
Variational Inequalities:

Algorithms

Anna Nagurney

Isenberg School of Management

University of Massachusetts

Amherst, MA 01003

c©2002

Algorithms

The development of efficient algorithms for the numer-
ical computation of equilibria is a topic as important as
the qualitative analysis of equilibria.

The complexity of equilibrium problems, coupled with
their increasing scale, is precluding their resolution via
closed form analytics.

Also, the growing influence of policy modeling is stimu-

lating the construction of frameworks for the accessible

evaluation of alternatives.

1

Variational inequality algorithms resolve the VI problem
into, typically, a series of optimization problems. Hence,
usually, variational inequality algorithms proceed to the
equilibrium iteratively and progressively via some proce-
dure.

Specifically, at each iteration of a VI algorithm, one
encounters a linearized or relaxed substitute of the orig-
inal system, which can, typically, be rephrased or refor-
mulated as an optimization problem and, consequently,
solved using an appropriate nonlinear programming al-
gorithm.

In the case where the problem exhibits an underlying

structure (such as a network structure), special-purpose

algorithms may, instead, be embedded within the vari-

ational inequality algorithms to realize further efficien-

cies.

2

Examples of VI Algorithms

General Iterative Scheme of Dafermos which induces
such algorithms as:

The Projection Method and

The Relaxation Method.

The Modified Projection Method of Korpelevich which

converges under less restrictive conditions than the gen-
eral iterative scheme.

A variety of Decomposition Algorithms, both serial and

parallel.

3

The General Iterative Scheme

We now present a general iterative scheme for the solu-
tion of the variational inequality problem defined in (1)
(Dafermos (1983)). The iterative scheme induces, as
special cases, such well-known algorithms as the projec-
tion method, linearization algorithms, and the relaxation
method, and also induces new algorithms.

In particular, we seek to determine x∗ ∈ K ⊂ Rn, such
that

F (x∗)T · (x− x∗) ≥ 0, ∀x ∈ K, (1)

where F is a given continuous function from K to Rn

and K is a given closed, convex set. K is also assumed

to be compact and F (x) continuously differentiable.

4

Assume that there exists a smooth function

g(x, y) : K ×K 7→ Rn (2)

with the following properties:

(i) g(x, x) = F (x), for all x ∈ K,

(ii) for every fixed x, y ∈ K, the n×n matrix ∇xg(x, y) is
symmetric and positive definite.

Any function g(x, y) with the above properties generates
the following:

Algorithm

Step 0: Initialization

Start with an x0 ∈ K. Set k := 1.

Step 1: Construction and Computation

Compute xk by solving the variational inequality sub-
problem:

g(xk, xk−1)T · (x− xk) ≥ 0, ∀x ∈ K. (3)

Step 2: Convergence Verification

If |xk−xk−1| ≤ ε, for some ε > 0, a prespecified tolerance,

then stop; otherwise, set k := k+ 1 and go to Step 1.

5

Since ∇xg(x, y) is assumed to be symmetric and positive
definite, the line integral

∫
g(x, y)dx defines a function

f(x, y) : K ×K 7→ R such that, for fixed y ∈ K, f(·, y) is
strictly convex and

g(x, y) = ∇xf(x, y). (4)

Hence, variational inequality (3) is equivalent to the
strictly convex mathematical programming problem

min
x∈K

f(x, xk−1) (5)

for which a unique solution xk exists. The solution to (5)
may be computed using any appropriate mathematical
programming algorithm.

If there is, however, a special-purpose algorithm that

takes advantage of the problem’s structure, then such

an algorithm is usually preferable from an efficiency point

of view. Of course, (3) should be constructed in such

a manner so that, at each iteration k, this subproblem

is easy to solve.

6

Note that if the sequence {xk} is convergent, i.e., xk →
x∗, as k → ∞, then because of the continuity of g(x, y),
(3) yields

F (x∗)T · (x− x∗) = g(x∗, x∗)T · (x−x∗) ≥ 0, ∀x ∈ K (6)

and, consequently, x∗ is a solution to (1).

A condition on g(x, y), which guarantees that the se-
quence {xk} is convergent, is now given.

Theorem 1 (Convergence of General Iterative Scheme)

Assume that

|‖∇xg
−1

2(x1, y1)∇yg(x
2, y2)∇xg

−1

2(x3, y3)‖| < 1 (7)

for all (x1, y1), (x2, y2), (x3, y3) ∈ K, where |‖ · ‖| denotes
the standard norm of an n× n matrix as a linear trans-
formation on Rn. Then the sequence {xk} is Cauchy in
Rn.

7

A necessary condition for (7) to hold is that F (x) is
strictly monotone.

Hence, the general iterative scheme was shown to con-

verge by establishing contraction estimates that allow

for the possibility of adjusting the norm at each iteration

of the algorithm. This flexibility will, in general, yield

convergence, under weaker assumptions.

8

The Projection Method

The projection method resolves variational inequality
(1) into a sequence of subproblems (3) (cf. also (5))
which are equivalent to quadratic programming prob-
lems. Quadratic programming problems are usually eas-
ier to solve than more highly nonlinear optimization
problems, and effective algorithms have been developed
for such problems.

In the framework of the general iterative scheme, the
projection method corresponds to the choice

g(x, y) = F (y) +
1

ρ
G(x− y), ρ > 0 (8)

where G is a fixed symmetric positive definite matrix. At
each step k of the projection method, the subproblem
that must be solved is given by:

min
x∈K

1

2
xT ·Gx+ (ρF (xk−1) −Gxk−1)T · x. (9)

9

In particular, if G is selected to be a diagonal matrix,
then (9) is a separable quadratic programming problem.

Condition (7) for convergence of the projection method
takes the form:

Theorem 3 (Convergence)

Assume that

|‖I − ρG−1

2∇xF (x)G−1

2‖| < 1, ∀x ∈ K (10)

where ρ > 0 and fixed. Then the sequence generated by

the projection method (9) converges to the solution of

variational inequality (1).

10

The Relaxation Method

The relaxation (sometimes also called diagonalization)
method resolves variational inequality (1) into a se-
quence of subproblems (3) which are, in general, non-
linear programming problems.

In the framework of the general iterative scheme, the
relaxation method corresponds to the choice

gi(x, y) = Fi(y1, . . . , yi−1, xi, yi+1 . . . , yn), i = 1, . . . , n.
(11)

The assumptions under which the relaxation method
converges are now stated.

Theorem 4

Assume that there exists a γ > 0 such that

∂Fi(x)

∂xi
≥ γ, i = 1, . . . , n, x ∈ K (12)

and

|‖∇yg(x, y)‖| ≤ λγ, 0 < λ < 1, x, y ∈ K (13)

then condition (7) of Theorem 1 is satisfied.

11

The Modified Projection Method

Note that a necessary condition for convergence of the
general iterative scheme is that F (x) is strictly monotone.
In the case that such a condition is not met by the
application under consideration, a modified projection
method may still be appropriate. This algorithm re-
quires, instead, only monotonicity of F , but with the
Lipschitz continuity condition holding, with constant L.
The G matrix (cf. the projection method) is now the
identity matrix I. The algorithm is now stated.

The Modified Projection Method

Step 0: Initialization

Start with an x0 ∈ K. Set k := 1 and select ρ, such
that 0 < ρ ≤ 1

L
, where L is the Lipschitz constant for

function F in the variational inequality problem.

Step 1: Construction and Computation

Compute x̄k−1 by solving the variational inequality sub-
problem:
[
x̄k−1 + (ρF (xk−1) − xk−1)

]T · [x′ − x̄k−1
] ≥ 0, ∀x′ ∈ K.

(14)

12

Step 2: Adaptation

Compute xk by solving the variational inequality sub-
problem:
[
xk + (ρF (x̄k−1) − xk−1)

]T ·[x′ − xk
] ≥ 0, ∀x′ ∈ K. (15)

Step 3: Convergence Verification

If |xk−xk−1| ≤ ε, for ε > 0, a prespecified tolerance, then,

stop; otherwise, set k := k+ 1 and go to Step 1.

13

The modified projection method converges to the solu-
tion of V I(F,K), where K is assumed to be nonempty,
but not necessarily compact, under the following condi-
tions.

Theorem 5 (Convergence)

Assume that F (x) is monotone, that is,

(F (x1) − F (x2))T · (x1 − x2) ≥ 0, ∀x1, x2 ∈ K,

and that F (x) is also Lipschitz continuous, that is, there
exists a constant L > 0 such that

‖F (x1) − F (x2)‖ ≤ L‖x1 − x2‖, ∀x1, x2 ∈ K.

Then the modified projection method converges to a

solution of variational inequality (1).

14

Decomposition Algorithms

Now it is assumed that the feasible set K is a Cartesian
product, that is,

K =
m∏
i=1

Ki

where each Ki ⊂ Rni,
∑m

i=1 ni = n, and xi now denotes,
without loss of generality, a vector xi ∈ Rni, and Fi(x) :
K 7→ Rni for each i.

Many equilibrium problems are defined over a Carte-

sian product set and, hence, are amenable to solution

via variational inequality decomposition algorithms. The

appeal of decomposition algorithms lies in their partic-

ular suitability for the solution of large-scale problems.

Furthermore, parallel decomposition algorithms can be

implemented on parallel computer architectures and fur-

ther efficiencies realized.

15

For example, in the case of multicommodity problems, in
which there are m commodities being produced, traded,
and consumed, a subset Ki might correspond to con-
straints for commodity i. On the other hand, in the
case of intertemporal problems, Ki might correspond to
the constraints governing a particular time period i.

Moreover, a given equilibrium problem may possess al-

ternative variational inequality formulations over distinct

Cartesian products; each such formulation, in turn, may

suggest a distinct decomposition procedure. Numerical

testing of the algorithms, on the appropriate architec-

ture(s), subsequent to the theoretical analysis, can yield

further insights into which algorithm(s) performs in a

superior (or satisfactory) manner, as mandated by the

particular application.

16

An important observation for the Cartesian product case
is that the variational inequality now decomposes into
m coupled variational inequalities of smaller dimensions,
which is formally stated as:

Proposition 1

A vector x∗ ∈ K solves variational inequality (1) where
K is a Cartesian product if and only if

Fi(x
∗)T · (xi − x∗i) ≥ 0, ∀xi ∈ Ki, ∀i.

17

The linearized variational inequality decomposition algo-
rithms are now presented, both the serial version, and
then the parallel version. The former is a Gauss-Seidel
method in that it serially updates the information as it
becomes available. The latter is a Jacobi method in
that the updating is done simultaneously, and, hence,
can be done in parallel. For both linearized methods,
the variational inequality subproblems are linear.

Linearized Decomposition Algorithm - Serial
Version

Step 0: Initialization

Start with an x0 ∈ K. Set k := 1; i := 1.

Step 1: Linearization and Computation

Compute the solution xki = xi to the variational inequal-
ity subproblem:[

Fi(x
k
1, . . . , x

k
i−1, x

k−1
i , . . . , xk−1

m)

+Ai(x
k
1, . . . , x

k
i−1, x

k−1
i , . . . , xk−1

m) · (xi − xk−1
i)

]T
· [x′i − xi

] ≥ 0, ∀x′i ∈ Ki.

Set i := i+ 1. If i ≤ m, go to Step 1; otherwise, go to

Step 2.

18

Step 2: Convergence Verification

If |xk−xk−1| ≤ ε, for ε > 0, a prespecified tolerance, then

stop; otherwise, set k := k + 1; i = 1, and go to Step

1.

19

Linearized Decomposition Algorithm - Parallel
Version

Step 0: Initialization

Start with an x0 ∈ K. Set k := 1.

Step 1: Linearization and Computation

Compute the solutions xki = xi; i = 1, . . . ,m, to the m
variational inequality subproblems:

[
Fi(x

k−1) +Ai(x
k−1) · (xi − xk−1

i)
]T · [x′i − xi

] ≥ 0,

∀x′i ∈ Ki, ∀i.

Step 2: Convergence Verification

If |xk−xk−1| ≤ ε, for ε > 0, a prespecified tolerance, then

stop; otherwise, set k := k+ 1, and go to Step 1.

20

Possible choices for Ai(·) are as follows.

If Ai(xk−1)=∇xiFi(x
k−1), then a Newton’s method is ob-

tained.

If Ai(xk−1)=Di(xk−1), where Di(·) denotes the diagonal
part of ∇xiFi(·), then a linearization method is induced.

If Ai(·)=Gi, where Gi is a fixed, symmetric and positive
definite matrix, then a projection method is obtained.

Note that the variational inequality subproblems should

be easier to solve than the original variational inequality

since they are smaller variational inequality problems,

defined over smaller feasible sets. In particular, if each

Ai(·) is selected to be diagonal and positive definite,

then each of the subproblems is equivalent to a separable

quadratic programming problem with a unique solution.

21

A convergence theorem for the above linearized decom-
position algorithms is now presented.

Theorem 6 (Convergence of Linearized Decompo-
sition Schemes)

Suppose that the variational inequality problem (1) has

a solution x∗ and that there exist symmetric positive
definite matrices Gi and some δ > 0 such that Ai(x)−δGi

is positive semidefinite for every i and x ∈ K, and that
there exists a γ ∈ [0,1) such that

‖G−1
i (Fi(x)−Fi(y)−Ai(y) ·(xi−yi))‖i ≤ δγmax

j
‖xj−yj‖j,

∀x, y ∈ K,

where ‖xi‖i = (xTi Gixi)
1

2 . Then both the parallel and

the serial linearized decomposition algorithms with Ai(x)

being diagonal and positive definite, converge to the

solution x∗ geometrically.

22

The nonlinear analogues of the above Linearized De-
composition Algorithms are now presented.

Nonlinear Decomposition Algorithm - Serial Ver-
sion

Step 0: Initialization

Start with an x0 ∈ K. Set k := 1; i := 1.

Step 1: Relaxation and Computation

Compute the solution xki = xi by solving the variational
inequality subproblem:

Fi(x
k
1, . . . , x

k
i−1, xi, x

k−1
i+1, . . . , x

k−1
m)T · [x′i − xi

] ≥ 0, ∀x′i ∈ Ki.

Set i := i+ 1. If i ≤ m, go to Step 1; otherwise, go to
Step 2.

Step 2: Convergence Verification

If |xk−xk−1| ≤ ε, for ε > 0, a prespecified tolerance, then

stop; otherwise, set k := k + 1; i = 1, and go to Step

1.

23

The parallel analogue is now given.

Nonlinear Decomposition Algorithm - Parallel Ver-
sion

Step 0: Initialization

Start with an x0 ∈ K. Set k := 1.

Step 1: Relaxation and Computation

Compute the solutions xki = xi; i = 1, . . . ,m, to the
variational inequality subproblems:

Fi(x
k−1
1 , . . . , xk−1

i−1 , xi, x
k−1
i+1, . . . , x

k−1
m)T · [x′i − xi

] ≥ 0,

∀x′i ∈ Ki,∀i.

Step 2: Convergence Verification

If |xk−xk−1| ≤ ε, for ε > 0, a prespecified tolerance, then

stop; otherwise, set k := k+ 1, and go to Step 1.

24

A convergence theorem for the above nonlinear decom-
position algorithms is now given.

Theorem 7 (Convergence of Nonlinear Decompo-
sition Schemes)

Suppose that the variational inequality problem (1) has
a solution x∗ and that there exist symmetric positive
definite matrices Gi and some δ > 0 such that Ai(x)−δGi

is positive semidefinite for every i and x ∈ K, and that
there exists a γ ∈ [0,1) such that

‖G−1
i (Fi(x)−Fi(y)−Ai(y) · (xi− yi)‖i ≤ δγmax

j
‖xj − yj‖j,

∀x, y ∈ K,

where ‖xi‖i=(xTi Gixi)
1

2 . Then both the parallel and the

serial nonlinear decomposition algorithms converge to

the solution x∗ geometrically.

25

Equilibration Algorithms

Recall that variational inequality algorithms proceed to

the equilibrium iteratively and progessively via some “equi-

libration” procedure, which involves the solution of a

linearized or relaxed substitute of the system at each

step. If the equilibration problem encountered at each

step is an optimization problem (which is usually the

case), then, in principle, any appropriate optimization

algorithm may be used for the solution of such embed-

ded problems. However, since the overall efficiency of

a variational inequality algorithm will depend upon the

efficiency of the procedure used at each step, an algo-

rithm that exploits problem structure, if such a structure

is revealed, is usually preferable if efficiency is mandated

by the application.

26

Since many equilibrium problems of interest have a net-
work structure, we now describe equilibration algorithms
that exploit network structure.

Equilibration algorithms were introduced by Dafermos
and Sparrow (1969) for the solution of traffic assign-
ment problems, both user-optimized and system-optimized
problems, on a general network.

In a user-optimized problem, each user of a network
system seeks to determine his/her cost-minimizing route
of travel between an origin/destination pair, until an
equilibrium is reached, in which no user can decrease
his/her cost of travel by unilateral action.

In a system-optimized network problem, users are al-

located among the routes so as to minimize the total

cost in the system. Both classes of problems, under

certain imposed assumptions, possess optimization for-

mulations.

27

In particular, the user-optimized, or equilibrium problem
was shown to be characterized by equilibrium conditions
which, under certain symmetry assumptions on the user
cost functions, were equivalent to the Kuhn-Tucker con-
ditions of an optimization problem (albeit artificial).

The first equilibration algorithms assumed that the de-
mand associated with an origin/destination (O/D) pair
was known and fixed. In addition, for networks of special
structure, specifically, those with linear user cost func-
tions and paths connecting an O/D pair having no links
in common, a special-purpose algorithm could be used
to compute an O/D pair’s equilibrium path flows and
associated link flows exactly and in closed form. This
approach is sometimes referred to as “exact equilibra-
tion.”

Later, the algorithms were generalized to the case where

the demands are unknown and have to be computed as

well.

28

Demand Market Equilibration Algorithm

For simplicity, we begin with an exact “demand” market
equilibration algorithm which can be applied to the so-
lution of a single O/D pair problem with elastic demand
(and disjoint paths, that is, with paths having no links
in common).

In particular, we are interested in computing the equilib-
rium “trade flows” or shipments from m supply markets
to the l-th demand market, say, satisfying the equilib-
rium conditions: The cost of the good from i to l,
gixil+hil, is equal to the demand price −rl

∑m
i=1 xil+hil,

at demand market l, if there is a positive shipment of
the good from i to l; if the cost exceeds the price, then
there will be zero shipment between the pair of markets.
Mathematically, these conditions can be stated as: For
each supply market i; i = 1, . . . ,m,

gix
∗
il + hil

{
= −rl

∑m
i=1 x

∗
il + ql, if x∗il > 0

≥ −rl
∑m

i=1 x
∗
il + ql, if x∗il = 0.

Here gi, hil, rl, and ql are all assumed to be positive.

29

��
��

��
��

��
��

��
��

1

1 2 · · · m
A
A
A
A
A
A
A
A
A
A
A
AAU

C
C
C
C
C
C
C
C
C
C
C
CCW

�
�

�
�

�
�

�
�

�
�

�
���

-

��
��

��
��

1

0

?R�

· · ·

Single origin/destination problem with disjoint
paths

30

The algorithm for the solution of this problem is now
presented. It is a finite algorithm, in that the problem
is solved in a finite number of steps.

Demand Market Exact Equilibration

Step 0: Sort

Sort the hil’s in nondescending order and relabel the
hil’s accordingly. Assume, henceforth, that they are re-
labeled. Define hm+1,l = ∞.

If ql ≤ h1l, then

x∗il = 0, i = 1, . . . ,m,

and stop; otherwise, set v := 1.

Step 1: Computation

Compute

ρvl =

∑v
i=1

hil
gi

+ ql
rl∑v

i=1
1
gi

+ 1
rl

.

Step 2: Evaluation

If hvl < ρvl ≤ hv+1,l, then stop, set s′ = v, and go to Step

3. Otherwise, let v := v+ 1, and go to Step 1.

31

Step 3: Update

Set

x∗il =
ρs

′

l − hil

gi
, i = 1, . . . , s′

x∗il = 0, i = s′ + 1, . . . ,m.

32

In the fixed case, where the demand
∑m

i=1 xil is known,
the procedure that will equalize the costs for all posi-
tive trade flows can be obtained from the above scheme
by replacing the ql

rl
term in the numerator by the known

demand, and by deleting the second term in the denom-
inator.

Of course, if, instead, one seeks to compute the equilib-
rium flows from a particular supply market i to n demand
markets, then one can construct analogous supply mar-
ket exact equilibration algorithms for the elastic supply
and the fixed supply cases.

Note that equilibrium conditions are equivalent to the
solution of the quadratic programming problem:

min
xij≥0,∀i,j

m∑
i=1

(
1

2
gix

2
il + hilxil) +

1

2
rl(

m∑
i=1

xil)
2 − ql

m∑
i=1

xil.

Indeed, it is easy to verify that the Kuhn-Tucker condi-

tions of the optimization problem are equivalent to the

equilibrium conditions above. Hence, although any ap-

propriate optimization algorithm could be used to com-

pute the equilibrium flows for this particular problem,

the above procedure does possess certain advantages,

specifically, finiteness, and ease of implementation.

33

The importance of the above procedure lies not only in
its simplicity but also in its applicability to the compu-
tation of a wide range of equilibrium problems.

For example, equilibration can be used to solve an em-
bedded quadratic programming problem when an appro-
priate variational inequality algorithm is used, as shall
be the case in spatial price equilibrium problems and in
Walrasian price equilibrium problems.

Equilibration algorithms can also solve certain classical

problems that possess quadratic programming formula-

tions of the governing equilibrium conditions, such as a

classical oligopoly problem. Moreover, these exact equi-

libration algorithms can be implemented on massively

parallel architectures.

34

��
��

��
��

��
��

��
��

��
��

��
��

1 2 · · · n

1 2 · · · m

?

A
A
A
A
A
A
A
A
A
A
AU

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
QQs

�
�

�
�

�
�

�
�

�
�

�� ?

@
@

@
@

@
@

@
@

@
@

@R?

�
�

�
�

�
�

�
�

�
�

�	

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��+

-

��
��

��
��

��
��

��
��

��
��

��
��

1 2 · · · n

1 2 · · · m

?

A
A
A
A
A
A
A
A
A
A
AU

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
QQs

�
�

�
�

�
�

�
�

�
�

�� ?

@
@

@
@

@
@

@
@

@
@

@R?

�
�

�
�

�
�

�
�

�
�

�	

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��+

��
��
0

�
�

�
�

�
�

�
��+

�
�

�
�

���

Q
Q

Q
Q

Q
Q

Q
QQs

Network structure of market equilibrium problem

35

We now generalize the above algorithm to the case of
m supply markets and n demand markets (see Dafermos
and Nagurney (1989)).

The demand market exact equilibration algorithm would

be used at each iteration. The algorithm below proceeds

from demand market to demand market, at each itera-

tion solving the “relaxed” single demand market prob-

lem exactly and in closed form. The assumptions, under

which the algorithm converges, is that the supply price

functions, demand price functions, and the transaction

cost functions are linear and separable, and that the

supply price functions are monotonically increasing, the

demand price functions are monotonically decreasing,

and the transaction cost functions are non-decreasing.

36

In this case, the equilibrium conditions take on the fol-
lowing expanded form: For each supply market i; i =
1, . . . ,m, and each demand market l; l = 1, . . . , n,

ηi

n∑
j=1

x∗ij + ψi + gilx
∗
il

+hil

{
= −rl

∑m
i=1 x

∗
il + ql, if x∗il > 0

≥ −rl
∑m

i=1 x
∗
il + ql, if x∗il = 0.

In the expression, the term ηi
∑n

j=1 x
∗
ij+ψi denotes the

equilibrium supply price at supply market i, and ηi, ψi are

assumed to be positive. The term gilx
∗
il+hil denotes the

equilibrium transaction cost, and, as previously, the term

−rl
∑m

i=1 x
∗
il+ql denotes the equilibrium demand price at

demand market l. The term
∑n

j=1 x
∗
ij is the equilibrium

supply at supply market i, whereas the term
∑m

i=1 x
∗
il

denotes the equilibrium demand at demand market l.

37

The equivalent optimization formulation of the equilib-
rium conditions is

min
xij≥0,∀i,j

m∑
i=1

(
1

2
ηi(

n∑
j=1

xij)
2 + ψi

n∑
j=1

xij)

+
m∑
i=1

n∑
j=1

(
1

2
gijx

2
ij + hijxij)

+
n∑

j=1

(
1

2
rj(

m∑
i=1

xij)
2 − qj

m∑
i=1

xij).

38

Under the above assumptions, the optimization problem
is a strictly convex quadratic programming problem with
a unique solution x∗.

Demand Market Equilibration Algorithm

Step 0: Initialization

Start with an arbitrary nonnegative shipment x0
ij; i =

1, . . . ,m; j = 1, . . . , n. Set k := 1; l := 1.

Step k: Construction and Modification

Construct a new feasible shipment xkil; i = 1, . . . ,m, by

modifying xk−1
il , in such a way so that the equilibrium

conditions hold for this demand market l.

Set l := l+ 1.

Convergence Verification

If l < n, set l := l+1 and go to Step k; otherwise, verify

convergence. If convergence to a prespecified tolerance

has not been reached, set k := k+ 1, l := 1, and go to

Step k.

39

Note that Step k, indeed, can be solved using the de-
mand market exact equilibration algorithm presented
above, with the gi and the hil terms updated accord-
ingly to take into account the supply and transaction
cost terms. Specifically, if we let gi ≡ ηi + gil, and

hil ≡ ηi(
∑

j 6=l,j<l

xkij +
∑

j 6=l,j>l

xk−1
ij) + ψi + hil,

then the exact procedure can be immediately applied.

The above demand market equilibration algorithm pro-

ceeds from demand market to demand market in cyclic

fashion, until the entire system is equilibrated. One may

opt, instead, to select the subsequent demand market

not in a cyclic manner, but in such a way that the ob-

jective function above is reduced more substantially.

40

To establish convergence of the demand market equili-

bration algorithm, note that in computing the solution

to demand market l, one is simply finding a solution to

the original objective function, but over a reduced fea-

sible set. Hence, the value of the objective function is

nonincreasing throughout this process. Moreover, the

sequence generated by the algorithm contains conver-

gent subsequences since all the generated flows remain

in a bounded set of Rmn. Finally, if throughout a cycle

of n subsequent iterations, the value of the objective

function remains constant, then the equilibrium condi-

tions are satisfied for all supply markets and all demand

markets. Consequently, it follows from standard opti-

mization theory that every convergent subsequence of

the sequence generated by the algorithm converges to

a solution of the equilibrium conditions.

41

General Equilibration Algorithms

Equilibration algorithms were devised for the computa-
tion of user and system-optimized flows on general net-
works. They are, in principle, “relaxation” methods in
that they resolve the solution of a nonlinear network flow
problem into a series of network problems defined over
a smaller and, hence, a simpler feasible set. Equilibra-
tion algorithms typically proceed from origin/destination
(O/D) pair to O/D pair, until the entire system is solved
or “equilibrated.”

We now present equilibration algorithms for the solution

of network equilibrium problems with separable and lin-

ear “user” cost functions on the links. We begin with

the equilibration algorithm for the single O/D pair prob-

lem with fixed demand, and then generalize it to J O/D

pairs.

42

Classical Network Equilibrium Problem

Consider a general network G = [N,A], where N denotes
the set of nodes, and A the set of directed links. Let a
denote a link of the network connecting a pair of nodes,
and let p denote a path consisting of a sequence of links
connecting an O/D pair. Pw denotes the set of paths
connecting the O/D pair of nodes w.

Let xp represent the flow on path p and fa the load on
link a. The following conservation of flow equation must
hold:

fa =
∑
p

xpδap,

where δap = 1, if link a is contained in path p, and 0,

otherwise. This expression states that the load on a link

a is equal to the sum of all the path flows on paths p

that contain (traverse) link a.

43

Moreover, if we let dw denote the demand associated
with O/D pair w, then we must have that

dw =
∑
p∈Pw

xp,

where xp ≥ 0, ∀p, that is, the sum of all the path flows
between an origin/destination pair w must be equal to
the given demand dw.

Let ca denote the user cost associated with traversing
link a, and Cp the user cost associated with traversing
the path p. Then

Cp =
∑
a∈A

caδap.

In other words, the cost of a path is equal to the sum

of the costs on the links comprising the path.

44

The network equilibrium conditions are then given by:
For each path p ∈ Pw and every O/D pair w:

Cp

{
= λw, if x∗p > 0
≥ λw, if x∗p = 0

where λw is an indicator, whose value is not known a

priori. These equilibrium conditions state that the user

costs on all used paths connecting a given O/D pair will

be minimal and equalized.

45

The equilibration algorithms for general networks and
fixed demands first identify the most expensive used
path for an O/D pair, and then the cheapest path, and
equilibrate the costs for these two paths, by reassign-
ing a portion of the flow from the most expensive path
to the cheapest path. This process continues until the
equilibrium is reached to a prespecified tolerance.

In the case of linear user cost functions, that is, where
the user cost on link a is given by

ca(fa) = gafa + ha,

with ga > 0 and ha > 0, this reassignment or reallocation

process can be computed in closed form.

46

Assume, for the time being, that there is only a sin-
gle O/D pair wi on a given network. An equilibration
algorithm is now presented for the computation of the
equilibrium path and link flows satisfying the conditions,
where the feasibility conditions (conservation of flow
equations) are also satisfied by the equilibrium pattern.
Cost functions of the simple, separable, and linear form
above are considered.

Single O/D Pair Equilibration

Step 0: Initialization

Construct an initial feasible flow pattern x0 satisfying
(2.75), which induces a feasible link flow pattern. Set
k := 1.

Step 1: Selection and Convergence Verification

Determine

r = {p|max
p

Cp and xk−1
p > 0}

q = {p|min
p
Cp}.

If |Cr−Cq| ≤ ε, with ε > 0, a prespecified tolerance, then
stop; otherwise, go to Step 2.

47

Step 2: Computation

Compute

∆′ =
[Cr − Cq]∑

a∈A ga(δaq − δar)2

∆ = min{∆′, xk−1
r }.

Set

xkr = xk−1
r − ∆

xkq = xk−1
q + ∆

xkp = xk−1
p , ∀p 6= q ∪ r.

Let k := k+ 1, and go to Step 1.

In the case that a tie exists for the selection of path r

and/or q, then any such selection is appropriate.

48

Convergence of this procedure is established by con-
structing an associated optimization problem, the Kuhn-
Tucker conditions of which are equivalent to the equi-
librium conditions. This problem is given by:

Minimize
∑
a

1

2
gaf

2
a + hafa

subject to conservation of flow equations and the non-
negativity assumption on the path flows.

One then demonstrates that a reallocation of the path

flows as described above decreases the value of the ap-

propriate function until optimality, equivalently, equilib-

rium conditions are satisfied, within a prespecified tol-

erance.

49

On a network in which there are now J O/D pairs, the
above single O/D pair equilibration procedure is applica-
ble as well.

We term Step 1 above (without the convergence check)
and Step 2 of the above as the equilibration operator
Ewi for a fixed O/D pair wi. Now two possibilities for
equilibration present themselves.

Equilibration I

Let E1 ≡ EwJ ◦ . . . ◦ Ew1.

Step 0: Initialization

Construct an initial feasible flow pattern which induces
a feasible link load pattern. Set k := 1.

Step 1: Equilibration

Apply E1.

Step 2: Convergence Verification

If convergence holds, stop; otherwise, set k := k + 1,

and go to Step 1.

50

Equilibration II

Let E2 = (EwJ ◦ (. . . ◦ (EwJ))) ◦ . . . ◦ (Ew1 ◦ (. . . ◦ (Ew1))).

Step 0: Initialization (as above).

Step 1: Equilibration

Apply E2.

Step 2: Convergence Verification (as above).

51

The distinction between E1 and E2 is as follows. E1

equilibrates only one pair of paths for an O/D pair before
proceeding to the next O/D pair, and so on, whereas
E2 equilibrates the costs on all the paths connecting
an O/D pair using the 2-path procedure above, before
proceeding to the next O/D pair, and so on.

The elastic demand situation, where the demand dw is

no longer known a priori but needs to be computed as

well, is now briefly described. For the elastic demand

model assume as given a disutility function λw(dw), for

each O/D pair w, that is monotonically decreasing. One

may then transform the elastic model into one with fixed

demands as follows. For each O/D pair w we determine

an upper bound on the demand d̄w and construct an

overflow arc aw connecting the O/D pair w. The user

cost on such an arc is caw ≡ λw(d̄w − faw), where faw

denotes the flow on arc aw. The fixed demand for O/D

pair w then is set equal to d̄w.

52

��
��

��
��

��
��

0

1

2

?

?

-

��
��

��
��

��
��

0

1

2

?

?

@@R��	 @@R��	

��	

aw

Fixed demand reformulation of elastic demand
problem

53

The System-Optimized Problem

The above discussion focused on the user-optimized
problem. We now turn to the system-optimized problem
in which a central controller, say, seeks to minimize the
total cost in the network system, where the total cost
is expressed as ∑

a∈A
ĉa(fa)

where it is assumed that the total cost function on a
link a is defined as:

ĉa(fa) ≡ ca(fa) × fa,

subject to the conservation of flow equations, and the

nonnegativity assumption on the path flows. Here sep-

arable link costs have been assumed, for simplicity, and

other total cost expressions may be used, as mandated

by the particular application.

54

Under the assumption of strictly increasing user link cost
functions, the optimality conditions are: For each path
p ∈ Pw, and every O/D pair w:

C ′
p

{
= µw, if xp > 0
≥ µw, if xp = 0,

where C ′
p denotes the marginal cost on path p, given by:

C ′
p =

∑
a∈A

∂ĉa(fa)

∂fa
δap.

55

Under the assumption of linear user cost functions as
above, one may adapt the Equilibration Algorithm above
to yield the solution to the system-optimized problem.
Indeed, in the case of a single O/D pair, the restatement
would be:

Single O/D Pair Optimization

Step 0: Initialization

Construct an initial feasible flow pattern x0, which in-
duces a feasible link load pattern. Set k := 1.

Step 1: Selection and Convergence Verification

Determine

r = {p|max
p

C ′
p and xk−1

p > 0}.

q = {p|min
p
C ′
p}.

If |C ′
r−C ′

q| ≤ ε, with ε > 0, a prespecified tolerance, then
stop; otherwise, go to Step 2.

56

Step 2: Computation

Compute

∆′ =

[
C ′
r − C ′

q

]
∑

a∈A 2ga(δaq − δar)

∆ = min{∆′, xk−1
r }.

Set

xkr = xk−1
r − ∆

xkq = xk−1
q + ∆

xkp = xk−1
p ,∀p 6= q ∪ r.

Let k := k+ 1, and go to Step 1.

57

The Equilibration Schemes E1 and E2 can then be adapted
accordingly. One should note that the system-optimized
solution corresponds to the user-optimized solution on
a congested network, i.e., one with increasing user link
cost functions, only in highly stylized networks.

Nevertheless, one does have access to policy interven-

tions in the form of tolls, which will make the system-

optimized flows pattern, a user-optimized one.

58

Below are references cited in the lecture as well as ad-
ditional ones.

References

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B., Net-
work Flows: Theory, Algorithms, and Applications,
Prentice-Hall, Upper Saddle River, New Jersey, 1993.

Amman, H. M., Belsley, D. A., and Pau, L. F., editors,
Computational Economics and Econometrics, Ad-
vanced Studies in Theoretical and Applied Economet-
rics 22, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1992.

Avriel, M., Nonlinear Programming: Analysis and
Methods, Prentice - Hall, Englewood Cliffs, New Jer-
sey, 1976.

Beckmann, M., McGuire, C. B., and Winsten, C. B.,
Studies in the Economics of Transportation, Yale
University Press, New Haven, Connecticut, 1956.

Bertsekas, D. P., and Tsitsiklis, J. N., Parallel and Dis-
tributed Computation - Numerical Methods, Pren-
tice - Hall, Englewood Cliffs, New Jersey, 1989.

Dafermos, S., “An extended traffic assignment model

with applications to two-way traffic,” Transportation

Science 5 (1971) 366-389.

59

Dafermos, S., “An iterative scheme for variational in-
equalities,” Mathematical Programming 26 (1983) 40-
47.

Dafermos, S., and Nagurney, A., “Supply and demand
equilibration algorithms for a class of market equilibrium
problems,” 23 (1989) 118-124.

Dafermos, S. C., and Sparrow, F. T., “The traffic as-
signment problem for a general network,” Journal of Re-
search of the National Bureau of Standards 73B (1969)
91-118.

Dupuis, P., and Nagurney, A., “Dynamical systems and
variational inequalities,” Annals of Operations Research
44 (1993) 9-42.

Eydeland, A., and Nagurney, A., “Progressive equilibra-
tion algorithms: the case of linear transaction costs,”
Computer Science in Economics and Management 2
(1989) 197-219.

Gartner, N. H., “Optimal traffic assignment with elastic
demands: a review; part II: Algorithmic approaches,”
Transportation Science 14 (1980) 192-208.

Hearn, D. W., Lawphongpanich, S., and Ventura, J. A.,

“Restricted simplicial decomposition: computation and

extensions,” Mathematical Programming Study 31

(1987) 99-118.

60

Judd, K. L., Numerical Methods in Economics, MIT
Press, Cambridge, Massachusetts, 1998.

Korpelevich, G. M., “The extragradient method for find-
ing saddle points and other problems,” Matekon 13
(1977) 35-49.

Leventhal, T., Nemhauser, G., and Trotter, L., Jr., “A
column generation algorithm for optimal traffic assign-
ment,” Transportation Science 7 (1973) 168-176.

Murty, K. G., Linear Complementarity Problems, Lin-
ear and Nonlinear Programming, Heldermann, Berlin,
Germany, 1988.

Nagurney, A., “An equilibration scheme for the traffic
assignment problem with elastic demands,” Transporta-
tion Research 22B (1988) 73-79.

Nagurney, A., editor, Advances in Equilibrium Mod-

eling, Analysis, and Computation, Annals of Opera-

tions Research 44, J. C. Baltzer AG Scientific Publishing

Company, Basel, Switzerland, 1993.

61

Nagurney, A., and Zhang, D., Projected Dynamical
Systems and Variational Inequalities with Applica-
tions, Kluwer Academic Publishers, Boston, Massachusetts,
1996.

Ortega, J. M., and Rheinboldt, W. C., Iterative So-
lution of Nonlinear Equations in Several Variables,
Academic Press, New York, 1970.

Pang, J. S., and Chan, D., “Iterative methods for vari-
ational and complementarity problems,” Mathematical
Programming 24 (1982) 284-313.

Patriksson, M., The Traffic Assignment Problem,
VSP, Utrecht, The Netherlands, 1994.

Perko, L., Differential Equations and Dynamical Sys-
tems, Springer-Verlag, New York, 1991.

Scarf, H. E. (with T. Hansen), The Computation of

Economic Equilibria, Yale University Press, New Haven,

Connecticut, 1973.

62

Sheffi, Y., Urban Transportation Networks - Equi-
librium Analysis with Mathematical Programming
Methods, Prentice-Hall, Englewood Cliffs, New Jersey,
1985.

Thompson, G. L., and Thore, S., Computational Eco-
nomics, The Scientific Press, San Francisco, California,
1992.

Todd, M. J., The Computation of Fixed Points and
Applications, Lecture Notes in Economics and Math-
ematical Systems 124, Springer - Verlag, Berlin, Ger-
many, 1976.

Zangwill, W. I., Nonlinear Programming: A Unified
Approach, Prentice - Hall, Englewood Cliffs, New Jer-
sey, 1969.

63

