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Introduction

In this lecture the focus is on policies for sustainable
transportation networks, but from a system-optimized
perspective, rather than from a user-optimized view-
point, which was the subject of earlier lectures.

Recall that in a system-optimized network, the total
cost associated with traveling on the network is mini-
mized.

This concept is useful not only in the context of con-

gested urban transportation networks but, in fact, in

other networks, including freight networks, in which there

exists a central controller who can route traffic on the

network in an optimal fashion; optimality here, unlike

in the case of user-optimized networks, is represented

by the solution of an optimization problem, even in the

case of general user link travel cost functions.
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With this lecture, I add another dimension to the mod-
eling and analysis of sustainable transportation networks
in that I explicitly now handle not only the total emis-
sions generated and guarantee that they do not exceed
the imposed environmental quality standard, but also in-
clude an explicit objective function whose minimization
reflects the minimization of total cost in the network as
reflected by the total congestion.

I assume here that the networks are viable. Further-
more, I consider traffic networks in which the travel de-
mands are fixed.

Some of the policy instruments that will be developed

in this course for sustainable system-optimized networks

are given in the table.
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Modeling of Sustainable System-Optimized Net-
works

Now, I develop models for sustainable transportation
networks in which the underlying behavior is that of
system-optimization and the policy is that of emission
tolls. I first present a simple model, which is, subse-
quently, generalized.

In the next Table, the relationship between a viable,
system-optimized transportation network in the pres-
ence of emission/congestion tolls, as discussed in this
lecture, is highlighted.
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Summary of policy instruments for sustainable
S-O networks

this lecture
Emission/congestion pricing – Fixed demand networks
Emission/congestion tolls for U-O – Fixed demand networks

next lecture
Tradable pollution permits – Fixed demand networks
Tradable pollution permits/tolls for U-O – Elastic demand networks
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A Simple Model

As in other lectures, consider a traffic network consisting
of the graph G = [N, L], where N denotes the set of
nodes and L the set of links. Moreover, assume, as
given, a vector of travel demands d associated with the
origin/destination pairs.

Here I consider the “classical” form of the total link
travel cost functions, due to Beckmann, McGuire, and
Winsten (1956), in which the total cost on a link, de-
noted by ĉa is equal to the product of the user link travel
cost, which is assumed to be a separable function of the
link load, times the total load on the link, that is:

ĉa = ca(fa) × fa, ∀a ∈ L, (1)

in which it is assumed that the user link travel cost
function ca is increasing in the flow for each link in the
network.

The total travel cost on a path p, hence, is equal to the
sum of the total travel costs on links that comprise that
path, that is:

Ĉp =
∑
a∈L

ĉaδap, ∀a ∈ L. (2)
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The marginal of the total cost on a path p, in turn,
which is denoted by Ĉ ′

p, for all p ∈ P , is given by the
sum of the marginals of the total costs on the links that
comprise the path, that is,

Ĉ ′
p =

∑
a∈L

ĉ′aδap =
∑
a∈L

∂ĉa(fa)

∂fa
δap. (3)

Recall that in the system-optimization problem one seeks
to minimize the total cost in the network, where the ob-
jective function is given by:

Minimize
∑
a∈L

ĉa(fa) = Minimize
∑
a∈L

ca(fa) × fa (4)

or, equivalently, in path flows by:

Minimize
∑
p∈P

Ĉp = Minimize
∑
p∈P

Cp(x) × xp. (5)

I am now ready to state the system-optimization prob-
lem, whose solution will guarantee that the transporta-
tion network is sustainable. I utilize the path flow form
of the objective function given by (5).

Hence, I retain the objective function in the classical

traffic network system-optimization model due to Beck-

mann, McGuire, and Winsten (1956), as well as the

constraints, but now I add the environmental quality

constraint, as was also done in the user-optimized mod-

els.
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The system-optimization problem can, therefore, be ex-
pressed as:

Minimize S(x) =
∑
p∈P

Ĉp (6)

subject to: ∑
p∈Pw

xp = dw, ∀w ∈ W, (7)

∑
a∈L

ha

∑
p∈P

xpδap ≤ Q̄, (8)

xp ≥ 0, ∀p ∈ P. (9)

Observe that conditions (7)–(9) correspond precisely to
Linear System 1, the existence of a solution to which
guarantees viability of a transportation network with
given O/D pairs and travel demands.

Optimality Conditions

I now derive the optimality conditions for the system-

optimization problem given by (6)–(9). These are op-

timality conditions, rather than equilibrium conditions,

as is the case where the travelers behave in a user-

optimizing manner, since here one now has an explicit

objective function, which represents the total cost or

congestion to be minimized.
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Note that, since the user travel cost functions are in-
creasing functions of the flow, the objective function is
convex and the constraints, which are linear, are also
convex. Thus, the Kuhn-Tucker optimality conditions
can be stated as follows: x∗ ∈ RnP

+ is an optimal solu-
tion if it satisfies the travel demands, and satisfies the
following system of equalities and inequalities: For each
O/D pair w ∈ W , and each path p ∈ Pw:

¯̂C ′
p(x

∗, τ ∗) = Ĉ ′
p(x

∗) + τ ∗ ∑
a∈L

haδap

{
= µw, if x∗

p > 0
≥ µw, if x∗

p = 0,

(10)

where τ ∗ is the Lagrange multiplier associated with the

environmental quality constraint (8) with τ ∗ having the

interpretation here as being the marginal cost of emis-

sion abatement, as in the case of the user-optimized

models.
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In addition, one must have that:

Q̄ −
∑
a∈L

ha

∑
p∈P

x∗
pδap

{
= 0, if τ ∗ > 0
≥ 0, if τ ∗ = 0,

(11)

Observe that Ĉ ′
p = ∂S(x)

∂xp
, ∀p ∈ P . Note that ¯̂C ′

p in (10)

denotes the generalized marginal cost associated with

traveling now on path p, where the term: τ ∗ ∑
a∈L haδap

represents the, de facto, marginal of the total cost on

path p due to the emissions generated by traveling on

path p. Hence, this term may also be interpreted as a

“price” which is associated with traveling on the path.

There exists a similar interpretation of the term arising

in the case of the user-optimized model. Consequently,

the higher the emission factors on a utilized path, the

higher this term for travelers on that path.
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Note that, in the case of system-optimization, it is the
generalized marginal travel costs on used paths for each
O/D pair that get equalized (or equilibrated), rather
than the generalized user travel costs.

Pricing Policies

As already stated, in the case of system-optimized net-
works, the central authority controls the flows, be they
flows which correspond to motor vehicles, freight, or
others. Hence, the solution to the sustainable system-
optimization problem is implemented by the authority
or central controller.

Nevertheless, one may interpret the costs associated
with emissions so that one may assign the following
price policies which reflect the cost of emitting. Specif-
ically, one can construct pricing policies, in links, and in
paths, respectively, which satisfy optimality conditions
(10) and (11), and which are analogous to those for
the user-optimized problem described in an earlier lec-
ture, but which are interpreted there as tolls, since the
users in that case do not control the system and act
independently.

Here, however, the total cost in the network is also min-

imized simultaneously.
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Relationship between system-optimization and
emission/congestion pricing and sustainability

System-Optimized Viable Network
+ ⇒ Sustainability

Emission/Congestion Pricing
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The following emission pricing policies satisfy the con-
ditions (10) and (11).

Link Pricing Policy

The link pricing policy given by ta = τ ∗ha, ∀a ∈ L, where
τ ∗ is the equilibrium marginal cost of emission abate-
ment and ta denotes the payment on link a, guarantees
that the transportation network is sustainable.

Path Pricing Policy

The path pricing policy given by tp = τ ∗ ∑
a∈L haδap for

all p ∈ P , where tp denotes the payment on path p,
guarantees that the network will be sustainable.

Note that here τ ∗ does not correspond to the marginal
cost of emission abatement resulting from the solution
of the policy problem in the case of user-optimization.
The similar notation is used simply for convenience and
is clear from the context of the problem under study.

I now present an example, for which the sustainable

system-optimized flow pattern can be solved for explic-

itly.
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Example 1

Consider the network depicted in the Figure, consisting
of two nodes: 1 and 2, and two links: a and b.

There is a single O/D pair w1 = (1,2). Let path p1 = a
and path p2 = b.

The travel demand dw1 = 10. The user link travel cost
functions are:

ca(fa) = fa + 7, cb(fb) = 2fb + 4.

Hence, the total cost functions on the links are:

ĉa(fa) = f2
a + 7fa, ĉb(fb) = 2f2

b + 4fb.

The marginals of the total costs on the links, in turn,
are given by the expressions:

ĉ′a(fa) = 2fa + 7, ĉ′b(fb) = 4fb + 4,

which also correspond to the path marginals of the total
costs, since each path consists of a single link:

Ĉ ′
p1

= 2xp1 + 7, Ĉ ′
p2

= 4xp2 + 4.
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Suppose that the emission factors are ha = 0.1 and hb =
0.5, and the environmental quality standard Q̄ = 3.

It is easy to verify that the network is viable (for exam-
ple, one may simply let xp1 = 10 and xp2 = 0 and the
Linear System 1 is satisfied).

Due to the simplicity of the example, one can solve
explicitly for the solution.

Indeed, note that the path flow pattern x∗
p1

= 61
6
, x∗

p2
=

35
6

with τ ∗ = 0, yields:

Ĉ ′
p1

= Ĉ ′
p2

= 19
1

3
.

Hence, there are no tolls needed in this transportation

network example, and the system-optimized solution is

also sustainable, with the total emissions generated by

the flow pattern equal to 2.533, which is less than Q̄ =

3.
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Suppose now that one tightens the environmental qual-
ity standard so that the new Q̄ = 1.5. The preceding
pattern violates the environmental quality condition and,
hence, a new sustainable system-optimized flow pattern
needs to be determined. The new system-optimal flow
pattern is:

x∗
p1

= 8.75, x∗
p2

= 1.25,

and the equilibrium marginal cost of emission abatement
τ ∗ = 36.25, yielding a link pricing policy (which also
corresponds to a path pricing policy in this case) given
by:

ta = .1(36.25) = 3.625, tb = .5(36.25) = 18.125,

and with generalized marginals of the total costs on
paths equal to:

¯̂C ′
p1

= ¯̂C ′
p2

= 28.125.

Indeed, the environmental quality standard is precisely

met by this pattern.
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Remark 1

One might be tempted to construct an optimization
problem which has as its objective function to minimize
both the total cost in the network as well as the total
emissions. For example, one may consider the following
problem:

Minimize
∑
p∈P

Cp(x)xp +
∑
a∈L

ha

∑
p∈P

xp

subject to: ∑
p∈Pw

xp = dw, ∀w ∈ W,

xp ≥ 0, ∀p ∈ P.

Note that the Kuhn-Tucker conditions for this problem
can be stated as, assuming that the flow pattern is fea-
sible: For all O/D pairs w ∈ W and all paths p ∈ Pw:

¯̂C ′
p(x

∗) = Ĉ ′
p(x

∗) +
∑
a∈L

haδap

{
= µw, if x∗

p > 0
≥ µw, if x∗

p = 0.
(12)

However, although the objective function includes the

expression for the total emissions, the environmental

quality standard may not be met by the solution to this

problem and, consequently, the resulting flow pattern

may not correspond to a sustainable one.
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Indeed, consider the following example.

Example 2

The network topology is given in the Figure and consists
of two nodes: 1 and 2 and two links: a and b, and a
single O/D pair w1 = (1,2). Let p1 = a and p2 = b.

Assume that the emission factors are ha = 0.1 and hb =
0.5.

The travel demand dw1 = 10 and the user link cost func-
tions are:

ca(fa) = fa + 5, cb(fb) = fb + 5,

so the total cost functions are:

ĉa(fa) = f2
a + 5fa, ĉb(fb) = f2

b + 5fb,

with marginals of the total cost functions given by:

ĉ′a(fa) = 2fa + 5 ĉ′b(fb) = 2fb + 5,

which corresponds to the marginals of the total costs
on the paths:

Ĉ ′
p1

= 2xp1 + 5, Ĉ ′
p2

= 2xp2 + 5.
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Assuming that both paths are used and using the expres-
sion for the travel demand being equal to the sum of the
paths for the O/D pair, one obtains a single equation
corresponding to the Kuhn-Tucker condition above:

2fa + 5 + 0.1 = 2(10 − fa) + 5 + 0.5,

the solution of which yields:

f∗
a = 5.1, f∗

b = 4.9,

with

Ĉ ′
p1

+
∑
a∈p1

ha = Ĉ ′
p2

+
∑
a∈p2

ha = 15.3.

Note, however, that this flow pattern yields total emis-
sions equal to 2.96, which exceed Q̄ = 2!

Therefore, the solution of the optimization problem sat-

isfying optimality conditions (12) does not guarantee a

sustainable transportation network.
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The General Model

I now consider traffic networks which are sustainable and
system-optimized, but on which the user link travel cost
functions are no longer separable.

Hence, I assume the general situation in which the user
link travel cost on link a is given by:

ca = ca(f), ∀a ∈ L, (13)

and, consequently, the total cost expression on a link a,
denoted by ĉa, is given by:

ĉa = ca(f) × fa, ∀a ∈ L. (14)

Note that, in the simple model, ∂S(x)
∂xp

, where S(x) de-

noted the total cost on the network, was precisely equal
to Ĉ ′

p =
∑

a∈L ĉ′a, since the user link cost travel func-
tions, and, hence, the total link travel cost functions
were separable.

In the general case, however, one can still define the

“marginal of the total cost” on path p, denoted, again,

by Ĉ ′
p to be equal to ∂S(x)

∂xp
, in which case the optimal-

ity conditions (10) and (11) coincide with the optimal-

ity conditions for the general problem, whose objective

function remains that of (8.6), subject to constraints:

(7)–(9).
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Clearly, one can also derive a variational inequality for-
mulation of the Kuhn-Tucker optimality conditions for
this problem but this is not necessary since the problem,
even in the general case, remains an optimization prob-
lem in the case of system-optimization, rather than an
equilibrium problem as is the case in user-optimization.

Indeed, recall that in the case of nonseparable and asym-
metric user link travel cost functions, one can no longer
reformulate the traffic network equilibrium conditions as
the optimality conditions of a convex optimization prob-
lem.

Consequently, in order to formulate, analyze, and solve
such problems, one must appeal to variational inequality
theory.

For completeness, however, as well as for the flexibil-
ity in applying, for example, such an algorithm as the
modified projection method, which can be used to solve
the sustainable S-O problem above, I also give the varia-
tional inequality formulation of conditions (10) and (11).

Of course, any general convex programming algorithm

can be applied, at least in principle, to compute the solu-

tion to the system-optimization problem for sustainable

transportation networks given by (6)–(9). Since the

proof of the theorem is so similar to that of an earlier

theorm, it is presented without proof.
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Theorem 1 (Variational Inequality Formulation of
a Sustainable System-Optimized Solution)

A traffic flow pattern and marginal cost of emission
abatement (x∗, τ ∗) ∈ K1 is a solution of the sustainable
system-optimized model described above if and only if
it is a solution to the variational inequality problem:

Path Flow Formulation:∑
w∈W

∑
p∈Pw

[
Ĉ ′

p(x
∗) + τ ∗ ∑

a∈L

haδap

]
× [

xp − x∗
p

]

+


Q̄ −

∑
a∈L

ha

∑
p∈P

x∗
pδap


 × [τ − τ ∗] ≥ 0, ∀(x, τ) ∈ K1,

(15)
where K1 ≡ K̄1×R1

+, and K̄1 ≡ {x|x ≥ 0, and satisfies (7)}
and, equivalently, (f∗, τ ∗) ∈ K2 is a solution of the sus-
tainable S-O problem if and only if it satisfies the vari-
ational inequality problem:

Link Load Formulation:∑
a∈L

[
ĉ′a(f

∗) + τ ∗ha

] × [fa − f∗
a ]

+

[
Q̄ −

∑
a∈L

haf
∗
a

]
× [τ − τ ∗] ≥ 0, ∀(f, τ) ∈ K2, (16)

where K2 ≡ K̄2 × R+ and K̄2 ≡ {f | there exists an

x ≥ 0, satisfying (7)}.
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Emission/Congestion Tolls for Sustainability

I now develop a framework for the construction of tolls,
which serves the twofold purpose of alleviating conges-
tion in that the total cost in the network as reflected
by the total congestion is minimized, while, at the same
time, guaranteeing that the environmental quality stan-
dard is satisfied, even though the travelers are now as-
sumed to adopt, once again, user-optimizing behavior.

I assume that travelers seek to determine their paths
from their origins to their destinations so as to minimize
their travel “cost” where here cost is interpreted in a
general manner to include not only, for example, travel
time, but also the outlay of any necessary payments for
use of the path.

The relationship between the tolls proposed in this sec-

tion and sustainability of the transportation network is

highlighted in the Table.
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The Procedure

I now describe a procedure for the allocation of tolls
which guarantees that the system-optimized flow pat-
tern for a sustainable network, that is, one that sat-
isfies optimality conditions (10) and the corresponding
marginal cost of emission abatement, which satisfies, in
turn, optimality conditions (11), is also a user-optimized
pattern, after the imposition of the appropriate toll pol-
icy.

Note that, for the system-optimal solution, denoted by
(x∗, τ ∗), to also be user-optimized, it must satisfy the
conditions: For each O/D pair w ∈ W , and each path
p ∈ Pw:

Cp(x
∗) + tp

{
= λw, if x∗

p > 0
≥ λw, if x∗

p = 0,
(17)

where tp here denotes a path-toll policy.

Furthermore, the system-optimized flow pattern already
satisfies conditions (10); that is: For each O/D pair
w ∈ W , and each path p ∈ Pw:

Ĉ ′
p(x

∗) + τ ∗ ∑
a∈L

haδap

{
= µw, if x∗

p > 0
≥ µw, if x∗

p = 0,
(18)

For a solution to (18) to coincide with that of (17)
implies that, for each path p ∈ P , one must have that:

tp = Ĉ ′
p(x

∗) − Cp(x
∗) + τ ∗ ∑

a∈L

haδap. (19)
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Path-Toll Policy

Hence, equation (19) implies a procedure by which one
can construct a path-toll policy. In particular, one first
solves the problem (6)–(9) and then determines, for
each path p in the network, the path-toll policy accord-
ing to equation (19).

Link-Toll Policy

A link-toll policy, in turn, can also be determined ac-
cording to:

ta = ĉ′a(f
∗) − ca(f

∗) + τ ∗ha, ∀a ∈ L. (20)

Remark 2

It is worth highlighting the similarities between expres-
sions (19) and (20) and the analogous expressions for
path tolls and link tolls, respectively, arising in the clas-
sical toll policies, in which only congestion is considered
and not pollution due to emissions.

Indeed, in the latter framework, there would be no such

terms τ ∗ ∑
a∈L haδap and τ ∗ha, and the flow pattern x∗

and the link load pattern f∗ would simply correspond

to the patterns obtained by the solution of the system-

optimization problem (6), subject only to (7) and (9)

(when the link load/path flow expression is substituted

directly into the formulation). These terms reflect pre-

cisely the cost associated with the emissions.
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Numerical Example

I now present numerical examples of sustainable S-O
transportation networks, to which the solutions are com-
puted using the modified projection method. The code
for this algorithm to solve this model was written in
FORTRAN and the computer system used for the nu-
merical work was the IBM SP2 located at the Computer
Science Department at the University of Massachusetts
at Amherst.

Example 3

The network topology for this example is given in the
Figure.

The network consists of two nodes, denoted by 1 and
2; three links, denoted by a, b, and c, and a single O/D
pair w1 = (1,2). I let p1 = a, p2 = b, and p3 = c.

The travel demand dw1 = 10. Recall that the user link
travel cost functions are:

ca(fa) = 2fa + 5, cb(fb) = fb + 8, cc(fc) = 1.5fc + 5.

The emissions are: ha = 0.1, hb = 0.2, and hc = 0.3,

with the environmental quality standard Q̄ = 1.5.

26



"!
# 
2

"!
# 
1

?
AAU ���

a b c

Network topology for Example 3

27



I set α = 0.4 in the modified projection method with
ε = .001. An application of the modified projection
method yielded the following sustainable S-O solution:

f∗
a = 5.40, f∗

b = 4.20, f∗
c = 0.40

This optimal link load pattern was induced by the opti-
mal path flow pattern:

x∗
p1

= 5.40, x∗
p2

= 4.20, x∗
p3

= 0.40.

The optimal marginal cost of emission abatement was

τ ∗ = 102.03.

The total cost in the network, as represented by the
objective function

∑
a∈L ĉa × fa, was equal to 138.79.
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