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Outline of Masterclass on Network Equilibrium

Lecture 1: Overview of Network Equilibrium and Variational
Inequalities
• Fundamental Theory, Traffic Network Equilibrium, and Nash
Equilibrium

Lecture 2: Game Theory Network Models for Disaster Relief
• Generalized Nash Equilibrium
• Case Studies on Real-Life Disasters

Lecture 3: Perishable Product Supply Chains
• Capturing Perishability via Generalized Networks
• Applications to Food Supply Chains and More

Lecture 4: Cybercrime and Cybersecurity
• Nash Equilibrium, Nash Bargaining, System-Optimization
• Network Vulnerability
• Case Studies on Retail and Energy Sectors.
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Overview of Network Equilibrium
and Variational Inequalities
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Outline

Background and Motivation

User-Optimization versus System-Optimization

The Braess Paradox

Variational Inequalities

Variational Inequality Formulations of Traffic Network
Equilibrium

Nash Equilibrium and Oligopolies

Summary
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Background and Motivation
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Characteristics of Networks Today

large-scale nature and complexity of network topology;

congestion, which leads to nonlinearities;

alternative behavior of users of the networks, which may
lead to paradoxical phenomena;

interactions among networks themselves, such as the
Internet with electric power networks, financial networks, and
transportation and logistical networks;

recognition of the fragility and vulnerability of network
systems;

policies surrounding networks today may have major impacts
not only economically, but also socially, politically, and
security-wise.
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A General Supply Chain Network
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Electric Power Generation and Distribution Networks

Professor Anna Nagurney Masterclass - Network Equilibrium



Financial Networks
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Social Networks
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In this Master Class we will be covering a variety of nonlinear
network flow problems. The concept of network equilibrium owes
much to the study of congested transportation networks, so
we will begin with this topic, since this area of application has also
driven many methodological advances.

Interestingly, the topic of congestion and its management was even
a major issue in Roman times.
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The Most Congested Cities in the World

Inrix recently released their comprehensive list of the most
congested cities in the world, based on 2017 statistics.

Around the world, traffic congestion is increasingly
problematic, with drivers in some cities spending upwards of
100 hours per year sitting in peak time traffic. Not only is
this costing valuable time, but it is costing billions of dollars
as well.
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The Most Congested Cities in the World

• Los Angeles, California holds onto the #1 spot for most
congested city in the world, with drivers averaging 102 hours spent
in congestion during peak hours. NYC is in 3rd place, with NY
drivers spending 91 hours sitting in traffic.

• London, England is the 7th most congested city in the world
(and the second-most in Europe, after Moscow) with drivers
spending about 74 additional hours per year driving in congestion.
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The Study of Congested Transportation Networks
Must Capture the Behavior of Users
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Decentralized (Selfish) versus Centralized (Unselfish)
Behavior
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User-Optimization versus System-Optimization
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Behavior on Congested Networks

Flows are routed so as to
minimize the total cost to society.

System-Optimized

Centralized Unselfish S–O

vs. vs. vs.��
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Decentralized Selfish U–O

User-Optimized

Decision-makers select their cost-minimizing routes.
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Two fundamental principles of travel behavior, due to Wardrop
(1952), with terms coined by Dafermos and Sparrow (1969).

User-optimized (U-O) (network equilibrium) Problem – each
user determines his/her cost minimizing route of travel between an
origin/destination, until an equilibrium is reached, in which no user
can decrease his/her cost of travel by unilateral action (in the
sense of Nash).

System-optimized (S-O) Problem – users are allocated among
the routes so as to minimize the total cost in the system, where
the total cost is equal to the sum over all the links of the link’s
user cost times its flow.

The U-O problems, under certain simplifying assumptions, possess
optimization reformulations. But now we can handle cost
asymmetries, multiple modes of transport, and different
classes of travelers, without such assumptions.
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We Can State These Conditions Mathematically!
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First Rigorous Formulation of U-O (Decentralized) and
S-O (Centralized) Behavior

In 1956, Yale University Press published Studies in the
Economics of Transportation by Beckmann, McGuire, and
Winsten.
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We celebrated the 50th anniversary of its publication at the 2005 INFORMS
Meeting, San Francisco. (Professor Nagurney with Professors Beckmann, McGuire

and Boyce)
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Representation of a Transportation Network

The topology is represented by a mathematical graph consisting of
nodes and links:

1. finite set of nodes N,

2. set of directed links (arcs, branches, edges) L represented by
arrows.

Examples
In a road network, nodes are where traffic is generated or
attracted to, or intermediate points. Links are the roads.
In an airline network, nodes are the airports, links are the air
routes.
In a railroad freight network, nodes are loading/unloading
points and switching points. Links are made up of tracks.
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An Airline Example
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Freight Trains
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Origin/Destination Pairs of Nodes and Travel Demands

In addition to the set of nodes N and the set of links L used to
represent the topology of a transportation network, we also denote
the set of origin/destination (O/D) pairs by W and the set of all
paths connecting all O/D pairs by P. An origin/destination pair of
nodes represents where traffic originates and is destined to.

We denote the individual O/D pairs by w1, w2, etc., for a particular
network, and we associate a travel demand dw with each O/D pair
w . We let Pw denote the set of all paths connecting O/D pair w .
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Fixed Demand Transportation Network Models

In the first type of transportation network models that we will be
studying we assume that the travel demands are known and fixed
over the time horizon of interest, such as the morning or evening
commuting period.
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Paths / Routes

Path: A path (or route) is a sequence of links connecting an O/D
pair w = (x , y) of nodes. It can be represented by linking all the
distinct links from the origin to the destination.

We exclude all cycles or loops.

We assume that the travel demand (rate) is constant in time over
the time horizon under analysis (such as the commuting period).

Hence, the flows are constant in time. We are focusing on
steady-state phenomena.
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Some Real-World Network Sizes

In Chicago’s Regional Transportation Network, there are 12,982
nodes, 39,018 links, and 2,297,945 origin/destination (O/D)
pairs.

In the Southern California Association of Governments model there
are 3,217 origins and/or destinations, 25,428 nodes, and
99,240 links, plus 6 distinct classes of users.
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Path and Link Flows

Notation:

xp: flow on path p (measured in units/hrs., users/unit time).

⇒ Path flows are always assumed to be nonnegative.

fa: flow on link a (measured in users/unit time).

Since the path flows are nonnegative, the link flows will be as well
and this makes sense since we are dealing with traffic flows
(vehicles, freight, messages, energy, etc.).
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The Conservation of Flow Equations

The general expression relating the travel demands and path
flows:

dw =
∑
p∈Pw

xp, ∀w ∈ W ,

that is, the travel demand for each O/D pair must be equal to the
sum of the flows on paths that connect that O/D pair.
The general expression relating link flows and path flows:

fa =
∑
p

xpδap, ∀a ∈ L,

where

δap =

{
1, if link a is contained in path p;
0, otherwise.

In other words, the flow on a link is equal to the sum on
flows on paths that use / share that link.
These are the conservation of flow equations, which
guarantee that every traveler arrives at his/her destination.
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Figure: Network Example

Nodes: 1, 2, 3; Links: a, b, c ; O/D pair: w1 = (1, 3) with
dw1 = 300 vehicles/hr.

Pw1 denotes the set of paths connecting O/D pair w1, where:
Pw1 = {p1, p2}, with p1 = (a, c) and p2 = (b). Hence, fa = xp1 ,
fb = xp2 , and fc = xp1 .
If there are 100 cars per hour using path p1 the volume of
traffic on link a and link c is also 100. If there are 200 cars
per hour using path p2 then the traffic on link b is 200.
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Cost Structure

Cost is a disutility - Cost is a function of travel time,
probability of an accident, scenery of a link.

Assume that all such factors can be grouped together into a
disutility.

Both economists and traffic engineers work on determining travel
cost functions on the links.

In particular, we consider travel cost functions of a user
exercised via links of the network.
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Cost Structure

In the first generation model, travel cost of users was assumed
constant and could be determined a priori - such networks are
known as uncongested networks.

In the second generation model, the networks are congested, that
is, the user’s travel cost depends on the characteristics of the link,
but also on the flow on that link.

Clearly, the quality of the road/link also affects the cost and
travel time.
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The Standard Model Link Cost Structure and the BPR
Function

In what is known as the standard model of transportation, we
assume that the user cost on a link (i.e., the cost as perceived by a
traveler or user) is a function of the flow on the link, that is,

ca = ca(fa), ∀a ∈ L.

To capture congestion, the user link cost is an increasing function
of the flow.
A well-known cost function, in practice, is:

The Bureau of Public Roads (BPR) Cost Function

ca = c0
a [ 1 + α (

fa
t ′a

)β ]

where ca: travel time on link a, fa: link flow on link a, c0
a : free flow

travel time, t ′α: “practical capacity” of link a, and α, β: model
parameters (typically α = 0.15, β = 4).
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The Simplest Model

The Standard Model

uncongested cost (time)

Often one can substitute cost with time.
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The Simplest User Link Cost Structure that Captures
Congestion

Example: Simplest - Linear

ca(fa) = gafa + ha,

where ga, ha > 0 and constant.

ga is the congestion factor.

ha - is the uncongested term or the free-flow travel time on the
link.

For example, we may have that:

ca = 10fa + 20.

Professor Anna Nagurney Masterclass - Network Equilibrium



The Multiclass/Multimodal Model Link Cost Structure

Suppose now that we have 2 classes of users that perceive cost in
different ways; this framework can also handle multiple modes of
transportation.

More General Two Mode/Class Model Link Cost Structure

Link cost for link a as perceived by mode/class 1:
c1
a = c1

a (f 1
a , f 2

a )

Link cost for link a as perceived by mode/class 2:
c2
a = c2

a (f 1
a , f 2

a )

Can generalize the 2-class cost structure to k classes or modes.

∗ But when you make the travel choice you choose paths, not links.
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The Biggest Traffic Jam

The world’s longest traffic jam in physical length and time
almost closed the highway in the Inner-Mongolia region of
China in August 2010.

According to the Chinese State News, the ongoing road work to
expand the capacity of the highway was the primary cause for the
delays. Trucks, including freight trucks, many of which carry coal,
make up the majority of the traffic on this busy highway that feeds
Beijing, China’s capital city, and it is one of the busiest in the
country and the world.

The traffic jam was over 100 kilometers/60 miles long,
involved more than 10,000 cars, and lasted over 9 days!
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Images from the Biggest Traffic Jam

Biggest Traffic Jam Ever - On the Beijing-Tibet Highway, August 2010
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The Path/Route Cost Structure

Path Cost Relationship to Link Costs

Let Cp denote the user’s or personal travel cost along path p.

Cp = Cp(f ) =
∑
a∈L

ca(fa)δap, ∀p ∈ P,

where f is a vector of all the link flows and

δap =

{
1, if link a is contained in path p;
0, otherwise.

In other words, the user cost on a path is equal to the sum of user
costs on links that make up the path.
Clearly, the time that it will take you to reach your
destination from your point of origin will depend upon the
sequence of roads that you take (and the traffic).
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A Transportation Network Example

m1
m2

a b

R 	

?

c

m3
The O/D pair is: w1 = (1, 3). The paths are:

p1 = (a, c), p2 = (b, c).

The user link cost functions are:

ca(fa) = 10fa + 5, cb(fb) = fb + 10, cc(fc) = 5fc + 5.

The travel demand is dw1 = 10 and the path flows are:
xp1 = 5, xp2 = 5. What is Cp1 =? What is Cp2 =?
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The Total Link Cost Structure

Another type of cost is the social or total cost.

The total cost on a link a is denoted by ĉa and, for the standard
model, is expressed as:

ĉa(fa) = ca(fa)× fa.

If the user link cost ca is linear, then the total link cost:

ĉa(fa) = (gafa + ha)× fa = gaf
2
a + hafa.

Hence, if the user cost function on a link is linear, then the
total cost is quadratic.

Professor Anna Nagurney Masterclass - Network Equilibrium



Another Transportation Network Example

m1
m2

a b

R 	

O/D pair w1 = (1, 2). The user link travel costs and the total link
costs are:

ca(fa) = 10fa + 5, ĉa(fa) = 10f 2
a + 5fa,

cb(fb) = 4fb + 10, ĉb(fb) = 4f 2
b + 10fb.

Suppose that p1 = (a), p2 = (b), and dw1 = 20, and

xp1 = 10, xp2 = 10.

What are the user and total costs on the links a and b?
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The Marginal Link Total Cost Structure

The marginal total cost ĉ ′a(fa) =
∂ĉa(fa)

∂fa
,

where ĉa(fa) = ca(fa)× fa.

In the uncongested model, the marginal total cost is a constant.

Hence, the marginal total cost in congested networks must be an
increasing function of the link flows.
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The Total Network Cost

Different ways to express the total network cost, denoted by S .

• S(f ) =
∑
a∈L

ĉa(fa)

• S(f ) =
∑
a∈L

ca(fa)× fa

• S(f , x) =
∑
p∈P

Cp(f )× xp

In the S-O problem, we seek to minimize the total cost in the
network, subject to the conservation of flow equations.
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An Example to Illustrate Concepts

m1
m2

a b

R 	

The O/D pair w1 = (1, 2).
The user link travel costs and the total link costs are:

ca(fa) = 1fa + 15, ĉa(fa) = 1f 2
a + 15fa,

cb(fb) = 2fb + 5, ĉb(fb) = 2f 2
b + 5fb.

Hence, the marginal total costs on the links are:

ĉ ′a(fa) = 2fa + 15, ĉ ′b(fb) = 4fb + 5.

The total cost expression for the network is:

S(f ) = ĉa(fa) + ĉb(fb) = 1f 2
a + 15f 2

a + f 2
b + 5fb.
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The U-O Conditions

Definition: U-O or Network Equilibrium – Fixed Demands

A path flow pattern x∗, with nonnegative path flows and O/D pair
demand satisfaction, is said to be U-O or in equilibrium, if the
following condition holds for each O/D pair w ∈ W and each path
p ∈ Pw :

Cp(x
∗)

{
= λw , if x∗p > 0,
≥ λw , if x∗p = 0.

Professor Anna Nagurney Masterclass - Network Equilibrium



The S-O Conditions

Definition: S-O Conditions

A path flow pattern x with nonnegative path flows and O/D pair
demand satisfaction, is said to be S-O, if for each O/D pair
w ∈ W and each path p ∈ Pw :

Ĉ ′
p(x)

{
= µw , if xp > 0,
≥ µw , if xp = 0,

where Ĉ ′
p(x)=

∑
a∈L

∂ĉa(fa)
∂fa

δap, and µw is a Lagrange multiplier.
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The Braess Paradox
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The importance of behavior will now be illustrated through a
famous example known as the Braess paradox which demonstrates
what can happen under U-O as opposed to S-O behavior.

Although the paradox was presented in the context of
transportation networks, it is relevant to other network
systems in which decision-makers act in a noncooperative
(competitive) manner.
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The Braess (1968) Paradox

Assume a network with a single
O/D pair (1,4). There are 2
paths available to travelers:
p1 = (a, c) and p2 = (b, d).

For a travel demand of 6, the
equilibrium path flows are
x∗p1

= x∗p2
= 3 and

The equilibrium path travel
cost is
Cp1 = Cp2 = 83.
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ca(fa) = 10fa, cb(fb) = fb + 50,

cc(fc) = fc +50, cd(fd) = 10fd .
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Adding a Link Increases Travel Cost for All!
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We now add a new link e with user cost:ce(fe) = fe + 10. Adding a
new link creates a new path p3 = (a, e, d).

The original flow distribution pattern is no longer an equilibrium
pattern, since at this level of flow the cost on path p3,Cp3 = 70.
The new equilibrium flow pattern is: x∗p1

= x∗p2
= x∗p3

= 2.

The equilibrium path travel cost: Cp1 = Cp2 = Cp3 = 92.
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The 1968 Braess article has been translated from German to
English and appears as:

“On a Paradox of Traffic Planning,”

D. Braess, A. Nagurney, and T. Wakolbinger (2005)
Transportation Science 39, pp 446-450.
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The Braess Paradox Around the World

1969 - Stuttgart, Germany - The
traffic worsened until a newly
built road was closed.

1990 - Earth Day - New York
City - 42nd Street was closed and
traffic flow improved.

2002 - Seoul, Korea - A 6 lane
road built over the
Cheonggyecheon River that
carried 160,000 cars per day and
was perpetually jammed was torn
down to improve traffic flow.
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Interview on Broadway for America Revealed on March 15,
2011

http://video.pbs.org/video/2192347741/
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Under S-O behavior, the total cost in the network is
minimized, and the new route p3, under the same
demand, would not be used.

The Braess paradox never occurs in S-O
networks.
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Recall the Braess network with the added link e.

What happens as the demand increases?
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For Networks with Time-Dependent Demands

We Use Evolutionary Variational Inequalities
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Radcliffe Institute for Advanced Study – Harvard University
2005-2006

Research with Professor David Parkes of Harvard University and
Professor Patrizia Daniele of the University of Catania, Italy
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The U-O Solution of the Braess Network with Added Link (Path)
and Time-Varying Demands Solved as an Evolutionary Variational
Inequality (Nagurney, Daniele, and Parkes, Computational
Management Science 4 (2007), pp 355-375).
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In Demand Regime I, Only the New Path is Used.
In Demand Regime II, the travel demand lies in the range [2.58,
8.89], and the Addition of a New Link (Path) Makes
Everyone Worse Off!
In Demand Regime III, when the travel demand exceeds 8.89, Only
the Original Paths are Used!
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The new path is never used, under U-O
behavior, when the demand exceeds 8.89,
even when the demand goes out to infinity!
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Variational Inequalities
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Variational Inequalities

It was the identification by Dafermos (1980) that the Traffic
Network Equilibrium conditions, as formulated by Smith
(1979)), were, in fact, a variational inequality problem, that
unveiled this theory for the formulation, analysis, and
computations of solution to numerous equilibrium problems
in operations research, economics, engineering, and other
disciplines.
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Background

To-date, problems which have been formulated and studied
as variational inequality problems include:

• traffic network equilibrium problems
• spatial price equilibrium problems
• oligopolistic market equilibrium problems
• financial equilibrium problems
• migration equilibrium problems, as well as
• environmental network and ecology problems,
• knowledge network problems,
• electric power generation and distribution networks,
• supply chain network equilibrium problems, and even
• the Internet!
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Observe that many of the applications explored to-date that have
been formulated, studied, and solved as variational inequality
problems are, in fact, network problems.

In addition, as we shall see, many of the advances in
variational inequality theory have been spurred by needs in
practice!
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Variational Inequality Theory

Variational inequality theory provides us with a tool for:

• formulating a variety of equilibrium problems;

• qualitatively analyzing the problems in terms of existence and
uniqueness of solutions, stability and sensitivity analysis, and

• providing us with algorithms with accompanying convergence
analysis for computational purposes.

It contains, as special cases, such well-known problems in
mathematical programming as: systems of nonlinear
equations, optimization problems, complementarity problems,
and is also related to fixed point problems.
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Variational Inequality Theory
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Variational Inequality Theory

Also, as shown by Dupuis and Nagurney (1993), there is associated
with a variational inequality problem, a projected dynamical
system, which provides a natural underlying dynamics until an
equilibrium state is achieved, under appropriate conditions.

This result further enriches the scope and reach of variational
inequalities in terms of theory and especially applications!
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The Variational Inequality Problem

Definition: Variational Inequality Problem

The finite - dimensional variational inequality problem, VI(F ,K),
is to determine a vector X ∗ ∈ K ⊂ RN , such that

F (X ∗)T · (X − X ∗) ≥ 0, ∀X ∈ K,

or, equivalently,

〈F (X ∗),X − X ∗〉 ≥ 0, ∀X ∈ K (1)

where F is a given continuous function from K to RN , K is a given
closed convex set, and 〈·, ·〉 denotes the inner product in
N-dimensional Euclidean space, as does “·”.

Here we assume that all vectors are column vectors, except where
noted.

Professor Anna Nagurney Masterclass - Network Equilibrium



The Variational Inequality Problem

Another equivalent way of writing (1) is:

N∑
i=1

Fi (X
∗)× (Xi − X ∗

i ) ≥ 0, ∀X ∈ K. (2)

K is the feasible set, X ∗ is the vector of solution values of the
variables, and F is sometimes referred to as the function that
enters the variational inequality.
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Geometric Interpretation of VI(F ,K) and a Projected
Dynamical System (Dupuis and Nagurney, Nagurney and
Zhang)

In particular, F (X ∗) is “orthogonal” to the feasible set K at the
point X ∗.
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Associated with a VI is a Projected Dynamical System, which

provides the natural underlying dynamics.
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To model the dynamic behavior of complex networks, including
supply chains, we utilize projected dynamical systems (PDSs)
advanced by Dupuis and Nagurney (1993) in Annals of Operations
Research and by Nagurney and Zhang (1996) in our book
Projected Dynamical Systems and Variational Inequalities with
Applications.

Such nonclassical dynamical systems are now being used in

evolutionary games (Sandholm (2005, 2011)),

ecological predator-prey networks (Nagurney and Nagurney
(2011a, b)),

even neuroscience (Girard et al. (2008), and

dynamic spectrum model for cognitive radio networks
(Setoodeh, Haykin, and Moghadam (2012)).
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Optimization Problems

An optimization problem is characterized by its specific
objective function that is to be maximized or minimized,
depending upon the problem and, in the case of a
constrained problem, a given set of constraints.

Possible objective functions include expressions representing profits,
costs, market share, portfolio risk, etc. Possible constraints include
those that represent limited budgets or resources, nonnegativity
constraints on the variables, conservation equations, etc. Typically,
an optimization problem consists of a single objective function.
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Optimization Problems

Both unconstrained and constrained optimization problems can
be formulated as variational inequality problems. The subsequent
two propositions and theorem identify the relationship between an
optimization problem and a variational inequality problem.

Proposition

Let X ∗ be a solution to the optimization problem:

Minimize f (X ) (3)

subject to: X ∈ K,

where f is continuously differentiable and K is closed and convex.
Then X ∗ is a solution of the variational inequality problem:

∇f (X ∗)T · (X − X ∗) ≥ 0, ∀X ∈ K. (4)
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Optimization Problems

Proposition

If f (X ) is a convex function and X ∗ is a solution to VI(∇f ,K),
then X ∗ is a solution to the optimization problem (3).
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Optimization Problems

If the feasible set K = RN , then the unconstrained
optimization problem is also a variational inequality problem.
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Relationship Between Optimization Problems and
Variational Inequalities

On the other hand, in the case where a certain symmetry condition
holds, the variational inequality problem can be reformulated as an
optimization problem.

In other words, in the case that the variational inequality
formulation of the equilibrium conditions underlying a specific
problem is characterized by a function with a symmetric Jacobian,
then the solution of the equilibrium conditions and the solution of
a particular optimization problem are one and the same. We first
introduce the following definition and then fix this relationship in a
theorem.
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Relationship Between Optimization Problems and
Variational Inequalities

Theorem

Assume that F (X ) is continuously differentiable on K and that the
Jacobian matrix

∇F (X ) =


∂F1
∂X1

· · · ∂F1
∂XN

...
...

∂FN
∂X1

· · · ∂FN
∂XN

 (5)

is symmetric and positive-semidefinite.
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Then there is a real-valued convex function f : K 7→ R1 satisfying

∇f (X ) = F (X )

with X ∗ the solution of VI(F ,K) also being the solution of the
mathematical programming problem:

Minimize f (X ) (6)

subject to: X ∈ K.
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Hence, although the variational inequality problem
encompasses the optimization problem, a variational
inequality problem can be reformulated as a convex
optimization problem, only when the symmetry condition and
the positive-semidefiniteness condition hold.

The variational inequality, therefore, is the more general
problem in that it can also handle a function F (X ) with an
asymmetric Jacobian.
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Consequently, variational inequality theory allows for the
modeling, analysis, and solution of multimodal traffic
network equilibrium problems, multicommodity spatial price
equilibrium problems, general economic equilibrium problems,
and numerous competitive supply chain network equilibrium
problems since one no longer has to make a “symmetry”
assumption of F (X ).
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Fixed Point Problems

Fixed point theory has been used to formulate, analyze, and
compute solutions to economic equilibrium problems. The
relationship between the variational inequality problem and a fixed
point problem can be made through the use of a projection
operator. First, the projection operator is defined.

Lemma

Let K be a closed convex set in Rn. Then for each x ∈ RN , there
is a unique point y ∈ K, such that

‖x − y‖ ≤ ‖x − z‖, ∀z ∈ K ,

and y is known as the orthogonal projection of X on the set K
with respect to the Euclidean norm, that is,

y = PKX = arg min
z∈K

‖X − z‖.
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Projection Operator

A property of the projection operator which is useful both in
qualitative analysis of equilibria and their computation is now
presented.

Corollary

Let K be a closed convex set. Then the projection operator PK is
nonexpansive, that is,

‖PKX − PKX ′‖ ≤ ‖X − X ′‖, ∀X ,X ′ ∈ RN .
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Geometric Interpretation of Projection
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Figure: The projection y of X on the set K
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Additional Geometric Interpretation
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Figure: Geometric interpretation of 〈(y − X ), z − y〉 ≥ 0, for y = PKX
and y 6= PKX
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Relationship Between Fixed Point Problems and
Variational Inequalities

The relationship between a variational inequality and a fixed point
problem is as follows.

Theorem

Assume that K is closed and convex. Then X ∗ ∈ K is a solution of
the variational inequality problem VI(F ,K) if and only if for any
γ > 0, X ∗ is a fixed point of the map

PK(I − γF ) : K 7→ K,

that is,
X ∗ = PK(X ∗ − γF (X ∗)).
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Basic Existence and Uniqueness Results

Variational inequality theory is also a powerful tool in the
qualitative analysis of equilibria. We now provide conditions for
existence and uniqueness of solutions to VI(F ,K) are provided.

Existence of a solution to a variational inequality problem follows
from continuity of the function F entering the variational
inequality, provided that the feasible set K is compact. Indeed, we
have the following:

Theorem: Existence Under Compactness and Continuity

If K is a compact convex set and F (X ) is continuous on K, then
the variational inequality problem admits at least one solution X ∗.
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Basic Existence and Uniqueness Results

Let VIR denote the variational inequality problem:
Determine x∗R ∈ KR , such that

F (X ∗
R)T · (y − X ∗

R) ≥ 0, ∀y ∈ KR .

Theorem

VI(F ,K) admits a solution if and only if there exists an R > 0 and
a solution of VIR, x∗R , such that ‖x∗R‖ < R.

Although ‖x∗R‖ < R may be difficult to check, one may be able to
identify an appropriate R based on the particular application.
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Basic Existence and Uniqueness Results

Qualitative properties of existence and uniqueness become easily
obtainable under certain monotonicity conditions. First we outline
the definitions and then present the results.

Definition: Monotonicity

F (X ) is monotone on K if[
F (X 1)− F (X 2)

]T · (X 1 − X 2) ≥ 0, ∀X 1,X 2 ∈ K.

Definition: Strict Monotonicity

F (X ) is strictly monotone on K if[
F (X 1)− F (X 2)

]T · (X 1 − X 2) > 0, ∀X 1,X 2 ∈ K, X 1 6= X 2.
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Basic Existence and Uniqueness Results

Definition: Strong Monotonicity

F (X ) is strongly monotone on K if for some α > 0[
F (X 1)− F (X 2)

]T · (X 1 − X 2) ≥ α‖X 1 − X 2‖2
, ∀X 1,X 2 ∈ K.

Definition: Lipschitz Continuity

F (X ) is Lipschitz continuous on K if there exists an L > 0, such
that

‖F (X 1)− F (X 2)‖ ≤ L‖X 1 − X 2‖, ∀X 1,X 2 ∈ K.
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Basic Existence and Uniqueness Results

A uniqueness result is presented in the subsequent theorem.

Theorem: Uniqueness

Suppose that F (X ) is strictly monotone on K. Then the solution
is unique, if one exists.
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More on Monotonicity

Monotonicity is closely related to positive-definiteness.

Theorem

Suppose that F (X ) is continuously differentiable on K and the
Jacobian matrix

∇F (X ) =


∂F1
∂X1

· · · ∂F1
∂XN

...
...

∂FN
∂X1

· · · ∂FN
∂XN

 ,

which need not be symmetric, is positive-semidefinite
(positive-definite). Then F (X ) is monotone (strictly monotone).
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More on Monotonicity

Proposition

Assume that F (X ) is continuously differentiable on K and that
∇F (X ) is strongly positive-definite. Then F (X ) is strongly
monotone.
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One obtains a stronger result in the special case where F (X ) is
linear.

Corollary

Suppose that F (X ) = MX + b, where M is an N ×N matrix and b
is a constant vector in RN . The function F is monotone if and
only if M is positive-semidefinite. F is strongly monotone if and
only if M is positive-definite.
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Proposition

Assume that F : K 7→ RN is continuously differentiable at X̄ . Then
F (X ) is locally strictly (strongly) monotone at X̄ if ∇F (X̄ ) is
positive-definite (strongly positive-definite), that is,

vTF (X̄ )v > 0, ∀v ∈ RN , v 6= 0,

vT∇F (X̄ )v ≥ α‖v‖2, for some α > 0, ∀v ∈ RN .
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A Strong Result

The following theorem provides a condition under which both
existence and uniqueness of the solution to the variational
inequality problem are guaranteed. Here no assumption on the
compactness of the feasible set K is made.

Theorem: Existence and Uniqueness

Assume that F (X ) is strongly monotone. Then there exists
precisely one solution X ∗ to VI(F ,K).
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Hence, in the case of an unbounded feasible set K, strong
monotonicity of the function F guarantees both existence and
uniqueness. If K is compact, then existence is guaranteed if F is
continuous, and only the strict monotonicity condition needs to
hold for uniqueness to be guaranteed.
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A Contraction

Assume now that F (X ) is both strongly monotone and Lipschitz
continuous. Then the projection PK [X − γF (X )] is a contraction
with respect to X , that is, we have the following:

Theorem

Fix 0 < γ ≤ α
L2 where α and L are the constants appearing,

respectively, in the strong monotonicity and the Lipschitz
continuity condition definitions. Then

‖PK(X − γF (X ))− PK(y − γF (y))‖ ≤ β‖X − y‖

for all X , y ∈ K, where

(1− γα)
1
2 ≤ β < 1.
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An immediate consequence of the Theorem and the Banach Fixed
Point Theorem is:

Corollary

The operator PK(X − γF (X )) has a unique fixed point X ∗.
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Variational Inequality Formulations of Traffic
Network Equilibrium

Professor Anna Nagurney Masterclass - Network Equilibrium



Variational Inequality Formulations of Traffic Network
Equilibrium

Theorem: Path Flow Formulation

A vector of path flows x∗ ∈ K 1, where
K 1 ≡ {x |x ≥ 0, and

∑
p∈Pw

xp = dw ,∀w} is a Traffic Network
Equilibrium (U-O pattern) if and only if it satisfies the VI problem:∑

w

∑
p∈Pw

Cp(x
∗)× (xp − x∗p ) ≥ 0, ∀x ∈ K 1.
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Variational Inequality Formulations of Traffic Network
Equilibrium

Theorem: Link Flow Formulation

A vector of link flows f ∗ ∈ K 2, where
K 2 ≡ {∃x |x ≥ 0, and

∑
p∈Pw

xp = dw ,∀w , fa =
∑

p∈P xpδap,∀a}
is a Traffic Network Equilibrium (U-O pattern) if and only if it
satisfies the VI problem:∑

a∈L

ca(f
∗)× (fa − f ∗a ) ≥ 0, ∀f ∈ K 2.
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Nash Equilibrium and Oligopolies
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Nash Equilibrium and Oligopolies

Oligopoly theory dates to Cournot (1838), who investigated
competition between two producers, the so-called duopoly
problem, and is credited with being the first to study
noncooperative behavior.

In an oligopoly, it is assumed that there are several firms, which
produce a product and the price of the product depends on the
quantity produced.

Examples of oligopolies include large firms in computer,
automobile, chemical or mineral extraction industries, among
others.
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Nash Equilibrium

Nash (1950, 1951) subsequently generalized Cournot’s concept of
an equilibrium for a behavioral model consisting of n agents or
players, each acting in his/her own self-interest, which has come to
be called a noncooperative game.

The Nobel Laureate John F. Nash
www.search.tvnz.co.nz
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Nash Equilibrium

Specifically, consider m players, each player i having at his/her
disposal a strategy vector Xi = {Xi1, . . . ,Xin} selected from a
closed, convex set Ki ⊂ Rn, with a utility function Ui : K 7→ R1,
where K = K1×K2×. . .×Km ⊂ Rmn.

The rationality postulate is that each player i selects a strategy
vector Xi ∈ Ki that maximizes his/her utility level
Ui (X1, . . . ,Xi−1,Xi ,Xi+1, . . . ,Xm) given the decisions (Xj)j 6=i of
the other players.
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Nash Equilibrium

In this framework one then has:

Definition: Nash Equilibrium

A Nash equilibrium is a strategy vector

X ∗ = (X ∗
1 , . . . ,X ∗

m) ∈ K ,

such that

Ui (X
∗
i , X̂ ∗

i ) ≥ Ui (Xi , X̂
∗
i ), ∀Xi ∈ Ki ,∀i , (7)

where X̂ ∗
i = (X ∗

1 , . . . ,X ∗
i−1,X

∗
i+1, . . . ,X

∗
m).
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Variational Inequality Formulation of Nash Equilibrium

It has been shown (cf. Hartman and Stampacchia (1966) and
Gabay and Moulin (1980)) that Nash equilibria satisfy variational
inequalities. In the present context, under the assumption that
each Ui is continuously differentiable on K and concave with
respect to Xi , one has

Theorem: Variational Inequality Formulation of Nash
Equilibrium

Under the previous assumptions, X ∗ is a Nash equilibrium if and
only if X ∗ ∈ K is a solution of the variational inequality

〈F (X ∗),X − X ∗〉 ≥ 0, ∀X ∈ K , (8)

where F (X ) ≡ (−∇X1U1(X ), . . . ,−∇XmUm(X )) is a row vector

and where ∇Xi
Ui (X ) = (∂Ui (X )

∂Xi1
, . . . , ∂Ui (X )

∂Xin
).
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Variational Inequality Formulation of Nash Equilibrium

Proof: Since Ui is a continuously differentiable function and
concave with respect to Xi , the equilibrium condition (7), for a
fixed i , is equivalent to the variational inequality problem

−〈∇Xi
Ui (X

∗),Xi − X ∗
i 〉 ≥ 0, ∀xi ∈ Ki , (9)

which, by summing over all players i , yields (8). �
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Qualitative Properties

If the feasible set K is compact, then existence is guaranteed under
the assumption that each Ui is continuously differentiable. Rosen
(1965) proved existence under similar conditions. Karamardian
(1969), on the other hand, relaxed the assumption of compactness
of K and provided a proof of existence and uniqueness of Nash
equilibria under the strong monotonicity condition.

As shown by Gabay and Moulin (1980), the imposition of a
coercivity condition on F (X ) will guarantee existence of a Nash
equilibrium X ∗ even if the feasible set is no longer compact.
Moreover, if F (X ) satisfies the strict monotonicity condition,
uniqueness of X ∗ is guaranteed, provided that the equilibrium
exists.
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Classical Oligopoly Problems

We now consider the classical oligopoly problem in which there are
m producers involved in the production of a homogeneous
commodity. The quantity produced by firm i is denoted by qi , with
the production quantities grouped into a column vector q ∈ Rm.
Let fi denote the cost of producing the commodity by firm i , and
let p denote the demand price associated with the good. Assume
that

fi = fi (qi ), (10)

p = p(
m∑

i=1

qi ). (11)

The profit for firm i , ui , can then be expressed as

ui (q) = p(
m∑

i=1

qi )qi − fi (qi ). (12)
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Variational Inequality Formulation of Nash Equilibrium

Assuming that the competitive mechanism is one of
noncooperative behavior, in view of the Theorem, one can write
down the following Theorem.

Theorem: Variational Inequality Formulation of Classical
Cournot-Nash Oligopolistic Market Equilibrium

Assume that the profit function ui (q) is concave with respect to qi ,
and that ui (q) is continuously differentiable. Then q∗ ∈ Rm

+ is a
Nash equilibrium if and only if it satisfies the variational inequality

m∑
i=1

[
∂fi (q

∗
i )

∂qi
−

∂p(
∑m

i=1 q∗i )

∂qi
q∗i − p(

m∑
i=1

q∗i )

]
× [qi − q∗i ] ≥ 0,

∀q ∈ Rm
+ . (13)
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An Equivalence

We now establish the equivalence between the classical oligopoly
model and a network equilibrium model. For a graphic depiction,
see the Figure below.

m

m

1

0

R 	U

1 2 · · · m

∂f1(q1)
∂q1

− ∂p(
Pm

i=1 qi )
∂q1

q1
∂fm(qm)

∂qm
− ∂p(

Pm
i=1 qi )

∂qm
qm

p(
∑m

i=1 qi )

Figure: Network equilibrium representation of an oligopoly model
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An Equivalence

Let 0 be the origin node and 1 the destination node. Construct m
links connecting 0 to 1. The cost on a link i is then given by:[

∂fi (qi )

∂qi
−

∂p(
∑m

i=1 qi )

∂qi
qi

]
,

and the inverse demand associated with the origin/destination
(O/D) pair (0, 1) is given by p(

∑m
i=1 qi ). The flow on link i

corresponds to qi and the demand associated with the O/D pair to∑m
i=1 qi .

Hence, the classical oligopoly model is isomorphic to a
network equilibrium model with a single O/D pair, m paths
corresponding to the m links, and with elastic demand.

Indeed, there are a remarkable number of problems that are
isomorphic to traffic network equilibrium problems.
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Summary

In this lecture, the fundamental qualitative tools for the
formulation and analysis of finite-dimensional variational
inequalities have been provided.

In subsequent lectures, we will describe algorithms and a plethora
of applications of variational inequalities and game theory models.
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Thank You!

For more information, see: http://supernet.isenberg.umass.edu
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