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1.1 Background

Networks throughout history have provided the physical means by which
humans conduct their economic activities. Transportation and logistical net-
works have allowed for the movement of individuals, goods, and services,
whereas communication networks have enabled the exchange of messages and
information. Energy networks have provided the fuel for the transactions to
take place.

The emergence and evolution of myriad physical networks over space and
time and the effects of human decision-making on such networks through their
utilization and management thereof has given rise, in turn, to the develop-
ment of rich theories and scientific methodologies that are network-based.
Networks, as a science, have impacted disciplines ranging from engineering,
computer science, applied mathematics, and even biology to finance and eco-
nomics. The novelty of networks is that they are pervasive, providing the
fabric of connectivity for our societies and economies, while, methodologi-
cally, network theory has developed into a powerful and dynamic medium for
abstracting complex problems, which, at first glance, may not even appear
to be networks, with associated nodes, links, and flows.

The topic of networks as a subject of scientific inquiry originates in the
paper by Euler (1736), which is credited with being the earliest paper on
graph theory. By a graph in this context is meant, mathematically, a means
of abstractly representing a system by its depiction in terms of vertices (or
nodes) and edges (or arcs, equivalently, links) connecting various pairs of
vertices. Euler was interested in determining whether it was possible to stroll
around Königsberg (later called Kaliningrad) by crossing the seven bridges
over the River Pregel exactly once. The problem was represented as a graph
(cf. Figure 1.1) in which the vertices corresponded to land masses and the
edges to bridges.

Interestingly, not long thereafter, Quesnay (1758), in his Tableau Econo-
mique, conceptualized the circular flow of financial funds in an economy as
a network and this work can be identified as the first paper on the topic of
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Fig. 1.1. The Euler graph representation of the seven bridge Königsberg
problem

financial networks. Quesnay’s basic idea has been utilized in the construction
of financial flow of funds accounts, which are a statistical description of the
flows of money and credit in an economy (see Cohen (1987)).

The concept of a network in economics was implicit as early as the clas-
sical work of Cournot (1838), who not only seems to have first explicitly
stated that a competitive price is determined by the intersection of supply
and demand curves, but had done so in the context of two spatially sepa-
rated markets in which the cost associated with transporting the goods was
also included. Pigou, subsequently, in 1920 studied a network system in the
form of a transportation network consisting of two routes and noted that the
decision-making behavior of the the users of such a system would lead to
different flow patterns. Hence, the network of concern therein consists of the
graph, which is now directed, with the edges or links represented by arrows,
as well as the resulting flows on the links.

Monge, who had worked under Napoleon Bonaparte in providing in-
frastructure support for his army, published in 1781 what is probably the
first paper on the transportation model (see, e.g., Buckard, Klinz, and Rudolf
(1996)). In particular, he was interested in minimizing the cost associated
with backfilling n places from m other places with surplus brash with cost
cij being proportional to the distance between origin i and destination j.
Much later, and following the first book on graph theory by König in 1936,
the economists Kantorovich (1939), Hitchcock (1941), and Koopmans (1947)
considered the network flow problem associated with this classical minimum
cost transportation problem, provided insights into the special network struc-
ture of such problems, and yielded network-based algorithmic approaches.
Hence, the study of network flows precedes that of optimization techniques,
in general, with seminal work done by Dantzig in 1948 in linear program-
ming with the simplex method and, subsequently, adapted for the classical
transportation problem in 1951.
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Fig. 1.2. A bipartite network with directed links

In 1952, Copeland in his book recognized the conceptualization of the
interrelationships among financial funds as a network and raised the ques-
tion, “Does money flow like water or electricity?” Moreover, he provided a
“wiring diagram for the main money circuit.” Note that Kirchhoff is credited
with pioneering the field of electrical engineering by being the first to have
systematically analyzed electrical circuits and with providing the foundations
for the principal ideas of network flow theory. Interestingly, Enke in 1951 had
proposed electronic circuits as a means of solving spatial price equilibrium
problems, in which goods are produced, consumed, and traded, in the pres-
ence of transportation costs. Such analog computational devices, were soon
to be superseded by digital computers along with advances in computational
methodologies, notably, algorithms, based on mathematical programming,
and including not only the aforementioned linear programming techniques
but other optimization techniques, as well.

Samuelson (1952) provided a rigorous mathematical formulation of the
spatial price equilibrium problem and explicitly recognized and utilized the
network structure, which was bipartite (the same structure as in the clas-
sical transportation problems), that is, consisting of two sets of nodes (cf.
Figure 1.2). Interestingly, he depicted the changing network of trade as the
excess demand for the commodity at a particular market increased. In spa-
tial price equilibrium problems, unlike classical transportation problems, the
supplies and the demands are variables, rather than fixed quantities. The
work was subsequently extended by Takayama and Judge (1964, 1971) and
others (cf. Asmuth, Eaves, and Peterson (1979), Florian and Los (1982),
Nagurney (1999), and the references therein) to include, respectively, multi-
ple commodities, and asymmetric supply price and demand functions, as well
as other extensions, made possible by such advances as quadratic program-
ming techniques, complementarity theory, as well as variational inequality
theory (which allowed for the formulation and solution of equilibrium prob-
lems for which no optimization reformulation of the governing equilibrium
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conditions was available).
Beckmann, McGuire, and Winsten (1956), in turn, in their book, provided

a rigorous treatment of congested transportation networks, and formulated
their solution as mathematical programming problems. Their contributions
added significantly to the topic of network equilibrium problems, which was
later advanced by the contributions of Dafermos and Sparrow (1969), who
coined the terms user-optimization versus system-optimization and provided
computational methods for the determination of the resulting flows on such
networks. Subsequent notable contributions were made by Smith (1979) and
Dafermos (1980) who allowed for asymmetric interactions associated with
the link travel costs (resulting in no equivalent optimization reformulation of
the equilibrium conditions) and established the methodology of variational
inequalities as a primary tool for both the qualitative analysis and the solution
of such and other related problems. For additional background, see the book
by Nagurney (1999).

1.2 Financial Networks

We now further elaborate upon historical breakthroughs in the use of net-
works for the formulation, analysis, and solution of financial problems. Such
a perspective allows one to trace the methodological developments as well as
the applications of financial networks and provides a platform upon which
further innovations can be constructed and evaluated. We begin with a dis-
cussion of financial optimization problems within a network context and then
turn to financial network equilibrium problems.

1.2.1 Optimization Problems

Network models have been proposed for a spectrum of financial problems
characterized by a single objective function to be optimized such as in port-
folio optimization and asset allocation problems, currency translation, and
risk management problems, among others. We now briefly highlight this lit-
erature recognizing that it was, of course, the innovative work of Markowitz
(1952, 1959) that started a new era in financial economics and became the
basis for many financial optimization models that exist today.

Interestingly, although many financial optimization problems (including
the work by Markowitz) had an underlying network structure, and the ad-
vantages of network programming were becoming increasingly evident (cf.
Charnes and Cooper (1958)), not many financial network optimization mod-
els were developed until some time later, with the exception of several early
models due to Charnes and Miller (1957) and Charnes and Cooper (1961).
Indeed, it was not until the last years of the 1960s and the first years of the
1970s that the network setting started to be extensively used for financial
applications.
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Among the first financial network optimization models that appear in the
literature were a series of currency translating models. Rutenberg (1970)
suggested that the translation among different currencies could be performed
through the use of arc multipliers. The network model developed by Ruten-
berg was a multiperiod one with linear costs on the arcs (a characteristic com-
mon to the earlier financial networks models). The nodes of such generalized
networks represented a particular currency in a specific period and the flow
on the arcs the amount of cash moving from one period and/or currency to
another. Related financial network models were subsequently introduced by
Christofides, Hewins, and Salkin (1979) and Shapiro and Rutenberg (1976),
among others. In most of these models, the currency prices were determined
according to the amount of capital (network flow) that was moving from one
currency (node) to the other.

Networks were also used to formulate a series of cash management prob-
lems (cf. Barr (1972) and Srinivasan (1974)), with a major contribution being
the introduction (cf. Crum (1976)) of a generalized linear network model for
the cash management of a multinational firm. The links in the network rep-
resented possible cash flow patterns and the multipliers incorporated costs,
fees, liquidity changes, and exchange rates. A series of related cash manage-
ment problems were modeled as network problems in subsequent years (see,
e.g., Crum and Nye (1981), Crum, Klingman, and Tavis (1983)), thereby,
further extending the applicability of network programming in financial ap-
plications. The focus therein was on linear network flow problems in which
the cost on an arc was a linear function of the flow. Crum, Klingman, and
Tavis (1979), in turn, showed how contemporary financial capital allocation
problems could be modeled as an integer generalized network problem, in
which the flows on particular arcs were forced to be integers.

We emphasize that in many financial network optimization problems the
objective function must be nonlinear due to the modeling of the risk function
and, hence, typically, such financial problems lie in the domain of nonlin-
ear, rather than linear, network flow problems. Mulvey (1987) presented a
collection of nonlinear financial network models that were based on previous
cash flow and portfolio models in which the original authors (e.g., Rudd and
Rosenberg (1979) and Soenen (1979)) did not realize (nor exploit) the un-
derlying network structure. He also emphasized that the Markowitz (1952,
1959) mean-variance minimization problem was, in fact, a network optimiza-
tion problem with a nonlinear objective function. Here, for completeness, we
recall the classical Markowitz models and cast them into the framework of
network optimization problems. See Figure 1.3 for the network structure of
such problems.

Markowitz’s model was based on mean-variance portfolio selection, where
the average and the variability of portfolio returns were determined in terms
of the mean and covariance of the corresponding investments. The mean is a
measure of an average return and the variance is a measure of the distribution
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Fig. 1.3. Network structure of classical portfolio optimization

of the returns around the mean return. Markowitz formulated the portfolio
optimization problem as associated with risk minimization with the objective
function given by:

Minimize V = XT QX

subject to constraints, representing, respectively, the attainment of a spe-
cific return, a budget constraint, and that no short sales were allowed, and,
mathematically, given by:

R =
n∑

i=1

Xiri

n∑

i=1

Xi = 1

Xi ≥ 0, i = 1, . . . , n.

Here n denotes the total number of securities available in the economy, Xi

represents the relative amount of capital invested in security i, with the secu-
rities being grouped into the column vector X , Q denotes the n×n variance-
covariance matrix on the return of the portfolio, ri denotes the expected value
of the return of security i, and R denotes the expected rate of return on the
portfolio. Within a network context (cf. Figure 1.3), the links correspond
to the securities, with their relative amounts X1, . . . , Xn corresponding to
the flows on the respective links: 1, . . . , n. The budget constraint and the
nonnegativity assumption on the flows are network conservation equations.
Since the objective function here is risk minimization, it can be interpreted
as the sum of the costs on the n links in the network. Obsrve that the net-
work representation is abstract and does not correspond (as in the case of
transportation) to physical locations and links.

In his work, Markowitz suggested that, for a fixed set of expected values
ri and covariances of the returns of all assets i and j, every investor can
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find an (R, V ) combination that better fits his taste, solely limited by the
constraints of the specific problem. Hence, according to the original work of
Markowitz (1952), the efficient frontier had to be identified and then every
investor had to select a portfolio through a mean-variance analysis that fitted
his preferences.

A related mathematical optimization model (Markowitz (1959)) to the
one above, which can be interpreted as the investor seeking to maximize his
returns while minimizing his risk can be expressed by the quadratic program-
ming problem:

Maximize αR − (1 − α) V

subject to:
n∑

i=1

Xi = 1

Xi ≥ 0, i = 1, . . . , n,

where α denotes an indicator of how risk-averse a specific investor is. Of
course, this model is also a network optimization problem with the network
as depicted in Figure 1.3.

Many versions and extensions of Markowitz’s model have appeared in the
literature, a collection of which can be found in Francis and Archer (1979),
with α = 1/2 being a frequently accepted value. A recent interpretation of
the model as a multicriteria decision-making model along with theoretical
extensions to multiple sectors can be found in Dong and Nagurney (2001).

Lastly, a part of the optimization literature on financial networks focused
on variables that were stochastic and had to be treated as random variables
in the optimization procedure. Clearly, since most financial optimization
problems are of large size, the incorporation of stochastic variables made
the problems more complicated and difficult to model and compute. Mul-
vey (1987) and Mulvey and Vladimirou (1989, 1991), among others, studied
stochastic financial networks, utilizing a series of different theories and tech-
niques (e.g., purchase power priority, arbitrage theory, scenario aggregation)
that were then utilized for the estimation of the stochastic elements in the
network in order to be able to represent them as a series of deterministic
equivalents. The large size and the computational complexity of stochastic
networks, at times, limited their usage to specially structured problems where
general computational techniques and algorithms could be applied. See Rudd
and Rosenberg (1979), Wallace (1986), and Rockafellar and Wets (1991) for
a more detailed discussion on aspects of realistic portfolio optimization and
implementation issues related to stochastic financial networks.

1.2.2 Equilibrium Problems

In 1969, Thore introduced networks, along with the mathematics, for the
study of systems of linked portfolios. His work benefited from that of Charnes
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and Cooper (1967) which showed that systems of linked accounts could be
represented as a network, where the nodes depict the balance sheets and the
links depict the credit and debit entries. Thore considered credit networks,
with the explicit goal of providing a tool for use in the study of the prop-
agation of money and credit streams in an economy, based on a theory of
the behavior of banks and other financial institutions. The credit network
recognized that these sectors interact and its solution made use of linear pro-
gramming. Thore (1970)) then extended the basic network model to handle
holdings of financial reserves in the case of uncertainty. The approach uti-
lized two-stage linear programs under uncertainty introduced by Ferguson
and Dantzig (1956) and Dantzig and Madansky (1961). See Fei (1960) for a
graph theoretic approach to the credit system.

Storoy, Thore, and Boyer (1975), in turn, developed a network repre-
sentation of the interconnection of capital markets and demonstrated how
decomposition theory of mathematical programming could be exploited for
the computation of equilibrium. The utility functions facing a sector were
no longer restricted to being linear functions. Thore (1980) further investi-
gated network models of linked portfolios, financial intermediation, and de-
centralization/decomposition theory. However, the computational techniques
at that time were not sufficiently well-developed to handle such problems in
practice.

Thore (1984) proposed an international financial network for the Euro
dollar market and viewed it as a logistical system, exploiting the above-
mentioned ideas of Samuelson (1952) and Takayama and Judge (1971) for
spatial price equilibrium problems. In this paper, as in Thore’s preceding
papers on financial networks, the micro-behavioral unit consisted of the indi-
vidual bank, savings and loan, or other financial intermediary and the portfo-
lio choices were described in some optimizing framework, with the portfolios
being linked together into a network with a separate portfolio visualized as
a node and assets and liabilities as directed links.

Notably, the above-mentioned contributions focused on the use and ap-
plication of networks for the study of financial systems consisting of multiple
economic decision-makers. In such systems, equilibrium was a central con-
cept, along with the role of prices in the equilibrating mechanism. Rigorous
approaches that characterized the formulation of equilibrium and the corre-
sponding price determination were greatly influenced by the Arrow-Debreu
economic model (cf. Arrow (1951), Debreu (1951)). In addition, the impor-
tance of the inclusion of dynamics in the study of such systems was explicitly
emphasized (see, also, Thore and Kydland (1972)).

The first use of finite-dimensional variational inequality theory for the
computation of multi-sector, multi-instrument financial equilibria is due to
Nagurney, Dong, and Hughes (1992), who recognized the network structure
underlying the subproblems encountered in their proposed decomposition
scheme. Hughes and Nagurney (1992) and Nagurney and Hughes (1992)
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had, in turn, proposed the formulation and solution of estimation of financial
flow of funds accounts as network optimization problems. Their proposed
optimization scheme fully exploited the special network structure of these
problems. Nagurney and Siokos (1997) then developed an international fi-
nancial equilibrium model utilizing finite-dimensional variational inequality
theory for the first time in that framework.

Finite-dimensional variational inequality theory is a powerful unifying
methodology in that it contains, as special cases, such mathematical program-
ming problems as: nonlinear equations, optimization problems, and comple-
mentarity problems. Moreover, with projected dynamical systems theory
(see the book by Nagurney and Zhang (1996)) one can then also trace the
dynamic behavior prior to an equilibrium state (formulated as a variational
inequality). In contrast to classical dynamical systems, projected dynami-
cal systems are characterized by a discontinuous right-hand side, with the
discontinuity arising due to the constraint set underlying the application in
question. Hence, this methodology allows one to model systems dynamically
which are subject to limited resources, with a principal constraint in finance
being budgetary restrictions.

Dong, Zhang, and Nagurney (1996) were the first to apply the methodol-
ogy of projected dynamical systems to develop a dynamic multi-sector, multi-
instrument financial model, whose set of stationary points coincided with the
set of solutions to the variational inequality model developed in Nagurney
(1994); and then to study it qualitatively, providing stability analysis results.

The book by Nagurney and Siokos (1997) presents the foundations of
financial networks to that date as well as an overview of the basic method-
ologies for the formulation, analysis, and solution of such problems with a
particular focus on equilibrium problems. Additional background can be
found in Nagurney (2001). Finally, Nagurney and Ke (2001, 2003) focus on
financial networks with intermediation and utilize variational inequalities in
that problem domain.

1.3 Economic Networks

As the preceding discussion has noted, the development of the study of eco-
nomic networks has been based heavily on transportation networks as well as
on spatial price equilibrium networks in the form of interregional commodity
trade. Extensive references on the subject as well as a variety of models and
applications can be found in Nagurney (1999). Here, we recall two economic
equilibrium problems and provide their network equilibrium formulations.
The first is a Walrasian price equilibrium problem, which is an example of
general equilibrium, whereas, the second is a spatial price equilibrium prob-
lem, which is a partial equilibrium problem.
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1.3.1 Equilibrium Problems

Zhao and Nagurney (1993) (see also Zhao and Dafermos (1991)) considered
the general economic equilibrium problem known as the Walrasian price equi-
librium problem as a network equilibrium problem with precisely the network
structure given in Figure 1.3. However, the flows on the network representing
this problem correspond to prices of different commodities. For completeness
and easy reference we briefly review the pure exchange economic equilibrium
model and also give its variational inequality formulation. We consider a pure
exchange economy with n commodities, price vector p = (p1, p2, . . . , pn)T

taking values in the positive orthant Rn
+, and the induced aggregate excess

demand function z(p), with components z1(p), . . . , zn(p). Under certain tech-
nical assumptions (such as requiring that z(p) be homogeneous of degree zero
in p), we may normalize the prices so that they take values in the unit sim-
plex, that is,

Sn = p : p ∈ Rn
+,

n∑

i=1

pi = 1.

As is standard in general economic equilibrium theory, the aggregate excess
demand function must satisfy Walras’s law:

〈pT , z(p)〉 = 0, ∀p ∈ Sn,

with 〈 , 〉 denoting the inner product with the aformentioned equation being
equivalent to:

∑n
i=1 pizi(p) = 0.

We now recall the definition of a Walrasian equilibrium.

Definition 1.1: Walrasian Price Equilibrium
A price vector p∗ ∈ Sn is a Walrasian equilibrium if the market is cleared for
valuable commodities and is in excess supply for free commodities, that is,

zi(p∗) = 0, if p∗i > 0

zi(p∗) ≤ 0, if p∗i = 0.

The following theorem, due to Dafermos (1990), shows the equivalence
between Walrasian price equilibria and solutions of a variational inequality
problem.

Theorem 1.1: Variational Inequality Formulation of Walrasian Price
Equilibrium
A price vector p∗ ∈ Sn is a Walrasian price equilibrium if and only if it
satisfies the variational inequality: determine p ∈ Sn such that

〈−z(p∗), p − p∗〉 ≥ 0, ∀p ∈ Sn.
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This example vividly illustrates that fundamental economic equilibrium
problems can be cast into a network equilibrium framework. We now (due
to its importance in the development of economic network models) recall
the spatial price equilibrium problem and provide its variational inequality
formulation (for further details, see Florian and Los (1982), Dafermos and
Nagurney (1987), and Nagurney (1999)).

Consider the spatial price equilibrium problem in quantity variables with
m supply markets and m demand markets involved in the production and
consumption of a homogeneous commodity under perfect competition. De-
note a typical supply market by i and a typical demand market by j. Let
si denote the supply and πi the supply price of the commodity at supply
market i. Let dj denote the demand and ρj the demand price at demand
market j. Group the supplies and supply prices, respectively, into a column
vector s ∈ Rm and a row vector π ∈ Rm. Similarly, group the demands and
demand prices, respectively, into a column vector d ∈ Rn and a row vector
ρ ∈ Rn. Let Qij denote the nonnegative commodity shipment between the
supply and demand market pair (i, j), and let cij denote the unit transaction
cost associated with trading the commodity between (i, j). The unit transac-
tion costs are assumed to include the unit costs of transportation from supply
markets to demand markets, and, depending upon the application, may also
include a tax/tariff, duty, or subsidy incorporated into these costs. Group
the commodity shipments into a column vector Q ∈ Rmn and the transaction
costs into a row vector c ∈ Rmn. The network structure of the problem is
depicted in Figure 1.2.

Assume that the supply price at any supply market may, in general, de-
pend upon the supply of the commodity at every supply market, that is,
π = π(s), where π is a known smooth function. Similarly, the demand price
at any demand market may depend upon, in general, the demand of the
commodity at every demand market, that is, ρ = ρ(d), where ρ is a known
smooth function. The unit transaction cost between a pair of supply and
demand markets may depend upon the shipments of the commodity between
every pair of markets, that is, c = c(Q), where c is a known smooth function.

The supplies, demands, and shipments of the commodity, in turn, must
satisfy the following feasibility conditions, which are also referred to as the
conservation of flow equations :

si =
n∑

j=1

Qij , i = 1, ..., m

dj =
m∑

i=1

Qij , j = 1, ..., n

Qij ≥ 0, i = 1, ..., m; j = 1, ..., n.

In other words, the supply at each supply market is equal to the com-
modity shipments out of that supply market to all the demand markets.
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Similarly, the demand at each demand market is equal to the commodity
shipments from all the supply markets into that demand market.

Definition 1.2: Spatial Price Equilibrium
Following Samuelson (1952) and Takayama and Judge (1971), the supply,
demand, and commodity shipment pattern (s∗, Q∗, d∗) constitutes a spatial
price equilibrium, if it is feasible, and for all pairs of supply and demand
markets (i, j), it satisfies the conditions:

πi(s∗) + cij(Q∗)
{

= ρj(d∗), if Q∗
ij > 0

≥ ρj(d∗), if Q∗
ij = 0.

Hence, if the commodity shipment between a pair of supply and demand
markets is positive at equilibrium, then the demand price at the demand
market must be equal to the supply price at the originating supply market
plus the unit transaction cost. If the commodity shipment is zero in equi-
librium, then the supply price plus the unit transaction cost can exceed the
demand price.

The spatial price equilibrium can be formulated as a variational inequality
problem. Precisely, we have following Florian and Los (1982), Dafermos and
Nagurney (1987):
Theorem 1.2: Variational Inequality Formulation of Spatial Price
Equilibrium
A commodity supply, shipment, and demand pattern (s∗, Q∗, d∗) ∈ K is a
spatial price equilibrium if and only if it satisfies the following variational
inequality problem:

〈π(s∗), s − s∗〉 + 〈c(Q∗), Q − Q∗〉 + 〈−ρ(d∗), d − d∗〉 ≥ 0, ∀(s, Q, d) ∈ K,

where K ≡ {(s, Q, d) : feasibility conditions hold}.

An Example

For illustrative purposes, we now present a small example. Consider the
spatial price equilibrium problem consisting of two supply markets and two
demand markets. Assume that the functions are as follows:

π1(s) = 5s1 + s2 + 1, π2(s) = 4s2 + s1 + 2

c11(Q) = 2Q11 + Q12 + 3, c12(Q) = Q12 + 5,

c21(Q) = 3Q21 + Q22 + 7, c22(Q) = 3Q22 + 2Q21 + 9

ρ1(d) = −d1 − d2 + 21, ρ2(d) = −5d2 − 3d1 + 29.

It is easy to verify that the spatial price equilibrium pattern is given by:

s∗1 = 2, s∗2 = 1, Q∗
11 = 1, Q∗

12 = 1, Q∗
21 = 1, Q∗

22 = 0, d∗1 = 2, d∗2 = 1.
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In one of the simplest models, in which the Jacobians of the supply price
functions,

[
∂π
∂s

]
, the transportation (or transaction) cost functions,

[
∂c
∂Q

]
, and

minus the demand price functions, −
[

∂ρ
∂d

]
are diagonal and positive definite,

then the spatial price equilibrium pattern coincides with the Kuhn-Tucker
conditions of the strictly convex optimization problem:

MinimizeQ∈RMN
+

M∑

i=1

∫ ∑
N

j=1
Qij

0

πi(x)dx +
M∑

i=1

N∑

j=1

∫ Qij

0

cij(y)dy

−
N∑

j=1

∫ ∑
M

i=1
Qij

0

ρj(z)dz.

We note also that the classical Cournot (1838) (see also Nash (1950, 1951))
oligopoly problem which possesses a variational inequality formulation (cf.
Gabay and Moulin (1980)) can also be cast into a network framework (cf.
Nagurney (1999)) with the structure as given in Figure 1.3. Numerous spa-
tial oligopoly problems including those having the network structure given
in Figure 1.2) have also been developed and algorithms that exploit the net-
work structure proposed (see Dafermos and Nagurney (1987) and Nagurney,
Dupuis, and Zhang (1994), and the references therein).

Finally, it is worth mentioning that a variety of migration problems in
economics have a network structure as do knowledge network problems (cf.
Nagurney (1999)).

1.4 The Internet and New Directions

The advent of the Internet, along with associated communication method-
ologies, has further elevated the interest in networks and the importance
thereof. It has brought greater focus to the study of financial and economic
networks, the interaction among networks (as in the case of supernetworks
(cf. Nagurney and Dong (2002)), and to the entire field of network economics,
including network industries (cf. Shapiro and Varian (1999)). Entirely new
subject areas such as electronic commerce (cf. Whinston, Stahl, and Choi
(1997)) and electronic finance (cf. Claessens and Jansen (2000)) have been
born whereas others such as supply chain networks (cf. Nagurney et al.
(2002)) have evolved both in dimension and complexity. In such contexts the
role of intermediaries becomes increasingly important as well as the dynamics
and network structures.

Coupled with the growth of the Internet have come new and more powerful
tools for the modeling, analysis, and solution of financial and economic net-
work problems. Such tools, some of which are revealed in this volume, provide
new methodologies, both analytical and conceptual, from which further ad-
vances can be expected. Above we have provided an overview of financial and
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Table 1.1. Methodologies utilized in this volume

Methodology Chapter
Agent-based simulation 11, 12
Fluid dynamics 10
Game theory 5, 7, 9, 11 – 13
Graph theory 2, 9
Network theory 4, 7, 9 – 12
Optimization 2 – 5, 7 – 11, 13
Stochastic programming 3, 4
Variational inequalities 5, 7, 9

economic networks from both optimization and equilibrium perspectives with
a view towards historical developments. It is worth noting also the growth of
simulation approaches, notably, those based on agent-based computational
economics (ACE), which provide computational studies of economies mod-
eled as evolving systems of autonomous interacting agents (cf. Tesfatsion
(2002)) for the study of economic network phenomena.

1.5 Outline of the Volume

This volume presents a broad collection of recent innovations in the study of
financial and economic networks by leading scholars in different parts of the
world.

Part I of this book focuses on financial networks, ranging from the use
of graph theory to provide a new perspective on the stock market, to the
conceptualization, modeling, and solution of international financial networks
with electronic transactions, and, finally, to the use of financial options to
hedge transportation capacity in the rail industry. Part II of this book turns
to economic networks, beginning with new frameworks for supply chain and
distribution problems, to the use of agent-based computational economics for
the study of trade with intermediaries (and varying amounts of information)
and for the evolution of worker-employer networks. This part as well as the
volume concludes with a market framework for trade in demand-side Web
caching.

The innovations in this volume are broad, original, and timely and include
conceptual, theoretical, methodological, empirical, as well as application-
based contributions. Table 1.1 lists the principal methodologies utilized and
in what chapters they may be found. Table 1.2, in turn, highlights some of
the applications in this volume.

In addition, for the convenience of the reader, we provide a snapshot of
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Table 1.2. Applications in this volume

Application Chapter
Capacity provision networks 13
Competition 5, 6, 7, 9, 11, 13
Corporate planning 4
Distribution systems 9, 10
Electronic transactions 6, 7, 11, 13
Equilibrium analysis 5, 7, 9
Financial planning 3, 4, 6, 7, 8
Financial services 6, 7
Hedging instruments 8
Intermediation 6, 7, 9, 10, 11, 13
International finance 6, 7
Internet effects 6, 7, 11, 13
Labor markets 12
Network industries 6, 8
Pension planning 4
Policy analysis 6, 12
Portfolio optimization 3, 4, 5, 7
Pricing 7 – 11
Risk management 3, 4, 5, 7, 8
Stock market 2
Supply chains and logistics 9, 10
Trade networks 11, 13
Transportation networks 8, 10
Worker-employer networks 12

the contents of the volume in Table 1.3 in terms of the type of innovations
(conceptual, theoretical, methodological, etc.).

Chapter 2 by Boginski, Butenko, and Pardalos presents a detailed study
of the stock market graph, which yields a new tool for the analysis of the
market structure through the classification of stocks into different groups.
The authors first demonstrate how information generated by the stock mar-
ket can be used to construct a market graph, consisting of vertices and edges,
and based on the cross-correlations of price fluctuations. This graph, which
may be massive in size, is then analyzed from the perspective of finding
cliques and independent sets. Boginski, Butenko, and Pardalos then make
evident, through experiments, that the distribution of the correlation coef-
ficients between the stocks in the US stock market remains very stable over
time. The authors also establish, for the first time in the field of finance, the
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Table 1.3. Snapshot of innovations in this volume

Chapter Conceptual Theoretical Methodological Empirical Applications

2 x x x x x
3 x x x x
4 x x x x
5 x x x x
6 x x
7 x x x x
8 x x x
9 x x x x
10 x x x x
11 x x x x
12 x x x x
13 x x x

applicability of the power-law model, which describes massive graphs arising
in telecommunications and the Internet.

Chapter 3 by Gülpinar, Rustem, and Settergren uses multistage stochastic
programming in order to model the problem of financial portfolio manage-
ment with transaction costs, given stochastic data provided in the form of
a scenario tree. The mean or variance of the total wealth at the end of the
planning horizon can be optimized in view of the transaction costs by solving
either a linear or a quadratic stochastic program. Moreover, the incorpora-
tion of proportional transaction costs yields a model that reflects the effect
of these costs on portfolio performance. Numerical experiments backtesting
the optimization strategies at different levels of risk and transaction cost are
reported, as well as tests that do not optimize over the affected transaction
costs. The results show that the incorporation of transaction costs improves
investment performance.

The fourth chapter, by Mulvey, Simsek, and Pauling, also utilizes stochas-
tic programming for financial decision-making, and presents a multi-period
stochastic network model for integrating corporate financial and pension
planning. The model maximizes the combined company’s value over a fi-
nite planning time horizon and has certain advantages over general nonlinear
programs, especially in regards to the model’s understandability. The empir-
ical results demonstrate that the integration of pension planning is feasible
and that it can improve a company’s performance. Moreover, the authors, by
analyzing historical data for some typical pension plans, demonstrate that the
recent loss of surplus by many large US companies was largely preventable.
The methodology proposed requires three elements: a stochastic scenario gen-
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erator, a pension/corporate simulator, and a stochastic network optimizer.
Solving such stochastic programming problems has become practical due to
the large improvements in computer hardware and software.

Chapter 5 shifts from stochastic optimization to the investigation of fi-
nancial equilibria in the case of multiple sectors and multiple financial instru-
ments. Daniele in this chapter proposes a new framework for the modeling,
analysis, and computation of financial equilibria through a novel evolution-
ary model. In contrast to earlier multi-sector, multi-instrument financial
equilibrium models, the new model allows for variance-covariance matrices
associated with risk perception to be time-dependent as well as the sector
financial volumes. Daniele identifies the network structure of the sectors’
optimization problems out of equilibrium and provides the network structure
of the financial economy in equilibrium. The methodology utilized for the
formulation, qualitative analysis, and solution of such problems is that of
infinite-dimensional variational inequalities.

Chapter 6 focuses on financial services industries, which have been under-
going rapid change due to globalization and technological advances, including
electronic finance, and examines the importance of networks in finance and
its effects on competition. Claessens, Dobos, Klingebiel, and Laeven, in this
chapter, argue that, as part of the changes, financial services are becoming
less special, making policies to preserve the franchise value of financial insti-
tutions less necessary while competition policy becomes more feasible. They
identify the main characteristics of networks, from an economic perspective,
along with related public policy issues. They conclude that as financial ser-
vices heavily and increasingly depend on networks for their production and
distribution, that competition policy for financial services becomes more nec-
essary and will need to resemble that used in other network industries, such
as telecommunications. Hence, the institutional and functional approaches
to competition in the financial sector need to be complemented with more
production-based approaches to competition.

The seventh chapter, by Nagurney and Cruz, is complementary to Chap-
ter 6 in that international finance with intermediaries and electronic transac-
tions is of primary concern. However, rather than a focus on competition and
appropriate policies with a view of the financial sector as a network indus-
try, it considers the modeling, analysis, and computation of such international
financial network problems when the optimizing behavior of those with sources
of funds, that of the intermediaries, as well as the consumers is assumed
known and given. The authors identify the international financial network
with intermediaries in which transactions can take place either physically
or electronically, model the behavior of the various decision-makers (which
includes net revenue maximization as well as risk minimization), derive the
equilibrium conditions, and establish the governing finite-dimensional varia-
tional inequality formulation. This formulation is then utilized to obtain both
qualitative properties of the equilibrium price and financial flow pattern, as
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well as a computational procedure. Numerical examples are provided to il-
lustrate both the model and the algorithm. The model is sufficiently general
to include as many countries, financial sectors in each country, currencies,
and intermediaries, as well as financial products, as needed.

In Chapter 8, Law, MacKay, and Nolan describe a potential derivatives,
in particular, financial options, market for rail car capacity pricing in the
case of a deregulated rail industry. The authors discuss the rail industry in
the United States and Canada, identifying the similarities and differences.
They delineate the features of the rail car capacity market that they expect
to evolve if there is entry deregulation in this industry, noting the existing
capacity allocation mechanisms that will be kept and discussing those that
will be entirely new. They draw links between the possible future for the rail
industry and the path that has been followed by other network industries,
such as natural gas and electricity, that have deregulated in recent years. An
empirical example is constructed to show how such a market might actually
function, using coal as the commodity to be transported by rail.

Part II of this book, which focuses on economic networks, starts out with
Chapter 9.

Chapter 9 develops a new framework for supply chain networks, using
concepts from graph theory, optimization theory, and variational inequality
theory. Co-authored by Zhang, Dong, and Nagurney, it develops a general
network model of a supply chain economy to study supply chain competition.
The proposed network framework considers the transformation and pricing
of the material flows as they propagate through the network from origins,
associated, for example, with raw material suppliers, to destinations – the
consumer markets. The network includes both operation links and interface
links, with an operation link representing a business operation such as manu-
facturing, storage, and/or transportation, while an interface link represents a
business to business bridge. The model allows for the formulation and analy-
sis of both intra-chain cooperation and inter-chain competition, and predicts
the winning supply chains, which are those that carry positive chain flows.
The model has the notable feature that as many links (and any topology as
needed) can be utilized to describe the supply chain structures to capture
both cooperation as well as competition. The network model is also analyzed
qualitatively in terms of existence and uniqueness of solutions.

Chapter 10, in turn, by Kachani and Perakis, proposes a fluid model of
dynamic pricing and inventory control in the context of supply chain man-
agement under make-to-stock regime. In particular, the supply chain system
that the authors consider is a distribution system that consists of several
wholesalers, intermediate distributors, and retailers. All entities are sub-
sidiaries of the same company that is producing and selling multiple products.
The model does not require the determination of how prices at each whole-
saler, distributor, and retailer affect the corresponding demands. Instead, the
model accounts for how price and level of inventory affect the sojourn time of
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the products at each wholesaler, distributor, and retailer in the distribution
system. The model, hence, allows for joint pricing, production, and inventory
decisions in a capacitated, multi-product, and dynamically evolving distrib-
ution system. Kachani and Perakis also analyze the properties of the model
and establish conditions under which the model gives rise to reasonable poli-
cies. Finally, the authors discuss how this delay approach connects with more
traditional demand models.

The following two chapters utilize agent-based computational modeling
within a trade network game simulation framework to investigate economic
questions in electronic commerce and in labor institutions, respectively. Chap-
ter 11, by Alkemade, Poutré, and Amman, investigates whether intermedi-
aries can still make a profit in an information economy. In particular, the
authors study the influence of the network structure and the information level
of the agents, in the form of producers, consumers, and
intermediaries, on the level of intermediated trade. The main conclusion of
the simulations is that intermediaries that have better knowledge of the mar-
ket than the average consumer will continue to exist and make a profit if the
market dynamics are sufficiently complex. For example, intermediaries that
are experts at finding the best price quotes can survive in an electronic trade
network where consumers can also form direct links to producers. However,
ultimately, most consumers bypass the intermediary if direct trade is more
profitable. Interestingly, the authors find that in the case of higher purchase
prices, consumers compensate for the higher purchase price by maintaining
fewer links, and this has a stabilizing effect on the architecture of the elec-
tronic trade network.

Chapter 12, by Pingle and Tesfatsion, applies agent-based computational
modeling to analyze the impact of labor institutions. Determining the
effects of labor institutions on macroeconomic performance is a central con-
cern of economic policymakers. Specifically, the authors utilize an agent-
based computational labor market model to conduct systematic experiments
testing the sensitivity of macroeconomic performance to changes in the level
of a non-employment payment. The computational experiments are imple-
mented by means of the Trade Network Game Laboratory , which is an agent-
based computational laboratory for studying the evolution of trade networks
via real-time simulations, tables, and graphical displays. The experiments al-
low the authors to examine the effects of a non-employment payoff on network
formation and work-site behaviors among workers and employers participat-
ing in a sequential employment game with incomplete contracts.

The final chapter in this volume, authored by Geng, Gopal, Ramesh, and
Whinston, introduces Capacity Provision Networks (CPN) as a market frame-
work for demand-side Web cache trading. According to the authors, the need
for demand-side cache trading is supported by the fact that there exist pos-
itive network externalities across individual Internet Service Providers who
provide caching services to their respective users. The need for a CPN mar-
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ket is further supported by the existence of convexity in capacity discounting
and the consequential potential for intermediation in cache trading. This
chapter develops three critical components in an implementation of Capac-
ity Provision Networks: a technical framework, the economic foundations of
such networks, and tactical models of real-time trading, and demonstrates the
technical and economic viability of a CPN to effectively support demand-side
distributed caching systems through the mechanisms of cache trading and de-
ployment. Possible future research will include futures contract, options, and
the development of indices as instruments for Internet Service Providers to
coordinate capacity decisions through trading mechanisms.

1.6 Notes

In this chapter we have attempted to provide a preface to the subject matter
at hand so that the innovations in this volume can be appreciated. The
chapters in this volume contain additional source and background material
as well as appropriate references.

In addition to the above-mentioned references and the other citations fol-
lowing each chapter in this book, we also mention several books that provide
further interesting material and background on networks. For a history of
graph theory and contributions over two centuries, see Biggs, Lloyd, and Wil-
son (1976). For numerous models, algorithms, and applications of network
flows, see the book by Ahuja, Magnanti, and Orlin (1993). For a classical
book on network flows, see Ford and Fulkerson (1962).
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