x which satisfies (2) is termed
feasible. Moreover, we must have that

f i
a =

∑
p∈P

x i
pδap, (3)

that is, that the flow on a link from a mode is equal to the sum of
the flows of that mode on all paths that contain that link.
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Traffic Network Equilibrium Condition - Elastic Demand

A user traveling on path p using mode i incurs a user (or personal)
travel cost C i

p satisfying

C i
p =

∑
a∈L

c i
aδap, (4)

in other words, the cost on a path p due to mode i is equal to the
sum of the link costs of links comprising that path and using that
mode.

Definition 1 (Traffic Network Equilibrium)
A flow and demand pattern (f ∗, d∗) compatible with (2) and (3)

is an equilibrium pattern if, once established, no user has any
incentive to alter his/her travel arrangements. This state is
characterized by the following equilibrium conditions, which must
hold for every mode i , every O/D pair w, and every path p ∈ Pw :

C i
p

{
= λi

w , if x i
p
∗
> 0

≥ λi
w , if x i

p
∗

= 0
(5)

where λi
w is the equilibrium travel disutility associated with the

O/D pair w and mode i .
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The Elastic Demand Model with Disutility Functions

Assume that there exist travel disutility functions, such that

λ = λ(d), (6)

where λ is a known smooth function. That is, let the travel
disutility associated with a mode and an O/D pair depend, in
general, upon the entire demand pattern.

Let K denote the feasible set defined by

K = {(f , d) |∃ x ≥ 0 | (2) , (3) hold}. (7)

The variational inequality formulation of the equilibrium conditions
(5) is given in the next theorem. Assume that λ is a row vector
and d is a column vector.
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Theorem 1 (Variational Inequality Formulation)
A pair of vectors (f ∗, d∗) ∈ K is an equilibrium pattern if and only
if it satisfies the variational inequality problem

c(f ∗) · (f − f ∗)− λ(d∗) · (d − d∗) ≥ 0, ∀(f , d) ∈ K . (8)

Proof: Note that equilibrium conditions (5) imply that[
C i

p(f
∗)− λi

w (d∗)
]
×

[
x i
p − x i

p
∗] ≥ 0, (9)

for any nonnegative x i
p. Indeed, if x i

p
∗
> 0, then[

C i
p(f

∗)− λi
w (d∗)

]
= 0,

and (9) holds; whereas, if x i
p
∗

= 0, then[
C i

p(f
∗)− λi

w (d∗)
]
≥ 0,

and since x i
p ≥ 0, (9) also holds.
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Observe that (9) holds for each path p ∈ Pw ; hence, one may write∑
p∈Pw

[
C i

p(f
∗)− λi

w (d∗)
]
×

[
x i
p − x i

p
∗] ≥ 0, (10)

and, in view of constraint (2), (10) may be rewritten as:∑
p∈Pw

C i
p(f

∗)× (x i
p − x i

p
∗
)− λi

w (d∗)× (d i
w − d i

w
∗
) ≥ 0. (11)

But (11) holds for each mode i and every O/D pair w , hence, one
obtains:∑

i ,w

C i
p(f

∗)× (x i
p − x i

p
∗
)−

∑
i ,w

λw (d∗)× (d i
w − d i

w
∗
) ≥ 0. (12)

In view of (3) and (4), (12) is equivalent to: For (f ∗, d∗) ∈ K ,
induced by a feasible x∗:∑

i ,a

c i
a(f

∗)× (f i
a − f i

a
∗
)−

∑
i ,w

λi
w (d∗)× (d i

w − d i
w
∗
) ≥ 0,

∀(f , d) ∈ K , (13)

which, in vector form, yields (8).
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We now establish that (f ∗, d∗) ∈ K , induced by a feasible x∗ and
satisfying variational inequality (8) (i.e., (12)), also satisfies
equilibrium conditions (5). Fix any mode i , and any path p that
joins an O/D pair w . Construct a feasible flow x such that

x j
q = x j

q
∗

(j , q) 6= (i , p), but x i
p 6= x i

p
∗
. Then d j

v
∗

= d j
v ,

(j , v) 6= (i ,w), but d i
w = d i

w
∗
+ x i

p − x i
p
∗
. Upon substitution into

(12) one obtains

C i
p(f

∗)× (x i
p − x i

p
∗
)− λi

w (d∗)× (d i
w − d i

w
∗
) ≥ 0. (14)

Now, if x i
p
∗
> 0, one may select x i

p such that x i
p > x i

p
∗

or x i
p < x i

p
∗
,

and, consequently, (14) will hold only if
[
C i

p(f
∗)− λi

w (d∗)
]

= 0.

On the other hand, if x i
p
∗

= 0, then x i
p ≥ x i

p
∗
, so that (13) yields

C i
p(f

∗) ≥ λi
w (d∗),

and the proof is complete.
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Qualitative Properties of the Model

Observe that in the above model the feasible set is not compact.
Therefore, a condition such as strong monotonicity would
guarantee both existence and uniqueness of the equilibrium pattern
(f ∗, d∗); in other words, if one has that[

c(f 1)− c(f 2)
]
·
[
f 2 − f 2

]
−

[
λ(d1)− λ(d2)

]
·
[
d1 − d2

]
≥ α(‖f 1 − f 2‖2 − ‖d1 − d2‖2), ∀(f 1, d1), (f 2, d2) ∈ K , (15)

where α > 0 is a constant, then there is only one equilibrium
pattern.
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Qualitative Properties of the Model

Condition (15) implies that the user cost function on a link due to
a particular mode should depend primarily upon the flow of that
mode on that link; similarly, the travel disutility associated with a
mode and an O/D pair should depend primarily on that mode and
that O/D pair. The link cost functions should be monotonically
increasing functions of the flow and the travel disutility functions
monotonically decreasing functions of the demand.
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The Elastic Demand Model with Demand Functions

We assume that there exist travel demand functions, such that

d = d(λ) (16)

where d is a known smooth function. Assume here that d is a row
vector. In this case, the variational inequality formulation of
equilibrium conditions (5) is given in the subsequent theorem,
whose proof appears in Dafermos and Nagurney (1984a).

Theorem 2 (Variational Inequality Formulation)
Let M denote the feasible set defined by

M = {(f , d , λ)|λ ≥ 0,∃ x ≥ 0 | (2), (3) hold}. (17)

The vector X ∗ = (f ∗, d∗, λ∗) ∈M is an equilibrium pattern if and
only if it satisfies the variational inequality problem:

F (X ∗) · (X − X ∗) ≥ 0, ∀X ∈M, (18)

where F : M 7→ Rk(nL+2J) is the function defined by

F (f , d , λ) = (c(f ),−λT , d − d(λ)). (19)
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Qualitative Properties of the Model

To obtain existence one could impose either a strong monotonicity
condition or coercivity condition on the functions c and d .

However, strong monotonicity (or coercivity), although reasonable
for c , may not be a reasonable assumption for d . The following
theorem provides a condition under which the existence of a
solution to variational inequality (18) is guaranteed under a weaker
condition.

Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar



Qualitative Properties of the Model

Theorem 3 (Existence)
Let c and d be given continuous functions with the following
properties: There exist positive numbers k1 and k2 such that

c i
a(f ) ≥ k1, ∀a, i and f ∈M (20)

and
d i
w (λ) < k2, ∀w , λ with λi

w ≥ k2. (21)

Then (18) has at least one solution.
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Qualitative Properties of the Model

As in the model with known travel disutility functions, the
difficulty of showing existence of a solution for variational
inequality (18) is that the feasible set is unbounded.

This difficulty can be circumvented as follows. Observe that due to
the special structure of the problem, no equilibrium may exist with
very large travel demands because such demands would contradict
assumption (21), in view of (16).

A bounded vector d , in turn, would imply that f is also bounded.
This would then imply that c(f ) is bounded and, therefore, λ is
bounded by virtue of (5) and (1). Consequently, one expects that
imposing constants of the type d ≤ η and λ ≤ V , for η and V
sufficiently large, will not affect the set of solutions of (18), while
rendering the set compact. We now present a proof through the
subsequent two lemmas.
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Qualitative Properties of the Model

First, fix
V >

∑
f i
b≤k2J

max c i
a(f ) (22)

and consider the compact, convex set

L = {(f , d , λ)| 0 ≤ λ ≤ V ; 0 ≤ d ≤ k2; ∃x ≥ 0| (2), (3) hold}.
(23)

Consider the variational inequality problem:

Determine X ∗ ∈ L, such that

F (X ∗) · (y − X ∗) ≥ 0, ∀y ∈ L. (24)

Since F is continuous and L is compact, there exists at least one
solution, say, X ∗ = (f ∗, d∗, λ∗) to (24). The claim is that X ∗ is
actually a solution to the original variational inequality (18).
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Qualitative Properties of the Model

Lemma 1
If X ∗ = (f ∗, d∗, λ∗) is any solution of variational inequality (24),
then

d i
w
∗
< k2, ∀i ,w (25)

λi
w
∗
< V , ∀i ,w . (26)

Lemma 2
Let X ∗ = (f ∗, d∗, λ∗) be a solution of variational inequality (24).
Suppose that

d i
w
∗
< k2, ∀w , i (27)

λi
w
∗
< V , ∀w , i . (28)

Then X ∗ is a solution to the original variational inequality (18).
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Qualitative Properties of the Model

Using similar arguments one may establish existence conditions for
the model in which travel disutility functions are assumed given,
that is, one has the following result.

Theorem 4 (Existence)
Let c and λ be given continuous functions with the following
properties: There exist positive numbers k1 and k2 such that

c i
a(f ) ≥ k1, ∀a, i and f ∈ K

and
λi

w (d) < k1, ∀w , i and d with d i
w ≥ k2.

Then variational inequality (8) has at least one solution.
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The Fixed Demand Model

We now present the fixed demand model is presented is this
section. Specifically, it is assumed that the demand d i

w is now fixed
and known for all modes i and all origin/destination pairs w . In
this case, the feasible set K would be defined by

K = {f | ∃ x ≥ 0 | (2), (3) hold}. (29)

The variational inequality governing equilibrium conditions (5) for
this model would be given as in the subsequent theorem. Smith
(1979) stated the traffic equilibrium conditions thus whereas
Dafermos (1980) identified the formulation as being that of a
finite-dimensional variational inequality problem.
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The Fixed Demand Model

Theorem 5 (Variational Inequality Formulation)
A vector f ∗ ∈ K, is an equilibrium pattern if and only if it satisfies
the variational inequality problem

c(f ∗) · (f − f ∗) ≥ 0, ∀f ∈ K . (30)
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Qualitative Properties

Existence of an equilibrium f ∗ follows from the standard theory of
variational inequalities solely from the assumption that c is
continuous, since the feasible set K is now compact.

In the special case where the symmetry condition[
∂c i

a

∂f j
b

=
∂c j

b

∂f i
a

]
, ∀i , j ; a, b

holds, then the variational inequality problem (30) is equivalent to
solving the optimization problem:

Minimizef ∈K

∑
a,i

∫ f i
a

0
c i
a(x)dx . (31)
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Qualitative Properties

This symmetry assumption, however, is not expected to hold in
most applications, and thus the variational inequality problem
which is the more general problem formulation is needed.

For example, the symmetry condition essentially says that the flow
on link b due to mode j should affect the cost of mode i on link a
in the same manner that the flow of mode i on link a affects the
cost on link b and mode j . In the case of a single mode problem,
the symmetry condition would imply that the cost on link a is
affected by the flow on link b in the same manner as the cost on
link b is affected by the flow on link a.
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Variations of the Model

In the above framework, with the appropriate construction of the
representative network, one can also handle the following
situations.

Situation 1: Users of the network have predetermined origins, but
are free to select their destinations as well as their travel paths.

Situation 2: Users of the network have predetermined
destinations, but they are free to select their origins as well as their
travel paths.

Situation 3: Users of the network are free to select their origins,
their destinations, as well as their travel paths.
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Variations of the Model

The above situations lead, respectively, to the following network
equilibrium problems.

Problem 1: The total number O i
u of trips produced in each origin

node u by each mode (or class) i is given. Determine the O/D
travel demands and the equilibrium flow pattern.

Problem 2: The total number D i
v of trips attracted to each

destination node v by each mode i is given. Determine the O/D
travel demands and the equilibrium flow pattern.

Problem 3: The total number T i of trips generated in all origin
nodes by all modes i of the network are given, which is equal to
the total number of trips attracted to all destinations by each
mode. Determine the trip productions O i

u, the trip attractions D i
v ,

the O/D travel demands, and the equilibrium flow pattern.
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Comments

Here, of course, travel cost should be interpreted liberally. Above
we assume that each user of the network, subject to the
constraints, chooses his/her origin, and/or destination, and path,
so as to minimize his/her travel cost given that all other users have
made their choices.

The additional factors of attractiveness of the origins and the
destinations are taken into account by being incorporated into the
model as “travel costs” by a modification of the network through
the addition of artificial links with travel cost representing
attractiveness.
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Comments

For example, in Problem 1, we can modify the original network by
adding artificial nodes ψi , for each mode i , and joining every
destination node v of the original network with ψi by an artificial
link (v , ψi ). We assume that the travel cost over the artificial links
is zero.

It is easy to verify that in computing the equilibrium flows
according to equilibrium conditions (5) on the expanded network,
one can recover the equilibrium flows for the original network. One
can make analogous constructions for Problems 2 and 3.
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Stability and Sensitivity Analysis

In 1968, Braess presented an example in which the addition of a
new link to a network, which resulted in a new path, actually made
all the travelers in the network worse off in that the travel cost of
all the users was increased. This example, which came to be
known as Braess’s paradox, generated much interest in addressing
questions of stability and sensitivity of traffic network equilibria.
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Professor Braess’s visit to UMass, Spring 2006

http://supernet.isenberg.umass.edu/cfoto/braess-visit/braessvisit.html
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The Braess Paradox

The Braess Paradox Illustrates Why

Capturing the Behavior of Users on Networks

is Essential
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The Braess (1968) Paradox

Assume a network with a single
O/D pair w1 = (1, 4). There are
2 paths available to travelers:
p1 = (a, c) and p2 = (b, d).

For a travel demand dw of 6, the
U-O / equilibrium path flows are:
x∗p1

= x∗p2
= 3 and

the U-O / equilibrium path
travel costs are:
Cp1 = Cp2 = 83.
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ca(fa) = 10fa, cb(fb) = fb + 50,

cc(fc) = fc +50, cd(fd) = 10fd .
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Adding a Link Increases Travel Cost for All!

Adding a new link e creates a
new path p3 = (a, e, d). The user
link cost on e is: ce(fe) = fe + 10
and dw1 remains at 6.
The original flow distribution
pattern is no longer a U-O
pattern, since, at that level of
flow, the cost on path
p3,Cp3 = 70.

The new U-O flow pattern is
x∗p1

= x∗p2
= x∗p3

= 2.
The U-O path travel costs are
now: Cp1 = Cp2 = Cp3 = 92.

The travel cost has increased
for all from 83 to 92!
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Under S-O behavior, the total cost in the
network is minimized, and the new route p3,
under the same demand of 6, would not be
used.

The Braess paradox never occurs in S-O
networks and only in U-O networks!
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The Braess Paradox Around the World

1969 - Stuttgart, Germany -
The traffic worsened until a
newly built road was closed.

1990 - Earth Day - New York
City - 42nd Street was closed
and traffic flow improved.

2002 - Seoul, Korea - A 6 lane
road built over the
Cheonggyecheon River that
carried 160,000 cars per day and
was perpetually jammed was torn
down to improve traffic flow.
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The Closing of Broadway in NYC to Traffic from 42nd to
47th Streets in 2009 Until Now

In May 2009, Mayor Bloomberg’s administration
implemented the closing of Broadway from 42nd Street
(Times Square) to 47th Street to traffic and the creation of
pedestrian plazas. This closure generated much discussion and
was the subject of, among others, the World Science Festival
Traffic panel in NYC in June 2009.

World Science Festival Traffic panel in NYC in June 2009
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Interview on Broadway for America Revealed on March 15,
2011

http://video.pbs.org/video/2192347741/
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Recall the Braess network with the added link e.

What happens as the demand increases?
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The U-O Solution of the Braess Network with Added Link (Path)
and Time-Varying Demands Solved as an Evolutionary Variational
Inequality (Nagurney, Daniele, and Parkes (2007)).
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In Demand Regime I, Only the New Path is Used.
In Demand Regime II, the travel demand lies in the range [2.58,
8.89], and the Addition of a New Link (Path) Makes
Everyone Worse Off!
In Demand Regime III, when the travel demand exceeds 8.89, Only
the Original Paths are Used!
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The new path is never used, under U-O
behavior, when the demand exceeds 8.89,
even out to infinity!

Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar



Basic Sensitivity Analysis

Note:

The addition of a new path on a network may: increase,
decrease, or leave unchanged the equilibrium (U-O) travel
path costs.

In the case of S-O solution, the addition of a new path can
never increase the total system cost in the network.

Hence, from the system point of view, the network is
“improved” or at least not worsened.
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Basic Sensitivity Analysis

Question:

Can you design a new path connecting O/D pair w1 in the
original Braess paradox network so that the travelers can
never be worse off, from a U-O perspective?
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Basic Sensitivity Analysis

What can we say about the effect on users’, that is,
travelers’, costs with respect to:

� an increase in travel demand?

� a decrease in travel demand?

� an increase in the link cost function?

� a decrease in the link cost function?

Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar



Stability Results for the Models

We now present the stability results for the models.

Theorem 6
Assume that the strong monotonicity condition (15) is satisfied by
the traffic network equilibrium model with known inverse demand
functions with constant α. Let (f , d) denote the solution to
variational inequality (18) and let (f ∗, d∗) denote the solution to
the perturbed variational inequality where we denote the
perturbations of c and λ by c∗ and λ∗, respectively. Then

‖((f ∗ − f ), (d − d∗))‖ ≤ 1

α
‖((c∗(f ∗)− c(f ∗)), (λ∗(d∗)− λ(d∗)))‖.

(32)
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Stability Results for the Models

Theorem 7
Assume that c(f ) is strongly monotone with constant ᾱ and that f
satisfies variational inequality (30). Let f ∗ denote the solution to
the perturbed variational inequality with perturbed cost vector c∗.
Then

‖f ∗ − f ‖ ≤ 1

ᾱ
‖c∗(f ∗)− c(f ∗)‖. (33)
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Stability Results for the Models

In order to attempt to further illuminate paradoxical phenomena in
transportation networks, the sensitivity analysis results are
presented for the fixed demand model.

Theorem 8
Assume that f ∈ K satisfies variational inequality (30) and that
f ∗ ∈ K is the solution to the perturbed variational inequality with
perturbed cost vector c∗. Then

[c∗(f ∗)− c(f )] · [f ∗ − f ] ≤ 0. (34)

Inequality (34) may be interpreted as follows: Although an
improvement in the cost structure of a network may result in an
increase of some of the incurred costs and a decrease in some of
the flows, a certain total average cost in the network may be
viewed as nonincreasing.
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Toll Policies

We now describe how tolls, either in the form of path tolls or link
tolls, can be imposed in order to make the system-optimizing
solution also user-optimizing. Tolls serve as a mechanism for
modifying the travel cost as perceived by the individual
travelers. We shall show that in the path-toll collection policy
there is a degree of freedom that is not available in the link-toll
collection policy and how one can take advantage of this added
degree of freedom. The analysis is conducted for the traffic
network equilibrium model with fixed travel demands.
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Toll Policies

Recall that the system-optimizing flow pattern is one that
minimizes the total travel cost over the entire network, whereas the
user-optimized flow pattern has the property that no user has any
incentive to make a unilateral decision to alter his/her travel path.

One would expect the former pattern to be established when a
central authority dictates the paths to be selected, so as to
minimize the total cost in the system, and the latter, when
travelers are free to select their routes of travel so as to minimize
their individual travel cost.

The latter solution, however, results in a higher total system cost
and, in a sense, is an underutilization of the transportation
network. In order to remedy this situation tolls can be applied with
the recognition that imposing tolls will not change the travel cost
as perceived by society since tolls are not lost.
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Toll Policies

In particular, in this section it shall be shown how tolls can be
collected on a link basis, that is, every member of a class (or
mode) on a link will be charged the same toll, irrespective of origin
or final destination, or on a path basis, in which every member of a
class traveling from an origin to a destination on a particular path
will be charged the same toll.

In the link-toll collection policy a toll r i
a is associated with each link

a and mode i . In the path-toll collection policy a toll r i
p is

associated with each path p and mode i .

Of course, even in the link-toll collection policy one may define a
“path toll” for class i through the expression

r i
p =

∑
a∈L

r i
aδap. (35)
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Toll Policies

Observe that after the imposition of tolls the travel cost as
perceived by society remains c i

a(f ), for all links a and all modes i .
The travel cost as perceived by the individual, however, is modified
to

C̄ i
p = C i

p(f ) + r i
p, ∀p, i . (36)

Consequently, a system-optimizing flow pattern is still defined as
before, that is, it is one that solves the problem

Minimizef ∈K

∑
a,i

ĉ i
a(f ) (37)

where ĉ i
a(f ) = c i

a(f )× f i
a .
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Toll Policies

In particular, the solution to (37), under the assumption that each
ĉ i
a(f ) is convex, is equivalent to the following statement: For every

O/D pair w , and every mode i , there exists an ordering of the
paths p ∈ Pw , such that

Ĉ i ′
p1

(f ) = . . . = Ĉ i ′
psi

(f ) = µi
w ≤ Ĉ i ′

psi+1
(f ) ≤ . . . ≤ Ĉ i ′

pmw
(38)

x i
pri
> 0, ri = 1, . . . , si

x i
pri

= 0, ri = si+1, . . . ,mw ,

where mw denotes the number of paths for O/D pair w . Here we
use the notation

Ĉ i ′
p =

∑
j

∑
a,b

∂ĉb
j(f )

∂f i
a

δap. (39)

Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar



Toll Policies

On the other hand, in view of equilibrium conditions (5) one can
deduce that the system-optimizing flow pattern x , after the
imposition of a toll policy, is at the same time user-optimizing if:
For every O/D pair w , every path p ∈ Pw , and every mode i :

C̄ i
p1

(f ) = . . . = C̄ i
psi

(f ) = λ̄i
w ≤ C̄ i

psi +1
(f ) ≤ . . . ≤ C̄ i

pmw
(f ) (40)

x i
pri
> 0, ri = 1, . . . , si

x i
pri

= 0, ri = si+1, . . . ,mw .
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Toll Policies

We now state:

Proposition 1
A toll-collection policy renders a system-optimizing flow pattern
user-optimizing if and only if for each mode i , and O/D pair w

r i
p1

= λ̄i
w − C̄ i

p1
(f )

...
... (41)

r i
psi

= λ̄i
w − C̄ i

psi
(f )

r i
psi+1

≥ λ̄i
w − C̄ 1

psi+1
(f )

...
...

r i
pmw

≥ λ̄i
w − C̄ i

pmw
(f ). (42)
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Toll Policies

Proof: It is clear that if (38) and (40) are satisfied for the same
flow pattern x , then (41) and (42) follow. Conversely, if (41) and
(42) are satisfied, then any f that satisfies (38) also satisfies (40).

We now turn to the determination of the link-toll and the path-toll
collection policies.

Solution of the Link-Toll Collection Policy
Using (35), (36), and (41) and (42), one reaches the conclusion
that the link toll collection policy is determined by

r i
a =

∑
j ,b

∂ĉ j
b(f )

∂f i
a

− c i
a(f ) (43)

where both the first and the second terms on the righthand side of
expression (43) are evaluated at the system-optimizing solution f .
Usually the link toll pattern constructed above will be the only
solution of the link-toll collection problem. There are, however,
simple networks in which there may be alternatives.
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Toll Policies

Hence, to determine an appropriate toll policy, one first must
compute the system-optimizing solution.

This can be accomplished using a general-purpose convex
programming algorithm, an appropriate nonlinear network code, or,
in the case of separable linear user cost functions, an equilibration
algorithm. Once the system-optimizing solution is established, one
then substitutes that flow pattern f into equation (43) to compute
the link toll r i

a for all links a and all modes (or classes) i .
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Solution of the Path-Toll Collection Policy

It is obvious from (41) and (42) that one may construct an infinite
number of solutions of the path-toll collection problem. For
example, one may select, a priori, for each class w , the level of
personal travel cost λ̄i

w , as well as the values of r i
psi+1

, . . . , r i
pmw

,

subject to only constraint (42), and then determine a path toll
pattern according to (41). Hence, in this case there is some
flexibility in selecting a toll pattern, and one can incorporate
additional objectives. Certain possibilities are:
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Solution of the Path-Toll Collection Policy

(i) One may wish to ensure that some, if not all, classes of
travelers are charged with a nonnegative toll; in other words, no
subsidization is allowed for these classes. This can be accomplished
by choosing the corresponding λ̄i

w sufficiently large.

(ii) Suppose one wishes a “fair” policy. A possible one would be to
ensure that the level of personal travel cost λ̄i

w is equal to the
personal travel cost λi

w before the imposition of tolls.
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An Example

Consider the network depicted the figure in which there are three
nodes: 1, 2, 3; three links: a,b,c; and a single O/D pair
w1 = (1, 3). Let path p1 = (a, c) and path p2 = (b, c).

j

j

j

1

2

3
?

a b

c

R	

Figure: A link-toll policy example

Assume, for simplicity, the user cost functions:

ca(fa) = fa + 5 cb(fb) = 2fb + 10 cc(fc) = fc + 15,

and the travel demand:
dw1 = 100.
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An Example

We now turn to the computation of the link toll policy. It is easy
to verify that the system-optimizing solution is:

xp1 = 67.5 xp2 = 32.5,

with associated link flow pattern:

fa = 67.5 fb = 32.5 fc = 100,

and with marginal path costs:

Ĉ ′
p1

= Ĉ ′
p2

= 355.

The link toll policy that renders this system-optimizing flow
pattern also user-optimized is given by:

ra = 67.5 rb = 65 rc = 100,

with the induced user costs C̄p1 = C̄p2 = 355.
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Computation of Traffic Network Equilibria

We now focus on the computation of traffic network equilibrium
problems. In particular, the elastic, multimodal model with known
travel disutility functions is considered. The fixed demand model
can be viewed as a special case, and the algorithms that will be
described here can be readily adapted for the solution of this
model as well. Specifically, both the projection method and the
relaxation method are presented for this problem domain.
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Computation of Traffic Network Equilibria

Assume that the strong monotonicity condition (15) is satisfied.

The Projection Method

Step 0: Initialization

Select an initial feasible flow and demand pattern (f 0, d0)∈K .
Also, select symmetric, positive definite matrices G and −M,
where G is an knL × knL matrix and −M is an kJ × kJ matrix.
Select ρ such that

0 < ρ < min

[
2α

η
,
2α

µ

]
,

where α is constant in the strong monotonicity condition, and η
and µ are the maximum over K of the maximum of the positive
definite symmetric matrices[

∂c

∂f

]T

G−1

[
∂c

∂f

]
and

[
∂λ

∂d

]T

M−1

[
∂λ

∂d

]
.

Set t := 1.
Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar



Computation of Traffic Network Equilibria

Step 1: Construction and Computation

Construct
ht−1 = ρc(f t−1)− Gf t−1 (44)

and
T t−1 = ρλ(d t−1)−Md t−1. (45)

Compute the unique user-optimized traffic pattern (f t , d t)
corresponding to travel cost and disutility functions of the special
form:

c̃t−1(f ) = Gf + ht−1 (46)

and
λ̃t−1(d) = Md + T t−1. (47)

Step 2: Convergence Verification

If |f t − f t−1| ≤ ε and if |d t − d t−1| ≤ ε with ε > 0, a prespecified
tolerance, stop; otherwise, set t := t + 1, and go to Step 1.
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Computation of Traffic Network Equilibria

Possibilities for the selection of the matrices G and −M are any
diagonal positive definite matrices of appropriate dimensions. One
could also set G and M to the diagonal parts of the Jacobian
matrices

[
∂c
∂f

]
and

[
∂λ
∂d

]
, evaluated at the initial feasible flow

pattern.

Observe that if one selects diagonal matrices then the above
subproblems are decoupled by mode of transportation and each
subproblem can be allocated to a distinct processor for
computation.
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Computation of Traffic Network Equilibria

Observe that the projection method constructs a series of
symmetric user-optimized problems in which the link user cost
functions and the travel disutility functions are linear. Hence, each
of these subproblems can be converted into a quadratic
programming problem. Moreover, the subproblems can be solved
using equilibration algorithms.
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Computation of Traffic Network Equilibria

Theorem 9
Assume that the strong monotonicity condition (15) holds and
that ρ is constructed as above. Then, for any (f 0, d0) ∈ K, the
projection method converges to the solution (f ∗, d∗) of variational
inequality (8).
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Computation of Traffic Network Equilibria

The relaxation method for the same model is now presented.

The Relaxation Method

Step 0: Initialization

Select an initial feasible traffic pattern (f 0, d0) ∈ K . Set t := 1.

Step 1: Construction and Computation

Construct new user cost functions:

ĉ(i) = c(i)(f
t−1
(1) , . . . , f t−1

(i−1), fi , f
t−1
(i+1), . . . , f

t−1
(nL)

) (48)

for each mode i , where the subscript i denotes the vector of terms
corresponding to mode i .
Construct new travel disutility functions:

λ̂(i) = λ(i)(d
t−1
(1) , . . . , d

t−1
(i−1), di , d

t−1
(i+1), . . . , d

t−1
(k) ) (49)

for each mode i .
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Computation of Traffic Network Equilibria

Compute the solution to the user-optimized problem with the
above travel cost and travel disutility functions for each mode i .

Step 2: Convergence Verification
Same as in Step 2 above in the Projection Method.

Observe that the subproblem encountered at each iteration of the
relaxation method will, in general, be a nonlinear problem.
Moreover, the above algorithm yields k decoupled subproblems,
each of which can also be solved on a distinct processor.
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Computation of Traffic Network Equilibria

We assume that the variational inequality corresponding to the
equilibrium problem with user cost functions (48) and travel
disutility functions (49) has a unique solution, which can be
computed by a certain algorithm.

Theorem 10
Assume that the functions ĉ(i), λ̂(i); i = 1, . . . , k, satisfy the
monotonicity property:[

ĉ(i)(f
′
(1), . . . , f(i), . . . , f

′
(n))− ĉ(i)(f

′
(1), . . . , f̄(i), . . . , f

′
(n))

]
·
[
f(i) − f̄(i)

]
−

[
λ̂(i)(d

′
(1), . . . , d(i), . . . , d

′
(n))− λ̂(i)(d

′
(1), . . . , d̄(i), . . . , d

′
(n))

]
·
[
d(i) − d̄(i)

]
(50)

≥ α1‖f(i) − f̄(i)‖2 + α2‖d(i) − d̄(i)‖2,

∀(f(i), d(i)), (f̄(i), d̄(i)), (f
′
(i), d

′
(i)) ∈ K ,

where α1, α2 are positive constants.Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar



Computation of Traffic Network Equilibria

Also, if there exists a constant γ; 0 < γ < 1, such that

sup{
∑

i ,j ;i 6=j

‖
∂ĉ(i)

∂f(j)
‖2}

1
2 ≤ γα1 (51)

sup{
∑

i ,j ;i 6=j

‖
∂λ̂(i)

∂d(j)
‖2}

1
2 ≤ γα2 (52)

for all (f(i), d(i)) ∈ K, then there is a unique solution (f ∗(i), d
∗
(i));

i = 1, . . . , n, to variational inequality (8), and for an arbitrary
(f 0

(i), d
0
(i)) ∈ K; i = 1, . . . , n; (f k

(i), d
k
(i))→(f ∗(i), d

∗
(i)); i = 1, . . . , n, as

k →∞, where (f ∗, d∗) satisfies variational inequality (8).
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Computation of Traffic Network Equilibria

In the case of a single-modal problem, the user cost functions (48)
would be separable, that is,

ĉa = ca(f
t−1
1 , . . . , fa, f

t−1
a+1 , . . . , f

t−1
nL

), ∀a (53)

and the travel disutility functions would also be separable, that is,

λ̂w = λw (d t−1
1 , . . . , dw , d

t−1
w , . . . , d t−1

J ), ∀w , (54)

in which case the variational inequality problem at Step 1 would
have an equivalent optimization reformulation given by

Minimize
∑
a∈L

∫ fa

0
ĉa(x)dx −

∑
w

∫ dw

0
λ̂w (y)dy (55)

subject to (f , d) ∈ K .

Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar



Computation of Traffic Network Equilibria

The projection method and the relaxation method may also
be used to compute the solution to the fixed demand model.

In this case, only the user cost functions at each iteration would
need to be constructed. Results of numerical testing of these
algorithms can be found in Nagurney (1984, 1986). See also
Mahmassani and Mouskos (1988).
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Summary

Here we have provided variational inequality formulations of both
elastic demand and fixed demand traffic network equilibrium
problems.

We emphasized the importance of capturing the behavior of users
on congested networks from transportation to the Internet.

In addition, we discussed the Braess paradox, which continues to
fascinate to this day!

Both qualitative analysis results were given along with
computational procedures.

In addition the imposition of policies, in the form of tolls, were
described.

Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar



References

Aashtiani, H. Z., and Magnanti, T. L., “Equilibria on a congested
transportation network,” SIAM Journal on Algebraic and Discrete
Methods 2 (1981) 213-226.

Aashtiani, H. Z., and Magnanti, T. L., “A linearization and
decomposition algorithm for computing urban traffic equilibria,” in
Proceedings of the IEEE Large Scale Systems Symposium,
pp. 8-19, 1982.

Beckmann, M., McGuire, C. B., and Winsten, C. B., Studies in
the Economics of Transportation, Yale University Press, New
Haven, Connecticut, 1956.

Bergendorff, P. Hearn, D. W., and Ramana, M. V., “Congestion
Toll Pricing of Traffic Networks,” in Network Optimization,
Lecture Notes in Economics and Mathematical Systems 450, pp.
51-71, P. M. Pardalos, D, W. Hearn, and W. W. Hager, editors,
Springer-Verlag, Berlin, Germany, 1997.

Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar



References

Bertsekas, D. P., and Gafni, E. M., “Projection methods for
variational inequalities with application to the traffic assignment
problem,” Mathematical Programming 17 (1982) 139-159.

Bertsekas, D. P., and Gallager, R., Data Networks, second
edition, Prentice - Hall, Englewood Cliffs, New Jersey, 1992.

Boyce, D. E., “Urban transportation network-equilibrium and
design models: recent achievements and future prospects,”
Environment and Planning 16A (1984) 1445-1474.

Braess, D., “Uber ein paradoxon der
verkehrsplanung,”Unternehmenforschung 12 (1968) 258-268.

Braess, D., Nagurney A., and Wakolbinger, T., “On a paradox of
traffic planning. Translation from the original German,”
Transportation Science 39 (2005) 446-450.

Dafermos, S. C., “Toll patterns for multiclass-user transportation
networks,” Transportation Science 7 (1973) 211-223.

Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar



References

Dafermos, S., “Integrated equilibrium flow models for
transportation planning,” in Traffic Equilibrium Methods,
Lecture Notes in Economics and Mathematical Systems 118, pp.
106-118, M. A. Florian, editor, Springer-Verlag, New York, 1976.

Dafermos, S., “Traffic equilibrium and variational inequalities,”
Transportation Science 14 (1980) 42-54.

Dafermos, S., “The general multimodal network equilibrium
problem with elastic demand,” Networks 12 (1982a) 57-72.

Dafermos, S., “Relaxation algorithms for the general asymmetric
traffic equilibrium problem,” Transportation Science 16 (1982b)
231-240.

Dafermos, S., “Equilibria on nonlinear networks,” LCDS # 86-1,
Lefschetz Center for Dynamical Systems, Brown University,
Providence, Rhode Island, 1986.

Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar



References

Dafermos, S., and Nagurney, A., “On some traffic equilibrium
theory paradoxes,” Transportation Research 18B (1984a) 101-110.

Dafermos, S., and Nagurney, A., “Stability and sensitivity analysis
for the general network equilibrium-travel choice model,” in
Proceedings of the 9th International Symposium on
Transportation and Traffic Theory, pp. 217-234, J. Volmuller
and R. Hamerslag, editors, VNU Science Press, Utrecht, The
Netherlands, 1984b.

Dafermos, S., and Nagurney, A., “Sensitivity analysis for the
asymmetric network equilibrium problem,” Mathematical
Programming 28 (1984c) 174-184.

Dafermos, S. C., and Sparrow, F. T., “The traffic assignment
problem for a general network,” Journal of Research of the
National Bureau of Standards 73B (1969) 91-118.

Dupuis, P., and Nagurney, A., “Dynamical systems and variational
inequalities,” Annals of Operations Research 44 (1993) 9-42.

Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar



References

Florian, M. (1977), “A traffic equilibrium model of travel by car
and public transit modes,” Transportation Science 8 (1977)
166-179.

Florian, M., and Spiess, H., “The convergence of diagonalization
algorithms for asymmetric network equilibrium problems,”
Transportation Research 16B (1982) 477-483.

Frank, M., “Obtaining network cost(s) from one link’s output,”
Transportation Science 26 (1992) 27-35.

Friesz, T. L., “Transportation network equilibrium, design and
aggregation: Key developments and research opportunities,”
Transportation Research 19A (1985) 413-427.

Knight, F. H., “Some fallacies in the interpretations of social
costs,” Quarterly Journal of Economics 38 (1924) 582-606.

Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar



References

Magnanti, T. L., “Models and algorithms for predicting urban
traffic equilibria,” in Transportation Planning Models, pp.
153-185, M. Florian, editor, North-Holland, Amsterdam, The
Netherlands, 1984.

Mahmassani, H. S., and Mouskos, K. C., “Some numerical results
on the diagonalization algorithm for network assignment with
asymmetric interactions between cars and trucks,” Transportation
Research 22B (1988) 275-290.

Murchland, J. D., “Braess’s paradox of traffic flow,”
Transportation Research 4 (1970) 391-394.

Nagurney, A., “Comparative tests of multimodal traffic equilibrium
methods,” Transportation Research 18B (1984) 469-485.

Nagurney, A., “Computational comparisons of algorithms for
general asymmetric traffic equilibrium problems with fixed and
elastic demands,” Transportation Research 20B (1986) 78-84.

Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar



References

Nagurney, A., and Zhang, D., Projected Dynamical Systems
and Variational Inequalities with Applications, Kluwer
Academic Publishers, Boston, Massachusetts, 1996.

Patriksson, M., “Algorithms for urban traffic network equilibria,”
Link-
oping Studies in Science and Technology, Department of
Mathematics, Thesis, no. 263, Linkoping University, Linkoping,
Sweden, 1991.

Pigou, A. C., The Economics of Welfare, MacMillan, London,
England, 1920.

Ran, B., and Boyce, D., Modeling Dynamic Transportation
Networks, Springer-Verlag, Berlin, Germany, 1996.

Sheffi, Y., Urban Transportation Networks - Equilibrium
Analysis with Mathematical Programming Methods,
Prentice-Hall, Englewood Cliffs, New Jersey, 1985.

Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar



References

Smith, M. J., “Existence, uniqueness, and stability of traffic
equilibria,” Transportation Research 13B (1979) 259-304.

Wardrop, J. G., “Some theoretical aspects of road traffic
research,” in Proceedings of the Institute of Civil Engineers,
Part II, pp. 325-378, 1952.

Zhang, D., and Nagurney, A., “On the local and global stability of
a travel route choice adjustment process,” Transportation Research
30B (1996) 245-262.

Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar


