Lecture 5 The System-Optimized (S-O) Problem

Dr. Anna Nagurney

John F. Smith Memorial Professor and Director – Virtual Center for Supernetworks Isenberg School of Management University of Massachusetts Amherst, Massachusetts 01003

Some Background

User-optimization or decentralized decision-making behavior is relevant to congested urban transportation networks as well as the Internet and electric power generation and distribution networks as well as certain financial networks.

System-optimization or centralized decision-making behavior is relevant to networks, including transportation and logistical ones, in which there is a central controller who seeks to route the traffic/flows so that the total cost in the network is minimized.

Examples of transportation networks in which system-optimization is the governing behavioral principle include freight networks – truck, rail and waterway.

Supply chains in the case of humanitarian operations and logistics would operate under the system-optimization principle.

Sea Freight

www.scanlogistics.com

Rail Freight

www.galleywinter.com

A General Supply Chain

Healthcare Supply Chains

Humanitarian Relief

A System-Optimized Transportation Network

A central authority can route traffic according to his/her will (users can't make their own choices).

Criterion or Objective: To minimize total cost in the network.

The total cost on a link $a=\hat{c}_a(f_a)=c_a(f_a)\times f_a$,

where $c_a(f_a)$ is the user link cost on a and f_a is the flow on link a.

Recall that the total cost on a network can be expressed as:

$$\sum_{a\in L} \hat{c}_a(f_a).$$

The System-Optimization Problem

The system optimization (S-O) problem can, hence, be expressed as:

Minimize
$$\sum_{a \in L} \hat{c}_a(f_a)$$
 [the total cost]

subject to the constraints:

$$d_w = \sum_{p \in P_w} F_p$$
, for all O/D pairs $w \in W$, $f_a = \sum_{p \in P} F_p \delta_{ap}$, for all links $a \in L$, $F_p \ge 0$, for all $p \in P$.

Note: The constraints are identical to those in the U-O problem.

The System-Optimizing Conditions

The S-O Conditions

Theorem

A link flow pattern f, induced by a path flow pattern F, is system-optimizing, if and only if, there exists an ordering of paths: $p_1,...,p_{s'},p_{s'+1},...,p_{n_w}$ that connect each O/D pair $w\in W$, such that

$$\hat{C}'_{p_1}(f) = \dots = \hat{C}'_{p_{s'}}(f) = \mu_w \le \hat{C}'_{p_{s'+1}}(f) \le \dots \le \hat{C}'_{p_{n_w}}(f)$$

$$F_{p_r} > 0; r = 1, \dots, s';$$

$$F_{p_r} = 0; r = s' + 1, \dots, n_w,$$

where

$$\hat{C}'_{p}(f) = \sum_{a \in L} \hat{c}'_{a}(f_{a}) \delta_{ap} = \sum_{a \in L} \frac{\partial \hat{c}_{a}(f_{a})}{\partial f_{a}} \delta_{ap}.$$

 $\hat{C}'_p(f)$: the marginal of the total cost on path p,

 $\hat{c}'_a(f_a)$: the marginal of the total cost on link a.

The above conditions must be satisfied for every O/D pair in the network.

The System-Optimizing Conditions

These conditions are equivalent to the Kuhn-Tucker conditions of the nonlinear optimization problem since the feasible set is convex and the user link cost functions are assumed to be continuous.

If the marginal cost functions are **strictly** increasing functions of the flows on the links, we are guaranteed a **unique** S-O link flow pattern since the objective function is strictly convex.

An Example

Determine the U-O and the S-O flow pattern for the following network:

The demand is $d_{xy} = 100$ and the user link cost functions are:

$$c_a(f_a) = 3f_a + 1000, \quad c_b(f_b) = 2f_b + 1500.$$

Recall that a flow pattern f^* would be U-O if: $c_a = c_b$ and $f_a^* > 0$, $f_b^* > 0$, or $c_a \ge c_b$ and $f_b^* > 0$, $f_a^* = 0$, or $c_a \le c_b$ and $f_a^* > 0$, $f_b^* = 0$.

Let's apply the U-O EEA:

- Sort the h_a s: 1000 < 1500.
- Compute

$$\lambda_W^1 = \frac{d_W + \frac{h_{a_1}}{g_{a_1}}}{\frac{1}{g_{a_1}}} = \frac{100 + \frac{1000}{3}}{\frac{1}{3}} = 1300.$$

• Check: Is: $1000 < 1300 \le 1500$; Yes!

The critical s = 1, so

$$f_a^* = F_{p_1}^* = \frac{\lambda_w^1 - h_{a_1}}{g_{a_1}} = \frac{1300 - 1000}{3} = 100, \qquad f_b^* = F_{p_2}^* = 0.$$

System-Optimized Transportation Network

A flow pattern would be S-O if:

$$\begin{split} \hat{c}_a' &= \hat{c}_b' \text{ and } f_a > 0, f_b > 0,\\ \text{or } \hat{c}_a' &\geq \hat{c}_b' \text{ and } f_b > 0, f_a = 0,\\ \text{or } \hat{c}_a' &\leq \hat{c}_b' \text{ and } f_a > 0, f_b = 0. \end{split}$$

For this example, let's see if both paths (which are links here) can be used.

Then we must have: $\hat{c}'_a = \hat{c}'_b$.

How do we construct these?

The total costs on links a and b are:

$$\hat{c}_a(f_a) = (3f_a + 1000) \times f_a = 3f_a^2 + 1000f_a,$$

$$\hat{c}_b(f_b) = (2f_b + 1500) \times f_b = 2f_b^2 + 1500f_b.$$

Then the marginal total costs on these links are:

$$\hat{c}_a' = \frac{\partial \hat{c}_a}{\partial f_a} = 6f_a + 1000, \quad \hat{c}_b' = \frac{\partial \hat{c}_b}{\partial f_b} = 4f_b + 1500.$$

What else do we know?

$$f_a + f_b = d_w = 100 \Rightarrow f_b = 100 - f_a$$

A System-Optimized Transportation Network

Hence,

$$\hat{c}_a'(f_a) = \hat{c}_b'(f_b)$$
 means that:

$$6f_a + 1000 = 4(100 - f_a) + 1500$$
,

$$6f_a + 1000 = 1900 - 4f_a,$$

$$10f_a = 900, \ f_a = 90; \ f_b = 10.$$

A System-Optimized Transportation Network

* The S-O pattern is distinct from the U-O pattern (except for certain very specific networks or a special cost structure).

The total cost under the **S-O pattern** is $c_a = 1270$; $c_b = 1520$.

The total cost =
$$\hat{c}_a + \hat{c}_b = c_a \times f_a + c_b \times f_b = (1270)90 + (1520)10 = 129,500.$$

The total cost under the **U-O pattern** is:

$$c_a = 1300; \ c_b = 1500$$

The total cost =
$$\hat{c}_a + \hat{c}_b = c_a \times f_a + c_b \times f_b = 1300(100) + 1500(0) = 130,000.$$

Note: The total cost under the S-O pattern is less than the total cost under the U-O pattern.

129,500 < 130,000!

The System-Optimizing (S-O) Exact Equilibration Algorithm

- Step 1: Sort the h_{a_i} s in non-descending order and relabel accordingly. Set r=1 and $h_{a_{m+1}}=\infty$.
- Step 2: Compute

$$\mu_{w}^{r} = rac{d_{w} + \sum_{i=1}^{r} rac{h_{a_{i}}}{2g_{a_{i}}}}{\sum_{i=1}^{r} rac{1}{2g_{a_{i}}}}.$$

System-Optimizing EEA (continued)

• Step 3: Check If

$$h_{\mathsf{a}_r} < \mu_{\mathsf{w}}^r \leq h_{\mathsf{a}_{r+1}}$$
 ,

then STOP.

Set the critical s' = r;

$$F_{p_r} = \frac{\mu_w^r - h_{a_r}}{2g_{a_r}}; \quad r = 1, ..., s';$$

$$F_{p_r} = 0; \quad r = s' + 1, ..., m.$$

Else, set r = r + 1 and goto Step 2.

A User-Optimized Transportation Network

The U-O Conditions

For each O/D pair w, there exists an ordering of the paths:

$$C_{p_1}(f^*) = ... = C_{p_s}(f^*) = \lambda_w \le C_{p_{s+1}}(f^*) \le ... \le C_{p_{n_w}}(f^*)$$

$$F_{p_r}^* > 0; \quad r = 1, ..., s;$$

 $F_{p_r}^* = 0; \quad r = s + 1, ..., n_w.$

Here user costs on used paths are "equilibrated or equal."

A System-Optimized Transportation Network

The S-O Conditions

For each O/D pair w, there exists an ordering of the paths:

$$\hat{C}'_{p_1}(f) = \dots = \hat{C}'_{p_{s'}}(f) = \mu_w \leq \hat{C}'_{p_{s'+1}}(f) \leq \dots \leq \hat{C}'_{p_{m'}}(f)$$

$$F_{p_r} > 0; \quad r = 1, ..., s';$$

 $F_{p_r} = 0; \quad r = s' + 1, ..., m'.$

Here the marginal total costs on used paths are "equilibrated" or equal.

Alternative Statement of the U-O and the S-O Conditions

Definition: U-O or Network Equilibrium – Fixed Demands A path flow pattern F^* , of nonnegative path flows, with O/D pair demand satisfaction, is said to be U-O or in equilibrium, if the following condition holds for each O/D pair $w \in W$ and each path

$$C_p(F^*)$$
 $\begin{cases} = \lambda_w, & \text{if} \quad F_p^* > 0, \\ \geq \lambda_w, & \text{if} \quad F_p^* = 0. \end{cases}$

Definition: S-O Conditions - Fixed Demands

A path flow pattern F, of nonnegative path flows, with O/D pair demand satisfaction, is said to be S-O, if the following condition holds for each O/D pair $w \in W$ and each path $p \in P_w$:

$$\hat{C}'_p(F)$$
 $\begin{cases} = \mu_w, & \text{if } F_p > 0, \\ \ge \mu_w, & \text{if } F_p = 0, \end{cases}$

where
$$\hat{C}_p'(F) = \sum_{a \in L} \frac{\partial \hat{c}_a(f_a)}{\partial f_a} \delta_{ap}$$
.

 $p \in P_w$:

Question: When does the U-O solution coincide with the S-O solution?

Answer: In a general network, when the user link cost functions are given by:

$$c_a(f_a)=c_a^0f_a^\beta,$$

for all links, with $c_a^0 \ge 0$, and $\beta \ge 0$.

In particular, if $c_a(f_a) = c_a^0$, that is, in the case of *uncongested* networks, this result always holds.

In a subsequent lecture we will show how policies, in the forms of tolls, that, once imposed, will guarantee that the S-O solution is, at the same time, U-O!

References

⇒ S. C. Dafermos and F. T. Sparrow (1969) The Traffic Assignment Problem for a General Network. *Journal of Research of the National Bureau of Standards*, Vol. 73B, No. 2, 1969, pp 91-118.

For more advanced formulations and associated theory, see Professor Nagurney's Fulbright Network Economics lectures.

 $http://supernet.som.umass.edu/austria_lectures/fulmain.html\\$