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Algorithms

The development of efficient algorithms for the
numerical computation of equilibria is a topic as
important as the qualitative analysis of equilibria.

The complexity of equilibrium problems, coupled with
their increasing scale, is precluding their resolution via
closed form analytics.

Also, the growing influence of policy modeling is stimulating
the construction of frameworks for the accessible evaluation of
alternatives.
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Algorithms

Variational inequality algorithms resolve the VI problem
into, typically, a series of optimization problems.
Hence, usually, variational inequality algorithms proceed
to the equilibrium iteratively and progressively via some
procedure.

Specifically, at each iteration of a VI algorithm, one
encounters a linearized or relaxed substitute of the original
system, which can, typically, be rephrased or reformulated as
an optimization problem and, consequently, solved using an
appropriate nonlinear programming algorithm.
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Algorithms

In the case where the problem exhibits an underlying structure
(such as a network structure), special-purpose algorithms
may, instead, be embedded within the variational
inequality algorithms to realize further efficiencies.
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Examples of VI Algorithms

The General Iterative Scheme of Dafermos, which
induces such algorithms as:

• The Projection Method and

• The Relaxation Method, plus

The Modified Projection Method of Korpelevich which
converges under less restrictive conditions than the
general iterative scheme.

A variety of Decomposition Algorithms, both serial and
parallel.
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Additional Algorithms

There are also algorithms based on the general iterative
scheme of Dupuis and Nagurney (1993) for the solution of
projected dynamical systems (PDSs). These can also be
applied to compute solutions to variational inequality problems
of concern here.

Special cases of this general iterative scheme include
such algorithms as the Euler method and the Heun
method.
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The General Iterative Scheme of Dafermos

We now present a general iterative scheme for the solution of
the variational inequality problem defined in (1) (Dafermos
(1983)). The iterative scheme induces, as special cases, such
well-known algorithms as the projection method, linearization
algorithms, and the relaxation method, and also induces new
algorithms.

In particular, we seek to determine x∗ ∈ K ⊂ Rn, such that

F (x∗)T · (x − x∗) ≥ 0, ∀x ∈ K , (1)

where F is a given continuous function from K to Rn and K is
a given closed, convex set. K is also assumed to be compact
and F (x) continuously differentiable.
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The General Iterative Scheme of Dafermos

Assume that there exists a smooth function

g(x , y) : K × K 7→ Rn (2)

with the following properties:

(i) g(x , x) = F (x), for all x ∈ K ,

(ii) for every fixed x , y ∈ K , the n × n matrix ∇xg(x , y) is
symmetric and positive-definite.
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The General Iterative Scheme of Dafermos

Any function g(x , y) with the above properties generates the
following:

Algorithm

Step 0: Initialization

Start with an x0 ∈ K . Set t := 1.

Step 1: Construction and Computation

Compute x t by solving the variational inequality subproblem:

g(x t , x t−1)T · (x − x t) ≥ 0, ∀x ∈ K . (3)

Step 2: Convergence Verification

If |x t − x t−1| ≤ ε, for some ε > 0, a prespecified tolerance,
then stop; otherwise, set t := t + 1 and go to Step 1.
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The General Iterative Scheme of Dafermos

Since ∇xg(x , y) is assumed to be symmetric and positive
definite, the line integral

∫
g(x , y)dx defines a function

f (x , y) : K × K 7→ R such that, for fixed y ∈ K , f (·, y) is
strictly convex and

g(x , y) = ∇x f (x , y). (4)

Hence, variational inequality (3) is equivalent to the strictly
convex mathematical programming problem

min
x∈K

f (x , x t−1) (5)

for which a unique solution x t exists. The solution to (5) may
be computed using any appropriate mathematical
programming algorithm.
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Exploiting Problem Structure

If there is, however, a special-purpose algorithm that takes
advantage of the problem’s structure, then such an algorithm
is usually preferable from an efficiency point of view. Of
course, (3) should be constructed in such a manner so that, at
each iteration t, this subproblem is easy to solve.
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The General Iterative Scheme of Dafermos

Note that if the sequence {x t} is convergent, i.e., xk → x∗, as
t →∞, then because of the continuity of g(x , y), (3) yields

F (x∗)T · (x − x∗) = g(x∗, x∗)T · (x − x∗) ≥ 0, ∀x ∈ K (6)

and, consequently, x∗ is a solution to (1).

A condition on g(x , y), which guarantees that the sequence
{xk} is convergent, is now given.

Theorem 1 (Convergence of General Iterative Scheme)
Assume that

|‖∇xg
− 1

2 (x1, y 1)∇yg(x2, y 2)∇xg
− 1

2 (x3, y 3)‖| < 1 (7)

for all (x1, y 1), (x2, y 2), (x3, y 3) ∈ K, where |‖ · ‖| denotes the
standard norm of an n × n matrix as a linear transformation
on Rn. Then the sequence {xk} is Cauchy in Rn.
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The General Iterative Scheme of Dafermos

A necessary condition for (7) to hold is that F (x) is strictly
monotone.

Hence, the general iterative scheme was shown to
converge by establishing contraction estimates that
allow for the possibility of adjusting the norm at each
iteration of the algorithm. This flexibility will, in
general, yield convergence, under weaker assumptions.
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The Projection Method

The projection method resolves variational inequality (1) into
a sequence of subproblems (3) (cf. also (5)) which are
equivalent to quadratic programming problems. Quadratic
programming problems are usually easier to solve than more
highly nonlinear optimization problems, and effective
algorithms have been developed for such problems.
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The Projection Method

In the framework of the general iterative scheme, the
projection method corresponds to the choice

g(x , y) = F (y) +
1

ρ
G (x − y), ρ > 0 (8)

where G is a fixed symmetric positive definite matrix. At each
step k of the projection method, the subproblem that must be
solved is given by:

min
x∈K

1

2
xT · Gx + (ρF (x t−1)− Gx t−1)T · x . (9)

Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar



The Projection Method

In particular, if G is selected to be a diagonal matrix, then (9)
is a separable quadratic programming problem.
Condition (7) for convergence of the projection method takes
the form:

Theorem 3 (Convergence)
Assume that

|‖I − ρG− 1
2∇xF (x)G− 1

2‖| < 1, ∀x ∈ K (10)

where ρ > 0 and fixed. Then the sequence generated by the
projection method (9) converges to the solution of variational
inequality (1).
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The Relaxation Method

The relaxation (sometimes also called diagonalization) method
resolves variational inequality (1) into a sequence of
subproblems (3) which are, in general, nonlinear programming
problems.

In the framework of the general iterative scheme, the
relaxation method corresponds to the choice

gi(x , y) = Fi(y1, . . . , yi−1, xi , yi+1 . . . , yn), i = 1, . . . , n.
(11)
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The Relaxation Method

The assumptions under which the relaxation method converges
are now stated.

Theorem 4
Assume that there exists a γ > 0 such that

∂Fi(x)

∂xi
≥ γ, i = 1, . . . , n, x ∈ K (12)

and

|‖∇yg(x , y)‖| ≤ λγ, 0 < λ < 1, x , y ∈ K (13)

then condition (7) of Theorem 1 is satisfied.
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The Modified Projection Method

Note that a necessary condition for convergence of the general
iterative scheme is that F (x) is strictly monotone. In the case
that such a condition is not met by the application under
consideration, a modified projection method may still be
appropriate.

This algorithm requires, instead, only monotonicity of
F , but with the Lipschitz continuity condition holding,
with constant L. The G matrix (cf. the projection
method) is now the identity matrix I .

The algorithm is now stated.
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The Modified Projection Method

Step 0: Initialization

Start with an x0 ∈ K . Set t := 1 and select ρ, such that
0 < ρ ≤ 1

L
, where L is the Lipschitz constant for function F in

the variational inequality problem.

Step 1: Construction and Computation

Compute x̄ t−1 by solving the variational inequality subproblem:[
x̄ t−1 + (ρF (x t−1)− x t−1)

]T ·
[
x ′ − x̄ t−1

]
≥ 0, ∀x ′ ∈ K .

(14)
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The Modified Projection Method

Step 2: Adaptation

Compute x t by solving the variational inequality subproblem:[
x t + (ρF (x̄ t−1)− x t−1)

]T · [x ′ − x t ] ≥ 0, ∀x ′ ∈ K . (15)

Step 3: Convergence Verification

If |x t − x t−1| ≤ ε, for ε > 0, a prespecified tolerance, then,
stop; otherwise, set t := t + 1 and go to Step 1.
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The Modified Projection Method

The modified projection method converges to the solution of
VI(F , K ), where K is assumed to be nonempty, but not
necessarily compact, under the following conditions.

Theorem 5 (Convergence)
Assume that F (x) is monotone, that is,

(F (x1)− F (x2))T · (x1 − x2) ≥ 0, ∀x1, x2 ∈ K ,

and that F (x) is also Lipschitz continuous, that is, there exists
a constant L > 0 such that

‖F (x1)− F (x2)‖ ≤ L‖x1 − x2‖, ∀x1, x2 ∈ K .

Then the modified projection method converges to a solution
of variational inequality (1).
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Decomposition Algorithms

Now it is assumed that the feasible set K is a Cartesian
product, that is,

K =
m∏

i=1

Ki

where each Ki ⊂ Rni ,
∑m

i=1 ni = n, and xi now denotes,
without loss of generality, a vector xi ∈ Rni , and
Fi(x) : K 7→ Rni for each i .

Many equilibrium problems are defined over a Cartesian
product set and, hence, are amenable to solution via
variational inequality decomposition algorithms.
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Decomposition Algorithms

The appeal of decomposition algorithms lies in their particular
suitability for the solution of large-scale problems.
Furthermore, parallel decomposition algorithms can be
implemented on parallel computer architectures and further
efficiencies realized.
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Decomposition Algorithms

For example, in the case of multicommodity problems, in
which there are m commodities being produced, traded, and
consumed, a subset Ki might correspond to constraints for
commodity i . On the other hand, in the case of intertemporal
problems, Ki might correspond to the constraints governing a
particular time period i .
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Decomposition Algorithms

Moreover, a given equilibrium problem may possess
alternative variational inequality formulations over
distinct Cartesian products; each such formulation, in
turn, may suggest a distinct decomposition procedure.

Numerical testing of the algorithms, on the appropriate
architecture(s), subsequent to the theoretical analysis, can
yield further insights into which algorithm(s) performs in a
superior (or satisfactory) manner, as mandated by the
particular application.

Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar



Decomposition Algorithms

An important observation for the Cartesian product case is
that the variational inequality now decomposes into m coupled
variational inequalities of smaller dimensions, which is formally
stated as:

Proposition 1
A vector x∗ ∈ K solves variational inequality (1) where K is a
Cartesian product if and only if

Fi(x
∗)T · (xi − x∗i ) ≥ 0, ∀xi ∈ Ki , ∀i .
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Decomposition Algorithms

The linearized variational inequality decomposition algorithms
are now presented, both the serial version, and then the
parallel version.

The former is a Gauss-Seidel method in that it serially updates
the information as it becomes available.

The latter is a Jacobi method in that the updating is done
simultaneously, and, hence, can be done in parallel. For both
linearized methods, the variational inequality subproblems are
linear.
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Linearized Decomposition Algorithm - Serial

Version

Step 0: Initialization

Start with an x0 ∈ K . Set t := 1; i := 1.

Step 1: Linearization and Computation

Compute the solution x t
i = xi to the variational inequality

subproblem: [
Fi(x

t
1 , . . . , x

t
i−1, x

t−1
i , . . . , x t−1

m )

+Ai(x
t
1 , . . . , x

t
i−1, x

t−1
i , . . . , x t−1

m ) · (xi − x t−1
i )

]T

· [x ′i − xi ] ≥ 0, ∀x ′i ∈ Ki .

Set i := i + 1. If i ≤ m, go to Step 1; otherwise, go to Step 2.
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Linearized Decomposition Algorithm - Serial

Version

Step 2: Convergence Verification

If |x t − x t−1| ≤ ε, for ε > 0, a prespecified tolerance, then
stop; otherwise, set t := t + 1; i = 1, and go to Step 1.
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Linearized Decomposition Algorithm - Parallel

Version

Step 0: Initialization

Start with an x0 ∈ K . Set t := 1.

Step 1: Linearization and Computation

Compute the solutions x t
i = xi ; i = 1, . . . , m, to the m

variational inequality subproblems:[
Fi(x

t−1) + Ai(x
t−1) · (xi − x t−1

i )
]T · [x ′i − xi ] ≥ 0,

∀x ′i ∈ Ki , ∀i .

Step 2: Convergence Verification

If |x t − x t−1| ≤ ε, for ε > 0, a prespecified tolerance, then
stop; otherwise, set t := t + 1, and go to Step 1.
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Linearized Decomposition Algorithm - Parallel

Version

Possible choices for Ai(·) are as follows.

If Ai(x
t−1)=∇xi

Fi(x
t−1), then a Newton’s method is obtained.

If Ai(x
t−1)=Di(x

t−1), where Di(·) denotes the diagonal part
of ∇xi

Fi(·), then a linearization method is induced.

If Ai(·)=Gi , where Gi is a fixed, symmetric and
positive-definite matrix, then a projection method is obtained.

Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar



Linearized Decomposition Algorithm - Parallel

Version

Note that the variational inequality subproblems should
be easier to solve than the original variational inequality
since they are smaller variational inequality problems,
defined over smaller feasible sets.

In particular, if each Ai(·) is selected to be diagonal and
positive definite, then each of the subproblems is equivalent to
a separable quadratic programming problem with a unique
solution.
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Convergence Results

Theorem 6 (Convergence of Linearized Decomposition
Schemes)
Suppose that the variational inequality problem (1) has a
solution x∗ and that there exist symmetric positive definite
matrices Gi and some δ > 0 such that Ai(x)− δGi is positive
semidefinite for every i and x ∈ K, and that there exists a
γ ∈ [0, 1) such that

‖G−1
i (Fi(x)− Fi(y)− Ai(y) · (xi − yi))‖i ≤ δγ max

j
‖xj − yj‖j ,

∀x , y ∈ K ,

where ‖xi‖i = (xT
i Gixi)

1
2 . Then both the parallel and the serial

linearized decomposition algorithms with Ai(x) being diagonal
and positive definite, converge to the solution x∗

geometrically.
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The Nonlinear Decompisition Algorithms

The nonlinear analogues of the above Linearized
Decomposition Algorithms are now presented.

Nonlinear Decomposition Algorithm - Serial Version

Step 0: Initialization

Start with an x0 ∈ K . Set t := 1; i := 1.

Step 1: Relaxation and Computation

Compute the solution x t
i = xi by solving the variational

inequality subproblem:

Fi(x
t
1 , . . . , x

t
i−1, xi , x

t−1
i+1 , . . . , x t−1

m )T · [x ′i − xi ] ≥ 0, ∀x ′i ∈ Ki .

Set i := i + 1. If i ≤ m, go to Step 1; otherwise, go to Step 2.

Step 2: Convergence Verification

If |x t − x t−1| ≤ ε, for ε > 0, a prespecified tolerance, then
stop; otherwise, set t := t + 1; i = 1, and go to Step 1.
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The Nonlinear Decompisition Algorithms

The parallel analogue is now given.

Nonlinear Decomposition Algorithm - Parallel Version

Step 0: Initialization

Start with an x0 ∈ K . Set t := 1.

Step 1: Relaxation and Computation

Compute the solutions x t
i = xi ; i = 1, . . . , m, to the

variational inequality subproblems:

Fi(x
t−1
1 , . . . , x t−1

i−1 , xi , x
t−1
i+1 , . . . , x t−1

m )T · [x ′i − xi ] ≥ 0,

∀x ′i ∈ Ki ,∀i .

Step 2: Convergence Verification

If |x t − x t−1| ≤ ε, for ε > 0, a prespecified tolerance, then
stop; otherwise, set t := t + 1, and go to Step 1.
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Convergence Results

Theorem 7 (Convergence of Nonlinear Decomposition
Schemes)
Suppose that the variational inequality problem (1) has a
solution x∗ and that there exist symmetric positive-definite
matrices Gi and some δ > 0 such that Ai(x)− δGi is positive
semidefinite for every i and x ∈ K, and that there exists a
γ ∈ [0, 1) such that

‖G−1
i (Fi(x)− Fi(y)− Ai(y) · (xi − yi)‖i ≤ δγ max

j
‖xj − yj‖j ,

∀x , y ∈ K ,

where ‖xi‖i=(xT
i Gixi)

1
2 . Then both the parallel and the serial

nonlinear decomposition algorithms converge to the solution
x∗ geometrically.
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Equilibration Algorithms

Recall that variational inequality algorithms proceed to
the equilibrium iteratively and progessively via some
“equilibration” procedure, which involves the solution
of a linearized or relaxed substitute of the system at
each step.

If the equilibration problem encountered at each step is an
optimization problem (which is usually the case), then, in
principle, any appropriate optimization algorithm may be used
for the solution of such embedded problems.
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Equilibration Algorithms

However, since the overall efficiency of a variational
inequality algorithm will depend upon the efficiency of
the procedure used at each step, an algorithm that
exploits problem structure, if such a structure is
revealed, is usually preferable if efficiency is mandated
by the application.
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Equilibration Algorithms

Since many equilibrium problems of interest have a
network structure, we now describe equilibration
algorithms that exploit network structure.

Equilibration algorithms were introduced by Dafermos and
Sparrow (1969) for the solution of traffic assignment problems,
both user-optimized and system-optimized problems, on a
general network.
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Congested Transportation Networks
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Equilibration Algorithms

In a user-optimized problem, each user of a network system
seeks to determine his/her cost-minimizing route of travel
between an origin/destination pair, until an equilibrium is
reached, in which no user can decrease his/her cost of travel
by unilateral action.

In a system-optimized network problem, users are
allocated among the routes so as to minimize the total cost in
the system. Both classes of problems, under certain imposed
assumptions, possess optimization formulations.
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Behavior on Congested Networks

Flows are routed so as to minimize the total cost.

System-Optimized

Centralized Unselfish S–O

vs. vs. vs.��
@@

@@
��

��
@@

@@
��

Decentralized Selfish U–O
User-Optimized or Equilibrium

Flows are routed on individual cost-minimizing routes.
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Other Networks that Behave like Traffic Networks

The Internet, electric power networks, supply chains, and even
multitiered financial networks!
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Equilibration Algorithms

In particular, the user-optimized, or equilibrium problem was
shown to be characterized by equilibrium conditions which,
under certain symmetry assumptions on the user cost
functions, were equivalent to the Kuhn-Tucker conditions of
an optimization problem (albeit artificial).
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Equilibration Algorithms

The first equilibration algorithms assumed that the demand
associated with an origin/destination (O/D) pair was known
and fixed. In addition, for networks of special structure,
specifically, those with linear user cost functions and paths
connecting an O/D pair having no links in common, a
special-purpose algorithm could be used to compute an O/D
pair’s equilibrium path flows and associated link flows exactly
and in closed form. This approach is sometimes referred to as
“exact equilibration.”
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Equilibration Algorithms

Later, the algorithms were generalized to the case where the
demands are unknown and have to be computed as well.
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General Equilibration Algorithms

Equilibration algorithms were devised for the computation of
user and system-optimized flows on general networks. They
are, in principle, “relaxation” methods in that they resolve the
solution of a nonlinear network flow problem into a series of
network problems defined over a smaller and, hence, a simpler
feasible set. Equilibration algorithms typically proceed from
origin/destination (O/D) pair to O/D pair, until the entire
system is solved or “equilibrated.”
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General Equilibration Algorithms

We now present equilibration algorithms for the solution of
network equilibrium problems with separable and linear “user”
cost functions on the links. We begin with the equilibration
algorithm for the single O/D pair problem with fixed demand,
and then generalize it to J O/D pairs.
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Classical Network Equilibrium Problem

Consider a general network G = [N , L], where N denotes the
set of nodes, and L the set of directed links. Let a denote a
link of the network connecting a pair of nodes, and let p
denote a path consisting of a sequence of links connecting an
O/D pair. Pw denotes the set of paths connecting the O/D
pair of nodes w .

Let xp represent the flow on path p and fa the load on link a.
The following conservation of flow equation must hold:

fa =
∑
p∈P

xpδap,

where δap = 1, if link a is contained in path p, and 0,
otherwise. This expression states that the load on a link a is
equal to the sum of all the path flows on paths p that contain
(traverse) link a.
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Classical Network Equilibrium Problem

Moreover, if we let dw denote the demand associated with
O/D pair w , then we must have that

dw =
∑
p∈Pw

xp,

where xp ≥ 0, ∀p, that is, the sum of all the path flows
between an origin/destination pair w must be equal to the
given demand dw .

Let ca denote the user cost associated with traversing link a,
and Cp the user cost associated with traversing the path p.
Then

Cp =
∑
a∈L

caδap.

In other words, the cost of a path is equal to the sum of the
costs on the links comprising the path.
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Classical Network Equilibrium Problem

The network equilibrium conditions are then given by: For
each path p ∈ Pw and every O/D pair w :

Cp

{
= λw , if x∗p > 0
≥ λw , if x∗p = 0

where λw is an indicator, whose value is not known a priori.
These equilibrium conditions state that the user costs on all
used paths connecting a given O/D pair will be minimal and
equalized.
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The equilibration algorithms for general networks and fixed
demands first identify the most expensive used path for an
O/D pair, and then the cheapest path, and equilibrate the
costs for these two paths, by reassigning a portion of the flow
from the most expensive path to the cheapest path. This
process continues until the equilibrium is reached to a
prespecified tolerance.

In the case of linear user cost functions, that is, where the user
cost on link a is given by

ca(fa) = gafa + ha,

with ga > 0 and ha > 0, this reassignment or reallocation
process can be computed in closed form.
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Assume, for the time being, that there is only a single O/D
pair wi on a given network. An equilibration algorithm is now
presented for the computation of the equilibrium path and link
flows satisfying the conditions, where the feasibility conditions
(conservation of flow equations) are also satisfied by the
equilibrium pattern. Cost functions of the simple, separable,
and linear form above are considered.
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Single O/D Pair U-O Equilibration

Step 0: Initialization

Construct an initial feasible flow pattern x0, which induces a
feasible link flow pattern. Set k := 1.

Step 1: Selection and Convergence Verification

Determine

r = {p|max
p

Cp and xk−1
p > 0}

q = {p|min
p

Cp}.

If |Cr − Cq| ≤ ε, with ε > 0, a prespecified tolerance, then
stop; otherwise, go to Step 2.
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Single O/D Pair U-O Equilibration

Step 2: Computation

Compute

∆′ =
[Cr − Cq]∑

a∈L ga(δaq − δar )2

∆ = min{∆′, xk−1
r }.

Set
xk
r = xk−1

r −∆

xk
q = xk−1

q + ∆

xk
p = xk−1

p , ∀p 6= q ∪ r .

Let k := k + 1, and go to Step 1.

In the case that a tie exists for the selection of path r and/or
q, then any such selection is appropriate.
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Convergence

Convergence of this procedure is established by constructing
an associated optimization problem, the Kuhn-Tucker
conditions of which are equivalent to the equilibrium
conditions. This problem is given by:

Minimize
∑
a∈L

1

2
gaf

2
a + hafa

subject to conservation of flow equations and the
nonnegativity assumption on the path flows.

One then demonstrates that a reallocation of the path flows as
described above decreases the value of the appropriate
function until optimality, equivalently, equilibrium conditions
are satisfied, within a prespecified tolerance.
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Multiple O/D Pairs

On a network in which there are now J O/D pairs, the above
single O/D pair equilibration procedure is applicable as well.

We term Step 1 above (without the convergence check) and
Step 2 of the above as the equilibration operator Ewi

for a
fixed O/D pair wi . Now two possibilities for equilibration
present themselves.

Equilibration I

Let E 1 ≡ EwJ
◦ . . . ◦ Ew1 .

Step 0: Initialization

Construct an initial feasible flow pattern which induces a
feasible link flow pattern. Set k := 1.

Step 1: Equilibration

Apply E 1.
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Multiple O/D Pair U-O Equilibration

Step 2: Convergence Verification

If convergence holds, stop; otherwise, set k := k + 1, and go
to Step 1.
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Equilibration II

Let E 2 = (EwJ
◦ (. . . ◦ (EwJ

))) ◦ . . . ◦ (Ew1 ◦ (. . . ◦ (Ew1))).

Step 0: Initialization (as above).

Step 1: Equilibration

Apply E 2.

Step 2: Convergence Verification (as above).
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The distinction between E 1 and E 2 is as follows. E 1

equilibrates only one pair of paths for an O/D pair
before proceeding to the next O/D pair, and so on,
whereas E 2 equilibrates the costs on all the paths
connecting an O/D pair using the 2-path procedure
above, before proceeding to the next O/D pair, and so
on.
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The Elastic Demand Version

The elastic demand situation, where the demand dw is no
longer known a priori but needs to be computed as well, is
now briefly described. For the elastic demand model assume as
given a disutility function λw(dw), for each O/D pair w , that
is monotonically decreasing. One may then transform the
elastic model into one with fixed demands as follows. For each
O/D pair w we determine an upper bound on the demand d̄w

and construct an overflow arc w connecting the O/D pair w .
The user cost on such an arc is cw ≡ λw(d̄w − faw ), where fw
denotes the flow on arc aw . The fixed demand for O/D pair w
then is set equal to d̄w .
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Modeling Extensions

Although there exist algorithms to compute the equilibrium in
the elastic demand problem, the elastic demand problem can
be transformed into a fixed demand problem, for which
efficient algorithm exists. Recall the equilibration algorithms
that we studied earlier.
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Reformulation of Elastic Demand Problems as

Fixed Demand Problems

The Excess Overflow Reformulation

For each O/D pair w ∈ W , we first construct a path
connecting O/D pair w consisting of a single link which we
denote by w . Given an upper bound d̄w > dw(λw), for every
w , we then construct associated cost functions on the excess
overflow links thus:

cw = λw(d̄w − fw).
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An Example
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Figure: Fixed demand reformulation of elastic demand problem

If λw = −dw + 100, then d̄w = 100, and
cw = λ(d̄w − fw) = −(100− fw) + 100 = fw .
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The System-Optimized Problem

The above discussion focused on the user-optimized problem.
We now turn to the system-optimized problem in which a
central controller, say, seeks to minimize the total cost in the
network system, where the total cost is expressed as∑

a∈L

ĉa(fa)

where it is assumed that the total cost function on a link a is
defined as:

ĉa(fa) ≡ ca(fa)× fa,

subject to the conservation of flow equations, and the
nonnegativity assumption on the path flows. Here separable
link costs have been assumed, for simplicity, and other total
cost expressions may be used, as mandated by the particular
application.
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The System-Optimized Problem

Under the assumption of strictly increasing user link cost
functions, the optimality conditions are: For each path
p ∈ Pw , and every O/D pair w :

Ĉ ′
p

{
= µw , if xp > 0
≥ µw , if xp = 0,

where Ĉ ′
p denotes the marginal cost on path p, given by:

Ĉ ′
p =

∑
a∈L

∂ĉa(fa)

∂fa
δap.
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The System-Optimized Problem

Under the assumption of linear user cost functions as above,
one may adapt the Equilibration Algorithm above to yield the
solution to the system-optimized problem. Indeed, in the case
of a single O/D pair, the restatement would be:

Single O/D Pair Optimization

Step 0: Initialization

Construct an initial feasible flow pattern x0, which induces a
feasible link load pattern. Set k := 1.

Step 1: Selection and Convergence Verification

Determine

r = {p|max
p

Ĉ ′
p and xk−1

p > 0}.

q = {p|min
p

Ĉ ′
p}.
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The System-Optimized Problem

If |Ĉ ′
r − Ĉ ′

q| ≤ ε, with ε > 0, a prespecified tolerance, then
stop; otherwise, go to Step 2.

Step 2: Computation

Compute

∆′ =

[
Ĉ ′

r − Ĉ ′
q

]
∑

a∈L 2ga(δaq − δar )

∆ = min{∆′, xk−1
r }.

Set
xk
r = xk−1

r −∆

xk
q = xk−1

q + ∆

xk
p = xk−1

p ,∀p 6= q ∪ r .

Let k := k + 1, and go to Step 1.
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The Equilibration Schemes E 1 and E 2 can then be adapted
accordingly. One should note that the system-optimized
solution corresponds to the user-optimized solution on a
congested network, i.e., one with increasing user link cost
functions, only in highly stylized networks.

Nevertheless, one does have access to policy interventions in
the form of tolls, which will make the system-optimized flows
pattern, a user-optimized one. We will discuss this policy in
the framework of transportation network equilibrium problems
in the next lecture.
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Summary

We have overviewed some of the fundamental algorithms for
the computation of solutions to variational inequality problems.

We have emphasized the importance of selecting an algorithm
for computational efficiency and the need to exploit problem
structure.

In this seminar, we will be discussing many different network
problems and will show how a spectrum of these
computational schemes work in practice.
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