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Background

Equilibrium is a central concept in numerous disciplines
including economics, management science/operations
research, and engineering.

Methodologies that have been applied to the
formulation, qualitative analysis, and computation of
equilibria have included:

• systems of equations,
• optimization theory,
• complementarity theory, and
• fixed point theory.

Variational inequality theory is a powerful unifying
methodology for the study of equilibrium problems.
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Background

Variational inequality theory was introduced by Hartman and
Stampacchia (1966) as a tool for the study of partial
differential equations with applications principally drawn from
mechanics. Such variational inequalities were
infinite-dimensional rather than finite-dimensional as we will
be studying here.

The breakthrough in finite-dimensional theory occurred in
1980 when Dafermos recognized that the traffic network
equilibrium conditions as stated by Smith (1979) had a
structure of a variational inequality.

This unveiled this methodology for the study of
problems in economics, management
science/operations research, and also in engineering,
with a focus on transportation.
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Background

To-date problems which have been formulated and
studied as variational inequality problems include:

• traffic network equilibrium problems
• spatial price equilibrium problems
• oligopolistic market equilibrium problems
• financial equilibrium problems
• migration equilibrium problems, as well as
• environmental network and ecology problems,
• knowledge network problems,
• supply chain network equilibrium problems, and even
• the Internet!
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Observe that many of the applications explored to-date that
have been formulated, studied, and solved as variational
inequality problems are, in fact, network problems.

In addition, as we shall see, many of the advances in
variational inequality theory have been spurred by needs
in practice!
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Multimodal Transportation
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Complex Logistical Networks
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Electric Power Generation and Distribution

Networks
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Financial Networks
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Social Networks
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Variational Inequality Theory

Variational inequality theory provides us with a tool for:

• formulating a variety of equilibrium problems;

• qualitatively analyzing the problems in terms of existence and
uniqueness of solutions, stability and sensitivity analysis, and

• providing us with algorithms with accompanying
convergence analysis for computational purposes.

It contains, as special cases, such well-known problems
in mathematical programming as: systems of nonlinear
equations, optimization problems, complementarity
problems, and is also related to fixed point problems.
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Variational Inequality Theory

Also, as shown by Dupuis and Nagurney (1993), there is
associated with a variational inequality problem, a projected
dynamical system, which provides a natural underlying
dynamics until an equilibrium state is achieved, under
appropriate conditions.

This result further enriches the scope and reach of
variational inequalities in terms of theory and especially
applications!
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The Variational Inequality Problem

Definition 1 (Variational Inequality Problem)
The finite - dimensional variational inequality problem,
VI(F , K ), is to determine a vector x∗ ∈ K ⊂ Rn, such that

F (x∗)T · (x − x∗) ≥ 0, ∀x ∈ K ,

or, equivalently,

〈F (x∗), x − x∗〉 ≥ 0, ∀x ∈ K (1)

where F is a given continuous function from K to Rn, K is a
given closed convex set, and 〈·, ·〉 denotes the inner product in
n-dimensional Euclidean space, as does “·”.

Here we assume that all vectors are column vectors, except
where noted.
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The Variational Inequality Problem
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Figure: Geometric Depiction of the Variational Inequality Problem

In geometric terms, the variational inequality (1) states that
F (x∗)T is “orthogonal” to the feasible set K at the point x∗.
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Systems of Equations

Indeed, many mathematical problems can be formulated as
variational inequality problems, and several examples
applicable to equilibrium analysis follow.

Systems of Equations
Many classical economic equilibrium problems have been
formulated as systems of equations, since market clearing
conditions necessarily equate the total supply with the total
demand. In terms of a variational inequality problem, the
formulation of a system of equations is as follows.
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Systems of Equations

Proposition 1
Let K = Rn and let F : Rn 7→ Rn be a given function. A

vector x∗ ∈ Rn solves VI(F , Rn) if and only if F (x∗) = 0.

Proof: If F (x∗) = 0, then inequality (1) holds with equality.
Conversely, if x∗ satisfies (1), let x = x∗ − F (x∗), which
implies that

F (x∗)T · (−F (x∗)) ≥ 0, or − ‖F (x∗)‖2 ≥ 0 (2)

and, therefore, F (x∗) = 0.

Note that systems of equations, however, preclude the
introduction of inequalities, which may be needed, for
example, in the case of nonnegativity assumptions on certain
variables such as prices.
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An Example (Market Equilibrium with Equalities

Only)

As an illustration, we now present an example of a system of
equations. Consider m consumers, with a typical consumer
denoted by j , and n commodities, with a typical commodity
denoted by i . Let p denote the n-dimensional vector of the
commodity prices with components: {p1, . . . , pn}.

Assume that the demand for a commodity i , di , may, in
general, depend upon the prices of all the commodities, that is,

di(p) =
m∑

j=1

d j
i (p),

where d j
i (p) denotes the demand for commodity i by consumer

j at the price vector p.
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An Example (Market Equilibrium with Equalities

Only)

Similarly, the supply of a commodity i , si , may, in general,
depend upon the prices of all the commodities, that is,

si(p) =
m∑

j=1

s j
i (p),

where s j
i (p) denotes the supply of commodity i of consumer j

at the price vector p.
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An Example (Market Equilibrium with Equalities

Only)

We group the aggregate demands for the commodities into the
n-dimensional column vector d with components: {d1, . . . , dn}
and the aggregate supplies of the commodities into the
n-dimensional column vector s with components: {s1, . . . , sn}.

The market equilibrium conditions that require that the supply
of each commodity must be equal to the demand for each
commodity at the equilibrium price vector p∗, are equivalent to
the following system of equations:

s(p∗)− d(p∗) = 0.
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An Example (Market Equilibrium with Equalities

Only)

Clearly, this expression can be put into the standard nonlinear
equation form, if we define the vectors x ≡ p and
F (x) ≡ s(p)− d(p).

Note, however, that the problem class of nonlinear
equations is not sufficiently general to guarantee, for
example, that x∗ ≥ 0, which may be desirable in this
example in which the vector x refers to prices.
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Optimization Problems

An optimization problem is characterized by its specific
objective function that is to be maximized or
minimized, depending upon the problem and, in the
case of a constrained problem, a given set of
constraints.

Possible objective functions include expressions representing
profits, costs, market share, portfolio risk, etc. Possible
constraints include those that represent limited budgets or
resources, nonnegativity constraints on the variables,
conservation equations, etc. Typically, an optimization
problem consists of a single objective function.
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Optimization Problems

Both unconstrained and constrained optimization problems
can be formulated as variational inequality problems. The
subsequent two propositions and theorem identify the
relationship between an optimization problem and a variational
inequality problem.

Proposition 2
Let x∗ be a solution to the optimization problem:

Minimize f (x) (3)

subject to: x ∈ K ,

where f is continuously differentiable and K is closed and
convex. Then x∗ is a solution of the variational inequality
problem:

∇f (x∗)T · (x − x∗) ≥ 0, ∀x ∈ K . (4)
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Optimization Problems

Proof: Let φ(t) = f (x∗ + t(x − x∗)), for t ∈ [0, 1]. Since
φ(t) achieves its minimum at t = 0,
0 ≤ φ′(0) = ∇f (x∗)T · (x − x∗), that is, x∗ is a solution of (4).
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Optimization Problems

Proposition 3
If f (x) is a convex function and x∗ is a solution to VI(∇f , K ),
then x∗ is a solution to the optimization problem (3).

Proof: Since f (x) is convex,

f (x) ≥ f (x∗) +∇f (x∗)T · (x − x∗), ∀x ∈ K . (5)

But ∇f (x∗)T · (x − x∗) ≥ 0, since x∗ is a solution to
VI(∇f , K ). Therefore, from (5) one concludes that

f (x) ≥ f (x∗), ∀x ∈ K ,

that is, x∗ is a minimum point of the mathematical
programming problem (3).
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Optimization Problems

If the feasible set K = Rn, then the unconstrained
optimization problem is also a variational inequality
problem.
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Relationship Between Optimization Problems and

Variational Inequalities

On the other hand, in the case where a certain symmetry
condition holds, the variational inequality problem can be
reformulated as an optimization problem.

In other words, in the case that the variational inequality
formulation of the equilibrium conditions underlying a specific
problem is characterized by a function with a symmetric
Jacobian, then the solution of the equilibrium conditions and
the solution of a particular optimization problem are one and
the same. We first introduce the following definition and then
fix this relationship in a theorem.
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Relationship Between Optimization Problems and

Variational Inequalities

Definition 2
An n × n matrix M(x), whose elements mij(x); i = 1, . . . , n;
j = 1, . . . , n, are functions defined on the set S ⊂ Rn, is said
to be positive-semidefinite on S if

vTM(x)v ≥ 0, ∀v ∈ Rn, x ∈ S .

It is said to be positive-definite on S if

vTM(x)v > 0, ∀v 6= 0, v ∈ Rn, x ∈ S .

It is said to be strongly positive-definite on S if

vTM(x)v ≥ α‖v‖2, for some α > 0, ∀v ∈ Rn, x ∈ S .
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Note that if γ(x) is the smallest eigenvalue, which is
necessarily real, of the symmetric part of M(x), that is,
1
2

[
M(x) + M(x)T

]
, then it follows that (i). M(x) is

positive-semidefinite on S if and only if γ(x) ≥ 0, for all x ∈ S ;
(ii). M(x) is positive-definite on S if and only if γ(x) > 0, for
all x ∈ S ; and (iii). M(x) is strongly positive-definite on S if
and only if γ(x) ≥ α > 0, for all x ∈ S .
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Relationship Between Optimization Problems and

Variational Inequalities

Theorem 1
Assume that F (x) is continuously differentiable on K and that
the Jacobian matrix

∇F (x) =


∂F1

∂x1
· · · ∂F1

∂xn
...

...
∂Fn

∂x1
· · · ∂Fn

∂xn


is symmetric and positive-semidefinite.
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Then there is a real-valued convex function f : K 7→ R1

satisfying
∇f (x) = F (x)

with x∗ the solution of VI (F , K ) also being the solution of the
mathematical programming problem:

Minimize f (x) (6)

subject to: x ∈ K .

Proof: Under the symmetry assumption it follows from
Green’s Theorem that

f (x) =

∫
F (x)Tdx , (7)

where
∫

is a line integral. The conclusion follows from
Proposition 3.
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Hence, although the variational inequality problem
encompasses the optimization problem, a variational
inequality problem can be reformulated as a convex
optimization problem, only when the symmetry
condition and the positive-semidefiniteness condition
hold.

The variational inequality, therefore, is the more
general problem in that it can also handle a function
F (x) with an asymmetric Jacobian.
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Complementarity Problems

The variational inequality problem also contains the
complementarity problem as a special case. Complementarity
problems are defined on the nonnegative orthant.

Let Rn
+ denote the nonnegative orthant in Rn, and let

F : Rn 7→ Rn. The nonlinear complementarity problem over
Rn

+ is a system of equations and inequalities stated as:

Find x∗ ≥ 0 such that

F (x∗) ≥ 0 and F (x∗)T · x∗ = 0. (8)
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Complementarity Problems

Whenever the mapping F is affine, that is, whenever
F (x) = Mx + b, where M is an n × n matrix and b an n × 1
vector, problem (8) is then known as the linear
complementarity problem.
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Relationship Between Complementaroty Problems

and Variational Inequalities

The relationship between the complementarity problem and
the variational inequality problem is as follows.

Proposition 4
VI(F , Rn

+) and (8) have precisely the same solutions, if any.
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Relationship Between Complementaroty Problems

and Variational Inequalities

Proof: First, it is established that if x∗ satisfies VI(F , Rn
+),

then it also satisfies the complementarity problem (8).
Substituting x = x∗ + ei into VI(F , Rn

+), where ei denotes the
n-dimensional vector with 1 in the i -th location and 0,
elsewhere, one concludes that Fi(x

∗) ≥ 0, and F (x∗) ≥ 0.

Substituting now x = 2x∗ into the variational inequality, one
obtains

F (x∗)T · (x∗) ≥ 0. (9)
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Relationship Between Complementaroty Problems

and Variational Inequalities

Substituting then x = 0 into the variational inequality, one
obtains

F (x∗)T · (−x∗) ≥ 0. (10)

(9) and (10) together imply that F (x∗)T · x∗ = 0.

Conversely, if x∗ satisfies the complementarity problem, then

F (x∗)T · (x − x∗) ≥ 0

since x ∈ Rn
+ and F (x∗) ≥ 0.
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An Example (Market Equilibrium with Equalities

and Inequalities)

A nonlinear complementarity formulation of market equilibrium
is now presented.

Assume that the prices must now be nonnegative in the
market equilibrium example presented earlier. Hence, we
consider the following situation, in which the demand functions
are given as previously as are the supply functions, but now,
instead of the market equilibrium conditions, which are
represented by a system of equations, we have the following
equilibrium conditions. For each commodity i ; i = 1, . . . , n:

si(p
∗)− di(p

∗)

{
= 0, if p∗

i > 0
≥ 0, if p∗

i = 0.
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An Example (Market Equilibrium with Equalities

and Inequalities)

These equilibrium conditions state that if the price of a
commodity is positive in equilibrium then the supply of that
commodity must be equal to the demand for that commodity.

On the other hand, if the price of a commodity at equilibrium
is zero, then there may be an excess supply of that commodity
at equilibrium, that is, si(p

∗)− di(p
∗) > 0, or the market

clears.

Furthermore, this system of equalities and inequalities
guarantees that the prices of the instruments do not take on
negative values, which may occur in the system of equations
expressing the market clearing conditions.
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An Example (Market Equilibrium with Equalities

and Inequalities)

The nonlinear complementarity formulation of this problem is
as follows.

Determine p∗ ∈ Rn
+, satisfying:

s(p∗)− d(p∗) ≥ 0 and 〈(s(p∗)− d(p∗)), p∗〉 = 0.
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Moreover, since a nonlinear complementarity problem is a
special case of a variational inequality problem, we may rewrite
the nonlinear complementarity formulation of the market
equilibrium problem above as the following variational
inequality problem:

Determine p∗ ∈ Rn
+, such that

〈(s(p∗)− d(p∗)), p − p∗〉 ≥ 0, ∀p ∈ Rn
+.
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Note, first, that in the special case of demand functions and
supply functions that are separable, the Jacobians of these
functions are symmetric since they are diagonal and given,
respectively, by

∇s(p) =


∂s1
∂p1

0 0 . . . 0

0 ∂s2
∂p2

0 . . . 0
...

. . . . . . . . .
...

0 0 0 . . . ∂sn
∂pn

 ,

∇d(p) =


∂d1

∂p1
0 0 . . . 0

0 ∂d2

∂p2
0 . . . 0

...
. . . . . . . . .

...
0 0 0 . . . ∂dn

∂pn

 .
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Indeed, in this special case model, the supply of a
commodity depends only upon the price of that commodity
and, similarly, the demand for a commodity depends only upon
the price of that commodity.

Hence, in this special case, the price vector p∗ that satisfies
the equilibrium conditions can be obtained by solving the
following optimization problem:

Minimize
n∑

i=1

∫ pi

0

si(x)dx −
n∑

i=1

∫ pi

0

di(y)dy

subject to:
pi ≥ 0, i = 1, . . . , n.
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One also obtains an optimization reformulation of the
equilibrium conditions, provided that the following symmetry
condition holds: ∂si

∂pk
= ∂sk

∂pi
and ∂di

∂pk
= ∂dk

∂pi
for all commodities

i , k . In other words, the price of a commodity k affects the
supply of a commodity i in the same way that the price of a
commodity i affects the supply of a commodity k . A similar
situation must hold for the demands for the commodities.
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However, such symmetry conditions are limiting from
the application standpoint and, hence, the appeal of
variational inequality problem that enables the
formulation and, ultimately, the computation of
equilibria where such restrictive symmetry assumptions
on the underlying functions need no longer hold.
Indeed, such symmetry assumptions were not imposed
in the variational inequality problem.
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An Example (Market Equilibrium with Equalities

and Inequalities and Policy Interventions)

We now provide a generalization of the preceding market
equilibrium model to allow for price policy interventions in the
form of price floors and ceilings. Let pC

i denote the imposed
price ceiling on the price of commodity i , and we let pF

i denote
the imposed price floor on the price of commodity i .

Then we have the following equilibrium conditions. For each
commodity i ; i = 1, . . . , n:

si(p
∗)− di(p

∗)


≤ 0, if p∗

i = pC
i

= 0, if pF
i < p∗

i < pC
i

≥ 0, if p∗
i = pF

i .
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An Example (Market Equilibrium with Equalities

and Inequalities and Policy Interventions)

These equilibrium conditions state that if the price of a
commodity in equilibrium lies between the imposed price floor
and ceiling, then the supply of that commodity must be equal
to the demand for that commodity.

On the other hand, if the price of a commodity at equilibrium
is at the imposed floor, then there may be an excess supply of
that commodity at equilibrium, that is, si(p

∗)− di(p
∗) > 0, or

the market clears. In contrast, if the price of a commodity in
equilibrium is at the imposed ceiling, then there may be an
excess demand of the commodity in equilibrium.
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An Example (Market Equilibrium with Equalities

and Inequalities and Policy Interventions)

The variational inequality formulation of the governing
equilibrium conditions is:

Determine p∗ ∈ K, such that

〈(s(p∗)− d(p∗)), p − p∗〉 ≥ 0, ∀p ∈ K,

where the feasible set K ≡ {p|pF ≤ p ≤ pC}, where pF and
pC denote, respectively, the n-dimensional column vectors of
imposed price floors and ceilings.
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Fixed Point Problems

Fixed point theory has been used to formulate, analyze, and
compute solutions to economic equilibrium problems. The
relationship between the variational inequality problem and a
fixed point problem can be made through the use of a
projection operator. First, the projection operator is defined.

Lemma 1
Let K be a closed convex set in Rn. Then for each x ∈ Rn,
there is a unique point y ∈ K, such that

‖x − y‖ ≤ ‖x − z‖, ∀z ∈ K , (11)

and y is known as the orthogonal projection of x on the set K
with respect to the Euclidean norm, that is,

y = PKx = arg min
z∈K

‖x − z‖.
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Fixed Point Problems

Proof: Let x be fixed and let w ∈ K . Minimizing ‖x − z‖
over all z ∈ K is equivalent to minimizing the same function
over all z ∈ K such that ‖x − z‖ ≤ ‖x − w‖, which is a
compact set. The function g defined by g(z) = ‖x − z‖2 is
continuous. Existence of a minimizing y follows because a
continuous function on a compact set always attains its
minimum. To prove that y is unique, observe that the square
of the Euclidean norm is a strictly convex function. Hence, g
is strictly convex and its minimum is unique.
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Theorem 2

Let K be a closed convex set. Then y = PKx if and only if

yT · (z − y) ≥ xT · (z − y), ∀z ∈ K

or
(y − x)T · (z − y) ≥ 0, ∀z ∈ K . (12)

Proof: Note that y = PKx is the minimizer of g(z) over all
z ∈ K . Since ∇g(z) = 2(z − x), the result follows from the
optimality conditions for constrained optimization problems.
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Projection Operator

A property of the projection operator which is useful both in
qualitative analysis of equilibria and their computation is now
presented.

Corollary 1
Let K be a closed convex set. Then the projection operator
PK is nonexpansive, that is,

‖PKx − PKx ′‖ ≤ ‖x − x ′‖, ∀x , x ′ ∈ Rn. (13)
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Projection Operator

Proof: Given x , x ′ ∈ Rn, let y = PKx and y ′ = PKx ′. Then
from Theorem 2 note that

for y ∈ K : yT · (z − y) ≥ xT · (z − y), ∀z ∈ K , (14)

for y ′ ∈ K : y ′T · (z − y ′) ≥ x ′T · (z − y ′), ∀z ∈ K . (15)

Setting z = y ′ in (14) and z = y in (15) and adding the
resultant inequalities, one obtains:

‖y − y ′‖2
= (y − y ′)

T · (y − y ′) ≤ (x − x ′)
T · (y − y ′)

≤ ‖x − x ′‖ · ‖y − y ′‖

by an application of the Schwarz inequality. Hence,

‖y − y ′‖ ≤ ‖x − x ′‖.
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Geometric Interpretation of Projection
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Figure: The projection y of x on the set K
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Additional Geometric Interpretation
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Relationship Between Fixed Point Problems and

Variational Inequalities

The relationship between a variational inequality and a fixed
point problem is as follows.

Theorem 3
Assume that K is closed and convex. Then x∗ ∈ K is a
solution of the variational inequality problem VI(F , K ) if and
only if for any γ > 0, x∗ is a fixed point of the map

PK (I − γF ) : K 7→ K ,

that is,
x∗ = PK (x∗ − γF (x∗)). (16)
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Relationship Between Fixed Point Problems and

Variational Inequalities

Proof: Suppose that x∗ is a solution of the variational
inequality, i.e.,

F (x∗)T · (x − x∗) ≥ 0, ∀x ∈ K .

Multiplying the above inequality by −γ < 0, and adding
x∗T · (x − x∗) to both sides of the resulting inequality, one
obtains

x∗T · (x − x∗) ≥ [x∗ − γF (x∗)]T · (x − x∗), ∀x ∈ K . (17)

From Theorem 2 one concludes that

x∗ = PK (x∗ − γF (x∗)).
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Relationship Between Fixed Point Problems and

Variational Inequalities

Conversely, if x∗ = PK (x∗ − γF (x∗)), for γ > 0, then

x∗T · (x − x∗) ≥ (x∗ − γF (x∗))T · (x − x∗), ∀x ∈ K ,

and, therefore,

F (x∗)T · (y − x∗) ≥ 0, ∀y ∈ K .
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Basic Existence and Uniqueness Results

Variational inequality theory is also a powerful tool in the
qualitative analysis of equilibria. We now provide conditions
for existence and uniqueness of solutions to VI(F , K ) are
provided.

Existence of a solution to a variational inequality problem
follows from continuity of the function F entering the
variational inequality, provided that the feasible set K is
compact. Indeed, we have the following:

Theorem 4 (Existence Under Compactness and
Continuity)
If K is a compact convex set and F (x) is continuous on K,
then the variational inequality problem admits at least one
solution x∗.
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Basic Existence and Uniqueness Results

Proof: According to Brouwer’s Fixed Point Theorem, given a
map P : K 7→ K , with P continuous, there is at least one
x∗ ∈ K , such that x∗ = Px∗. Observe that since PK and
(I − γF ) are each continuous, PK (I − γF ) is also continuous.
The conclusion follows from compactness of K and Theorem
3.
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Basic Existence and Uniqueness Results

In the case of an unbounded feasible set K , Brouwer’s Fixed
Point Theorem is no longer applicable; the existence of a
solution to a variational inequality problem can, nevertheless,
be established under the subsequent condition.

Let BR(0) denote a closed ball with radius R centered at 0
and let KR = K ∩ BR(0). KR is then bounded.
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Basic Existence and Uniqueness Results

Let VIR denote the variational inequality problem:
Determine x∗

R ∈ KR , such that

F (x∗
R)T · (y − x∗

R) ≥ 0, ∀y ∈ KR . (18)

Theorem 5
VI(F , K ) admits a solution if and only if there exists an R > 0
and a solution of VIR, x∗

R , such that ‖x∗
R‖ < R.

Although ‖x∗
R‖ < R may be difficult to check, one may be able

to identify an appropriate R based on the particular
application.
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Basic Existence and Uniqueness Results

Existence of a solution to a variational inequality problem may
also be established under the coercivity condition, as in the
subsequent corollary.

Corollary 2 (Existence Under Coercivity)
Suppose that F (x) satisfies the coercivity condition

(F (x)− F (x0))
T · (x − x0)

‖x − x0‖
→ ∞ (19)

as ‖x‖ → ∞ for x ∈ K and for some x0 ∈ K. Then VI(F , K )
always has a solution.

Corollary 3
Suppose that x∗ is a solution of VI (F , K ) and x∗ ∈ K 0, the
interior of K . Then F (x∗) = 0.
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Basic Existence and Uniqueness Results

Qualitative properties of existence and uniqueness become
easily obtainable under certain monotonicity conditions. First
we outline the definitions and then present the results.

Definition 3 (Monotonicity)
F (x) is monotone on K if[

F (x1)− F (x2)
]T · (x1 − x2) ≥ 0, ∀x1, x2 ∈ K .

Definition 4 (Strict Monotonicity)
F (x) is strictly monotone on K if[

F (x1)− F (x2)
]T · (x1 − x2) > 0, ∀x1, x2 ∈ K , x1 6= x2.

Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar



Basic Existence and Uniqueness Results

Definition 5 (Strong Monotonicity)
F (x) is strongly monotone on K if for some α > 0[

F (x1)− F (x2)
]T · (x1 − x2) ≥ α‖x1 − x2‖2

, ∀x1, x2 ∈ K .

Definition 6 (Lipschitz Continuity)
F (x) is Lipschitz continous on K if there exists an L > 0,

such that

‖F (x1)− F (x2)‖ ≤ L‖x1 − x2‖, ∀x1, x2 ∈ K .
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Basic Existence and Uniqueness Results

A uniqueness result is presented in the subsequent theorem.

Theorem 6 (Uniqueness)
Suppose that F (x) is strictly monotone on K. Then the

solution is unique, if one exists.

Proof: Suppose that x1 and x∗ are both solutions and
x1 6= x∗. Then since both x1 and x∗ are solutions, they must
satisfy:

F (x1)T · (x ′ − x1) ≥ 0, ∀x ′ ∈ K (25)

F (x∗)T · (x ′ − x∗) ≥ 0, ∀x ′ ∈ K . (26)
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Basic Existence and Uniqueness Results

After substituting x∗ for x ′ in (25) and x1 for x ′ in (26) and
adding the resulting inequalities, one obtains:

(F (x1)− F (x∗))
T · (x∗ − x1) ≥ 0. (27)

But inequality (27) is in contradiction to the definition of
strict monotonicity. Hence, x1 = x∗.
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More on Monotonicity

Monotonicity is closely related to positive-definiteness.

Theorem 7
Suppose that F (x) is continuously differentiable on K and the
Jacobian matrix

∇F (x) =


∂F1

∂x1
· · · ∂F1

∂xn
...

...
∂Fn

∂x1
· · · ∂Fn

∂xn

 ,

which need not be symmetric, is positive-semidefinite
(positive-definite). Then F (x) is monotone (strictly
monotone).
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More on Monotonicity

Proposition 5
Assume that F (x) is continuously differentiable on K and that
∇F (x) is strongly positive-definite. Then F (x) is strongly
monotone.
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One obtains a stronger result in the special case where F (x) is
linear.

Corollary 4
Suppose that F (x) = Mx + b, where M is an n × n matrix
and b is a constant vector in Rn. The function F is monotone
if and only if M is positive-semidefinite. F is strongly
monotone if and only if M is positive-definite.
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Proposition 6
Assume that F : K 7→ Rn is continuously differentiable at x̄ .
Then F (x) is locally strictly (strongly) monotone at x̄ if
∇F (x̄) is positive-definite (strongly positive-definite), that is,

vTF (x̄)v > 0, ∀v ∈ Rn, v 6= 0,

vT∇F (x̄)v ≥ α‖v‖2, for some α > 0, ∀v ∈ Rn.
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A Strong Result

The following theorem provides a condition under which both
existence and uniqueness of the solution to the variational
inequality problem are guaranteed. Here no assumption on the
compactness of the feasible set K is made.

Theorem 8 (Existence and Uniqueness)
Assume that F (x) is strongly monotone. Then there exists
precisely one solution x∗ to VI(F , K ).

Proof: Existence follows from the fact that strong
monotonicity implies coercivity, whereas uniqueness follows
from the fact that strong monotonicity implies strict
monotonicity.
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Hence, in the case of an unbounded feasible set K , strong
monotonicity of the function F guarantees both existence and
uniqueness. If K is compact, then existence is guaranteed if F
is continuous, and only the strict monotonicity condition needs
to hold for uniqueness to be guaranteed.
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A Contraction

Assume now that F (x) is both strongly monotone and
Lipschitz continuous. Then the projection PK [x − γF (x)] is a
contraction with respect to x , that is, we have the following:

Theorem 9
Fix 0 < γ ≤ α

L2 where α and L are the constants appearing,
respectively, in the strong monotonicity and the Lipschitz
continuity condition definitions. Then

‖PK (x − γF (x))− PK (y − γF (y))‖ ≤ β‖x − y‖ (31)

for all x , y ∈ K, where

(1− γα)
1
2 ≤ β < 1.
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An immediate consequence of Theorem 9 and the Banach
Fixed Point Theorem is:

Corollary 5
The operator PK (x − γF (x)) has a unique fixed point x∗.
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Summary

In this lecture, the fundamental qualitative tools for the
formulation and analysis of finite-dimensional variational
inequalities have been provided.

In subsequent lectures, we will describe algorithms and a
plethora of applications of variational inequalities.

Since many of the applications are network-based,, we will also
cover such applications and special-purpose algorithms.
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