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Introduction

In this lecture, I return to the policy mechanism of pol-
lution permits which was discussed for user-optimized
transportation networks in a preceding lecture. How-
ever, now I model explicitly distinct transportation juris-
dictions, each with its own responsible authority for its
transportation network.

Moreover, I assume that there is an environmental qual-
ity standard that cannot be exceeded by the total emis-
sions generated by the flows in all the transportation
networks under consideration.

Thus, the transportation networks may correspond to
regions with the standard being imposed by, for example,
a state government or the federal government to ensure
that the environmental quality standard is upheld.

Moreover, one can also consider the individual entities

to be nations, each responsible for its own transporta-

tion network and the total emissions generated by the

vehicles on its network.
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The Model with Tradable Pollution Permits

I now introduce the notation for the permit system
model which assumes that there are I transportation
jurisdictions, with a typical jurisdiction denoted by i.

For each jurisdiction i, consider a transportation network
Gi = [Ni, Li] consisting of the set of nodes Ni and a set
of directed links Li. For a typical such network, let a, b,
etc., denote the links and let p, q, etc., denote the paths,
which are assumed to be acyclic.

Assume that there are Ji origin/destination (O/D) pairs
in network i, with a typical O/D pair denoted by w, and
the set of O/D pairs for network i is denoted by Wi.

Let Pw denote the set of paths connecting O/D pair w

and let Pi denote the set of paths in the network i.
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The flow on a link a is denoted by fa, and the user cost
associated with traveling on link a by ca. Group the link
loads for network i into a column vector fi ∈ Rni, and
the link user travel costs into a row vector ci ∈ Rni,
where ni is the number of links in the network i.

Further group the link loads and the user travel costs
into the respective column vectors: f ∈ Rn

+ and c ∈ Rn.

I am interested in system-optimized networks in which
each jurisdiction is faced with its own objective function.
I assume that, in general, the user link travel costs asso-
ciated with a particular network can depend on the flow
upon the entire link load pattern on their own network,
and, thus, the total link cost for a link a ∈ Li can be
expressed as follows:

ĉa = ĉa(fi) × fa, ∀a ∈ Li. (1)

The total travel cost on path p, in turn, denoted by Ĉp,
is given by:

Ĉp(f) =
∑
a∈Li

ĉa(fi)δap, ∀p ∈ Pi, (2)

where δap = 1, if link a is contained in path p, and 0,

otherwise.
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I consider the case of fixed travel demands where the
demand for O/D pair w ∈ Wi is denoted by dw. The
nonnegative flow on path p is denoted by xp, with the

path flows grouped into a column vector xi ∈ RQi

+, where
Qi denotes the number of paths in the network i.

Further group the path flows for all the networks into
the vector x ∈ RnP

+ , where nP denotes the number of
paths in all the networks.

Conservation of Flow Equations

The following conservation of flow equations must be
satisfied by the flows in each network i:

dw =
∑
p∈Pw

xp, ∀w ∈ Wi, (3)

and

fa =
∑
p∈Pi

xpδap, ∀a ∈ Li. (4)

The conservation of flow equation (3) states that the
sum of the path flows on paths connecting an O/D pair
must be equal to the travel demand for that O/D pair
in network i. Equation (4), on the other hand, states
that the flow on a link equals the sum of the path flows
on paths that use that link. Let Ki denote the feasible
set defined as follows:

Ki = {fi, such that there exists a vectorx ≥ 0,

satisfying (3) and (4)}.
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Notation fo the Permits

Let la denote the number of license permits on link a
that allows travelers to emit pollutants at a certain rate.
Let l0a, in turn, denote the initial allocation of licenses
on link a, which is assumed to be nonnegative. Group
the licenses into the column vector li ∈ Rni

+ for each
network i and further group all the licenses into the
column vector l ∈ Rn

+. As in the previous chapters, let
ha denote the emission factor associated with link a.

Price and Cost Structure

The price and cost structure associated with the mar-
ketable pollution permits is now discussed.

Let ρ denote the price of a license in the transportation

network and let τa denote the marginal cost of emis-

sion abatement on link a. Group the marginal costs of

abatement for network i into the column vector τi ∈ Rni

+.

Further group the marginal costs of emission abatement

for the links in all the networks into the column vector

τ ∈ Rn
+, where n is the total number of links.
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I now present the system-optimization problem facing
the central controller in each transportation network i.
Specifically, assume that the objective function must
include the total cost in the network which reflects the
congestion, but now one needs to also incorporate into
the objective function the net revenue due to trading in
the permits, which is to be maximized.

The net revenue term, assuming a given price for the
license ρ∗, is then: ∑

a∈Li

ρ∗(l0a − la). (5)
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Moreover, one knows that the emissions on each link of
the network cannot exceed the license holdings for that
link which allow the travelers to emit at that rate. Com-
bining the above, one obtains, hence, for each network
i ∈ I, the following system-optimization problem:

Minimize
∑
p∈Pi

Si(xi) −
∑
a∈Li

ρ∗(l0a − la)

= Minimize
∑
p∈Pi

Ĉp −
∑
a∈Li

ρ∗(l0a − la) (6)

subject to:

hafa ≤ la, ∀a ∈ Li, (7)∑
p∈Pw

xp = dw, ∀w ∈ Wi (8)

xp ≥ 0, ∀p ∈ Pi, (9)

la ≥ 0, ∀a ∈ Li. (10)
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Since the feasible set is convex and, under the assump-
tion that the user link travel cost functions are increas-
ing functions of the flow, the total cost function is also
convex, the Kuhn-Tucker optimality conditions are both
necessary and sufficient and given by: For network i and
all O/D pairs w ∈ Wi and each path p ∈ Pw:

Ĉ ′
p(f

∗
i , τ ∗) = Ĉ ′

p(x
∗
i ) +

∑
a∈Li

haτ
∗
aδap

{
= µw, if x∗

p > 0
≥ µw, if x∗

p = 0,

(11)

where Ĉ ′
p(x

∗) denotes the marginal of the total cost on

path p and is given by: Ĉ ′
p(x) = ∂Si(xi)

∂xp
. Note that here

the decoupled nature of the individual transportation

networks is explicitly emphasized, since it is asssumed

that each is under the jurisdiction of a distinct trans-

portation authority.
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Also, for each link a ∈ Li, the equilibrium marginal cost
of emission abatement τ ∗

a , must satisfy:

ha f∗
a

{
= l∗a, if τ ∗

a > 0
≤ l∗a, if τ ∗

a = 0.
(12)

The following condition must also hold: For each link
a ∈ Li:

τ ∗
a

{
= ρ∗, if l∗a > 0
≤ ρ∗, if l∗a = 0.

(13)

The above conditions are the optimality conditions for

a system-optimal solution for transportation network i.

Observe that τ ∗
a is the marginal cost of emission abate-

ment associated with constraint (7).
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Market Equilibrium Condition for Licenses

I now state the market equilibrium conditions for li-
censes, which say that if the equilibrium price of a license
is positive, then the market must clear for the licenses,
that is, the total supply of the licenses, which is given by
the sum of the initial license allocations, must be equal
to the sum of the final (equilibrium license) holdings:

∑
i∈I

∑
a∈Li

(l0a − l∗a)

{
= 0, if ρ∗ > 0
≥ 0, if ρ∗ = 0.

(14)

Expression (14) corresponds to the well-known economic
equilibrium conditions that state that, in equilibrium, if
a price of a good (which in this case is the license)
is positive, then the market for that good must clear,
that is, the supply of the licenses, which is equal to∑

i∈I

∑
a∈Li

l0a, must be equal to the demand for the li-
censes in equilibrium, which is given by

∑
i∈I

∑
a∈Li

l∗a.

On the other hand, if the price of a license is zero, then

one may have an excess supply of the licenses.
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Trade in pollution permits

Jurisdiction 1 Jurisdiction 2 . . . Jurisdiction I
Network 1 Network 2 . . . Network I

G1 = [N1, L1] G2 = [N2, L2] . . . GI = [NI, LI]
Initial:

∑
a∈L1

l0a Initial:
∑

a∈L2
l0a . . . Initial:

∑
a∈LI

l0a
⇓

⇒ Trade ⇐
⇓

Final:
∑

a∈L1
l∗a Final:

∑
a∈L2

l∗a. . . Final:
∑

a∈LI
l∗a
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Let K denote the feasible set such that K ≡
∏

i∈I Ki ×

R

∑
i∈I

2ni×R+

+ .

I am now ready to define the equilibrium state.

Definition 1 (Sustainable System-Optimum with
Tradable Pollution Permits)

A vector (f∗, τ ∗, l∗, ρ∗) ∈ K is an equilibrium of the sus-
tainable system-optimal tradable pollution permits model
if and only if it satisfies the systems of equalities and
inequalities (11)–(13) for all networks i ∈ I and (14).

In the Table, the structure of the trade problem in li-

censes is given. Note that the licenses may also be

interpreted as flows between the network jurisdictions

whereas the transportation flows are internal to each

network.
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I now present the variational inequality formulation of
the equilibrium conditions for the model. The proof is
similar to that of other theorems in this course and,
hence, is not given. A path flow version can also be
readily obtained.

Theorem 1 (Variational Inequality Formulation of
Tradable Pollution Permit System Traffic Network
Equilibrium with System-Optimized Behavior)

A vector of link loads, marginal costs of emission abate-
ment, licenses, and license price, (f∗, τ ∗, l∗, ρ∗) ∈ K, is
an equilibrium of the tradable pollution permit market
equilibrium model in the case of sustainable system-
optimized networks if and only if it is a solution to the
variational inequality problem:∑

i∈I

∑
a∈Li

(ĉ′a(f
∗
i ) + haτ

∗
a) × (fa − f∗

a)

+
∑
i∈I

∑
a∈Li

(l∗a − haf
∗
a) × (τa − τ ∗

a)

+
∑
i∈I

∑
a∈Li

(ρ∗−τ ∗
a)×(la− l∗a)+

∑
i∈I

∑
a∈Li

(l0a − l∗a)×(ρ−ρ∗) ≥ 0,

∀(f, τ, l, ρ) ∈ K. (15)
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Variational inequality (15) is now put into standard form.
Define column vector X ≡ (f, τ, l, ρ) ∈ K and the column
vector F (X), where:

F (X) ≡
(
Ĉ ′(X), T(X), L(X), P (X)

)
.

Ĉ ′(X), L(X), T(X) are each n-dimensional column vec-
tors with component a given, respectively, as follows:

Ĉ ′
a(X) : ĉ′a(f) + haτa,

Ta(X) : la − hafa,

La(X) : ρ − τa,

whereas P (X) is the one-dimensional vector with the
single component:

P (X) :
∑
a∈Li

(l0a − la).

Thus, variational inequality (15) can be expressed as:

〈F (X∗)T , X − X∗〉 ≥ 0, ∀X ∈ K. (16)

14



I now turn to studying whether the equilibrium pattern
is independent of the initial allocation of the licenses on
the links and how to guarantee that the environmental
emission standards imposed by the governing body are
met in equilibrium. The question as to whether the ini-
tial allocation of licenses affects the equilibrium pattern
is answered in the following corollary.

Corollary 1

If l0a ≥ 0 for all a, and
∑

i∈I

∑
a∈Li

l0a = Q̄, with Q̄ fixed
and positive, then the equilibrium pattern (f∗, τ ∗, l∗, ρ∗)
is independent of the initial allocation.

Proof:

The terms in the variational inequality (15) are either in-

dependent of l0a or depend only on the sum,
∑

i∈I

∑
a∈Li

l0a.

The conclusion follows.
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In the following proposition, I show that the environ-
mental standards are met by the equilibrium pattern,
provided that the sum of the initial allocation of licenses
is equal to the imposed environmental standard given by
Q̄.

Proposition 1

If
∑

i∈I

∑
a∈Li

l0a = Q̄, the equilibrium vector achieves the

environmental quality standard, Q̄, provided that the
entire transportation network is viable.

Proof:

One has from equilibrium conditions (12) and (14) that:∑
i∈I

∑
a∈Li

haf
∗
a ≤

∑
i∈I

∑
a∈Li

l∗a ≤
∑
i∈I

∑
a∈Li

l0a = Q̄.

Hence, the environmental standards are met by the equi-
librium pattern.

Proposition 1 says that the complete transportation net-
work consisting of the I individual transportation net-
works is sustainable, that is, the environmental quality
standard will not be exceeded, provided that the sum of
the license allocations are set equal to the target.

Of course, the complete network must be viable in that

there must exist a solution to the Linear System 1 in

order to even be able to achieve sustainability.
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Relationship between a viable system-optimized
network, tradable permits, and sustainability

System-Optimized Viable Network
+ ⇒ Sustainability

License Allocation:
∑

i∈I

∑
a∈Li

l0a = Q̄
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Example 1

I now present an example which illustrates the basic
concepts. Consider the two networks depicted in the
Figure, each of which is the responsibility of a separate
transportation authority.

Each network consists of two links with the first network
consisting of links a and b, whereas the second consists
of links c and d.

The O/D pair for Network 1, denoted by w1, is (1,2),
whereas the O/D pair for Network 2 is (3,4).

The user link travel cost functions are:

ca(fa) = fa + 5, cb(fb) = fb + 10,

cc(fc) = fc + 5, cd(fd) = fd + 5.

The travel demands are: dw1 = 10 and dw2 = 10. Denote

the paths as follows: p1 = a, p2 = b, p3 = c, and p4 = d.
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Assume that the emission factors are: ha = hb = 1, and
hc = hd = 0.2 with the initial license allocation given by:
l0a = l0b = l0c = l0d = 3.

Hence, Network 1 has a total license allocation of 6
for its network links as does Network 2. Moreover, the
environmental quality standard Q̄ = 12.

Note that Network 1 has links with higher emission fac-
tors than Network 2 and, in fact, with only an initial
license allocation of 6 it cannot, without the trading of
licenses, emit less than or equal to its allocation.

Indeed, in order to satisfy its fixed demand of 10, 10
units of pollutants will be generated due to its emission
factors on its links. Network 2, on the other hand, has
links which are characterized by lower emission factors.

It is easy to verify that it can satisfy its permission to
emit at 6 units since its demand is 10 and the emissions
generated on its network will be 2.

Therefore, it can sell several of its licenses to Network 1,

which needs to purchase licenses since it cannot sustain

its demand with the given allocation.
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Since the network structure of both networks is simple,
we can solve for the conditions (11)–(14) to obtain the
following solution:

The flows are:

x∗
p1

= f∗
a = 6.35, x∗

p2
= f∗

b = 3.75,

x∗
p3

= f∗
c = 5.00, x∗

p4
= f∗

d = 5.00,

the marginal costs of emission abatement are:

τ ∗
a = τ ∗

b = τ ∗
c = τ ∗

d = 1.94,

which is also the price ρ∗;

the licenses are:

l∗a = 6.25, l∗b = 3.75, l∗c = 1.00, l∗d = 1.00.

Hence, the market for licenses clears in this example,
and Network 1 purchases four licenses from Network
2. Furthermore, the conditions (11)–(13) are precisely
satisfied by the solution pattern.

Therefore, each network has minimized its objective

function and the environmental quality standard has

been achieved through the trading of pollution permits.
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Algorithm and Numerical Examples

I now show the realization of the modified projection
method for the solution of variational inequality problem
(15).

Then, I state the algorithm and discuss it more fully
from a computational perspective.

The algorithm is presented for solving variational in-
equality (15).

Modified Projection Method for the Tradable Per-
mit Model for Sustainable System-Optimized Net-
works

Step 0: Initialization

Set (f0, τ0, l0, ρ0) ∈ K. Let T = 1 and set α such that
0 < α ≤ 1

L̄
, where L̄ is the Lipschitz constant for the

problem.

Step 1: Computation

Compute (f̄T , τ̄T , l̄T , ρ̄T ) ∈ K by solving the variational
inequality subproblem:∑

i∈I

∑
a∈Li

(f̄T
a + α(ĉ′a(f

T −1
i ) + haτ

T −1
a ) − fT −1

a ) × (fa − f̄T
a )

+
∑
i∈I

∑
a∈Li

(l̄Ta + α(ρT −1 − τT −1
a ) − lT −1

a ) × (la − l̄Ta )
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+
∑
i∈I

∑
a∈Li

(τ̄T
a + α(lT −1

a − haf
T −1
a ) − τT −1

a ) × (τa − τ̄T
a )

+(ρ̄T + α(
∑
i∈I

∑
a∈Li

l0a −
∑
i∈I

∑
a∈Li

lT −1
a )− ρT −1)× (ρ − ρ̄T ) ≥ 0,

∀(f, τ, l, ρ) ∈ K. (17)

Step 2: Adaptation

Compute (fT , τT , lT , ρT ) ∈ K by solving the variational
inequality subproblem:∑

i∈I

∑
a∈Li

(fT
a + α(ĉ′a(f̄i

T
) + haτ̄

T
a ) − fT −1

a ) × (fa − fT
a )

+
∑
i∈I

∑
a∈Li

(lTa + α(ρ̄T − τ̄T
a ) − lT −1

a ) × (la − lTa )

+
∑
i∈I

∑
a∈Li

(τT
a + α(l̄Ta − haf̄

T
a ) − τT −1

a ) × (τa − τT
a )

+(ρT + α(
∑
i∈I

∑
a∈Li

l0a −
∑
i∈I

∑
a∈Li

l̄Ta ) − ρT −1) × (ρ − ρT ) ≥ 0,

∀(f, d, l, τ, ρ) ∈ K. (18)
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Step 3: Convergence Verification

If | fT
a − fT −1

a |≤ ε, |lTa − lT −1
a |≤ ε, | τT

a − τT −1
a |≤ ε, for all

a ∈ L, and | ρT − ρT −1 |≤ ε, with ε > 0, a pre-specified

tolerance, then stop; otherwise, set T := T +1, and go

to Step 1.

24



The decomposed subproblems can be computed effi-
ciently.

Note that in the system-optimized problem over sev-
eral transportation jurisdictions, the feasible set K is a
Cartesian product, such that one can decompose both
subproblems (17) and (18) for each network separately
in terms of the flows (as well as the licenses and mar-
ginal costs of emission abatement).

The flow subproblems are, in fact, separable quadratic

programming problems, each of which can be solved

using the equilibration algorithm of Dafermos and Spar-

row (1969). The subproblems in licenses, marginal costs

of emission abatement and, finally, the license price, in

turn, have an explicit form solution for (17) and analo-

gously adapted for the induced subproblems in (18).
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Numerical Examples

Numerical examples are now presented to illustrate both
the pollution permit trading model and the algorithm.

The modified projection method was implemented in
FORTRAN and the numerical experiments were con-
ducted on the IBM SP2 located in the Computer Sci-
ence Department at the University of Massachusetts at
Amherst.

For the solution of the standard traffic network equi-
librium problem encountered in both the computation
and adaptation steps (cf. (17) and (18)) I utilized the
equilibration method (cf. Dafermos and Sparrow 1969).

The convergence criterion was given by: |xT
p −xT −1

p | ≤ ε,

for all p ∈ P , |τT
a − τT −1

a | ≤ ε, for all a ∈ L, |lTa − lT −1
a | ≤ ε,

for all a ∈ L, and |ρT − ρT −1| ≤ ε.

The modified projection method was initialized by set-

ting the flow on a path equal to the travel demand for

the O/D pair that the path belongs to, divided by the

number of paths. All other variables were initialized to

zero.
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Example 2

The first numerical example in this subsection consisted
of the two networks depicted in the Figure, each of
which had three links and a single O/D pair, where
w1 = (1,2) and w2 = (3,4).

The user link travel cost functions were:

ca(fa) = 2fa + 1, cb(fb) = fb + 5, cc(fc) = 2fc + 3,

cd(fd) = 1.5fd + 1, ce(fe) = 3fe + 2, cf(ff) = fe + 5.

The travel demands were:

dw1 = 20, dw2 = 80.

The emission factors were:

ha = 3, hb = 0.2, hc = 1,

hd = 1, he = 0.5, hf = 0.1.

The initial license allocations were:

l0a = l0b = l0c = l0d = l0e = l0f = 2,

and, hence, the environmental quality standard Q̄ = 12.

I set α = 0.2 in the modified projection method. The

modified projection method converged in 10,351 itera-

tions and required 1.25 CPU seconds for convergence.

It computed the following solution:
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The flow pattern was:

x∗
p1

= f∗
a = 0.00, x∗

p2
= f∗

b = 20.00, x∗
p3

= f∗
c = 0.00,

x∗
p4

= f∗
d = 0.00, x∗

p5
= f∗

e = 0.00, x∗
p6

= f∗
f = 80.00.

The marginal costs of emission abatement were:

τ ∗
a = 41.8327, τ ∗

b = 407.4937, τ ∗
c = 123.5008,

τ ∗
d = 204.7472, τ ∗

d = 407.4937, τ ∗
f = 407.936.

The licenses were:

l∗a = l∗c = l∗d = l∗e = 0.00,

l∗b = 4.00, l∗f = 8.00.

The price of the license was:

ρ∗ = 407.937.

The market cleared for the licenses and, hence, the li-
cense price was positive. Furthermore, note that for
those links with positive license holdings in equilibrium,
the marginal cost of emission abatement was positive
and equal to the license price and conditions (14) were
met.

Note that the transportation authority for Network 1,
which had six initial licenses, sold two of those licenses
to Network 2.
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Example 3

This example was identical to Example 2, except that
now the initial license allocations were increased so that:

l0a = l0b = l0c = l0d = l0e = l0f = 3,

which corresponds to a loosening of the environmental
quality standard from 12 to Q̄ = 18.

The modified projection method converged in 1907 iter-
ations and required 0.29 CPU seconds for convergence.
It yielded the following solution:

The new flow pattern was:

x∗
p1

= f∗
a = 0.00, x∗

p2
= f∗

b = 20.00, x∗
p3

= f∗
c = 0.00,

x∗
p4

= f∗
d = 1.02, x∗

p5
= f∗

e = 12.70, x∗
p6

= f∗
f = 66.28.

The new marginal costs of emission abatement were:

τ ∗
a = 24.5554, τ ∗

b = 148.3249, τ ∗
c = 71.6638,

τ ∗
d = τ ∗

e = τ ∗
f = 148.3249.
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The new licenses were:

l∗a = l∗c = 0.00,

l∗b = 4.00, l∗d = 1.0204, l∗e = 6.3520, l∗f = 6.6275.

The new price of the license was:

ρ∗ = 148.3249.

The market for licenses cleared in this example and the

license price was positive. Note now that since the sup-

ply of initial licenses is greater than that in Example 2,

the equilibrium license price decreased. The authority

responsible for Network 2 purchased five licenses from

Network 1.

31



AAU��� AAU���

��
��

��
��

��
��

��
��

1 3

2 4

Network 1 Network 2

a b c d

AAU��� AAU���

��
��

��
��

��
��

��
��

5 7

6 8

Network 3 Network 4

e f g h

Networks for Example 4

32



Example 4

I then considered the four networks depicted in the Fig-
ure, each of which was under the jurisdiction of a sep-
arate transportation authority.

Each network consisted of a single O/D pair and two
links, where w1 = (1,2), w2 = (3,4), w3 = (5,6), and
w4 = (7,8). The paths were: p1 = a, p2 = b, p3 = c,
p4 = d, p5 = e, p6 = f , p7 = g and p8 = h.

The user link travel cost functions were:

ca(fa) = fa + 1, cb(fb) = 2fb + 5,

cc(fc) = fc + 2, cd(fd) = 3fd + 4,

ce(fe) = 2fe + 1, cf(ff) = ff + 3,

cg(fg) = 3fg + 5, ch(fh) = 2fh + 2.

The travel demands were:

dw1 = 20, dw2 = 20, dw3 = 10, dw4 = 10.

The emission factors were:

ha = 0.1, hb = 0.2, hc = 1, hd = 0.5,

he = 1, hf = 0.5, hg = 0.1, hh = 1.

The environmental quality standard was Q̄ = 20 and the
initial license allocations were evenly distributed so that

l0a = l0b = l0c = l0d = l0e = l0f = l0g = l0h = 2.5.
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I set α = 0.2 in the modified projection method. The
algorithm converged in 12,022 iterations and 1.99 sec-
onds of CPU time.

The flow pattern was:

x∗
p1

= f∗
a = 17.15, x∗

p2
= f∗

b = 2.85, x∗
p3

= f∗
c = 3.43,

x∗
p4

= f∗
d = 16.57,

x∗
p5

= f∗
e = 0.00, x∗

p6
= f∗

f = 10.00, x∗
p7

= f∗
g = 10.00,

x∗
p8

= f∗
h = 0.00.

The marginal costs of emission abatement were:

τ ∗
a = τ ∗

b = τ ∗
c = τ ∗

d = τ ∗
f = τ ∗

g = 189.1181,

τ ∗
e = 116.5568, τ ∗

h = 81.9086.

The licenses were:

l∗a = 1.7151, l∗b = 0.5697, l∗c = 3.4302, l∗d = 8.2849,

l∗e = 0.0000, l∗f = 5.0000, l∗g = 1.0000, l∗h = 0.0000.

The price of the license was:

ρ∗ = 189.1181.

The market for licenses cleared in this example and the

license price was positive.
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Pricing in the Case of User-Optimized Behavior

Consider now that the transportation authorities are still
faced with determining the system-optimal solution, as
was done in the preceding section, but now the travelers
on the networks behave in a user-optimized manner.

Hence, the different transportation authorities will need
to implement policies to guarantee that the users behave
also in a system-optimized fashion in the presence of
tradable pollution permits.

Note that for the system-optimal solution with tradable
pollution permits to also be user-optimized, it must sat-
isfy the conditions: For each i ∈ I, and for O/D pair
w ∈ Wi, and each path p ∈ Pw:

Cp(x
∗
i ) + tp

{
= λw, if x∗

p > 0
≥ λw, if x∗

p = 0,
(19)

where tp here denoted a path toll policy on path p.

Furthermore, the system-optimized flow pattern already
the conditions: For each i ∈ I, and O/D pair w ∈ Wi,
and each path p ∈ Pw:

Ĉ ′
p(x

∗
i ) + τ ∗

a

∑
a∈L

haδap

{
= µw, if x∗

p > 0
≥ µw, if x∗

p = 0,
(20)
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For a solution to (20) to coincide with that of (19)
implies that, for each path p ∈ P , we must have that:

tp = Ĉ ′
p(x

∗) − Cp(x
∗) + τ ∗

a

∑
a∈L

haδap. (21)

Hence, (21) consists of a procedure in which to con-
struct a path-toll policy, that is, solve the problem (6)–
(10) and determine then for each path p in the network
the path-toll policy accoding to the equation (21).

A link-toll policy, in turn, can also be determined ac-
cording to:

ta = ĉ′a(f
∗) − ca(f

∗) + τ ∗
aha, ∀a ∈ L. (22)

In the Table, I depict the relationships between the be-
havioral principles and the environmental policy instru-
ments just described.

I now present several numerical examples. In particular,

I construct tolls for the networks in Examples 2–4 to

guarantee that the system-optimized pattern for a sus-

tainable transportation network is also user-optimized

(after the imposition of the tolls).
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Relationship between a viable system-optimized
network, user-optimized behavior, tradable

permits, tolls, and sustainability

System-Optimized Viable Network
+

License Allocation:
∑

i∈I

∑
a∈Li

l0a = Q̄ ⇒ Sustainability
+

User-Optimized Behavior
+

Tolls
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Example 5: Example 2 Revisited

I considered Example 2 in which the paths consist of
single links (as in the subsequent examples). I utilized
the computed sustainable S-O solution for Example 2
in expression (22) to obtain the following toll policy:

ta = 125.4981, tb = 101.4988, tc = 123.5008,

td = 204.7472, te = 203.7481, te = 120.7488.

Under this link-toll policy, the user costs, after the im-
position of these tolls were: for O/D pair w1 126.4981
and for O/D pair w2 205.7482.

Example 6: Example 3 Revisited

I returned to Example 3 and constructed a link-toll pol-
icy using formula (22) and the computed sustainable
S-O flow pattern for Example 3. Recall that Example 3
was constructed from Example 2 by increasing the initial
license allocation. Note that in this example the paths
consist of single links.

Solving for the link tolls as in (22) yields the following
toll policy:

ta = 73.6661, tb = 49.6649, tc = 71.6638,

td = 149.8554, te = 112.2744, te = 81.1081.
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Under this link-toll policy, one has that the user costs,
after the imposition of tolls are: for O/D pair w1, the
user cost plus the toll on the path for each of the three
paths connecting O/D pair w1 is equal to 74.66; whereas
for O/D pair w2 the user cost plus the toll on each path
is equal to 152.38. Hence, the computed sustainable
S-O pattern is also U-O, after the imposition of tolls as
described.

Example 7: Example 4 Revisited

I then considered Example 4, in which there are four
networks, again, in which each path consists of an in-
dividual link. An application of formula (22) into which
the sustainable S-O solution was substituted, yielded
the following link-toll policy:

ta = 36.0632, tb = 43.5209,

tc = 192.5484, td = 144.2683,

te = 116.5568, tf = 104.5591,

tg = 48.9118, th = 81.9086.

The incurred user travel costs with this toll policy were:

for O/D pair w1 54.21; for O/D pair w2 197.97; for

O/D pair w3 117.55, and for O/D pair w4 83.91.
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