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Transportation Networks

Transportation networks are complex, typically large-
scale systems and the study of their efficient operation,
often through some outside intervention, has attracted
much interest from economists, engineers, as well as
transportation and urban planners and operations re-
searchers.

The subject dates to ancient times with such classical

examples including the publicly provided Roman road

network and the “time of day” chariot policy, whereby

chariots were banned from the ancient city of Rome at

particular times of the day (see Banister and Button

1993).
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Early Contributors

From an economic perspective, some of the earliest con-
tributions to the subject date to Pigou (1920), who is
also viewed as the forefather of road pricing. In par-
ticular, his idea of using road pricing to regulate traffic
congestion on a simple two-node, two-link network has
spawned additional research, discussion, and practical
applications.

Pigou (1920) (see also Knight 1924) used the exam-
ple of a congested road to illustrate the concepts of
externality and optimal tolls as congestion charges.

Specifically, Pigou argued that travelers should be char-

ged according to their marginal external congestion costs.
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Some externality relationships in a transportation system
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Negative Externalities

Note that an externality is present when the actions
of some economic agents (such as travelers) affect the
utility (typically travel time or cost in the case of trans-
portation) or production set of another without that
person’s consent or compensation.

An externality is seen as negative when the harm done
to others is considered to be uncompensated. In the
case of transportation networks, the harm may include,
for example, increased travel time due to congestion, or
increased pollution. See the Figure for a depiction of
externality relationships in a transportation system.

Earlier in 1844, Dupuit had used a bridge as an illustra-

tion of the concept of efficient pricing of public goods.
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Property Rights

Coase (1960), in turn, utilized a transportation exam-
ple, among others, in the form of sparks from a railway,
when he addressed the absence of property rights in re-
lation to the existence of externalities. Property rights
refer to the group of entitlements comprising the prop-
erty owner’s rights and privileges plus the constraints
imposed for the use of the resource.

Property rights are typically distinguished as to whether

they are: private, that is, held by individuals or firms;

common, that is, held by an identifiable group; state,

that is, held by the government; or of open access,

in which no explicit ownership applies and, hence, the

property is open or available to all.
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“Cost of Congestion”

As early as the 1960s, Vickrey (1960, 1963) emphasized
that the cost of congestion was high, with the real eco-
nomic cost of transportation infrastructure in the United
States at that time being estimated to be approximately
three times the total vehicular and gasoline taxes gen-
erated by car use on urban streets.

Moreover, he argued in 1959 (see Hau 1998) that the

results of not charging travelers for their rush-hour usage

could be “disastrously expensive.”
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Wardrop’s Principles

Engineers were also concerned about the operation of
transportation networks. In particular, Wardrop (1952)
explicitly recognized alternative possible behaviors of
users of transportation networks and stated two prin-
ciples, which are commonly named after him:

First Principle: The journey times of all routes actu-
ally used are equal, and less than those which would be
experienced by a single vehicle on any unused route.

Second Principle: The average journey time is mini-
mal.

The first principle corresponds to the behavioral prin-

ciple in which travelers seek to (unilaterally) determine

their minimal costs of travel whereas the second princi-

ple corresponds to the behavioral principle in which the

total cost in the network is minimal.
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First Rigorous Formulations of Traffic Network Equi-
librium

Beckmann, McGuire, and Winsten (1956) were the first
to rigorously formulate these conditions mathematically,
as had Samuelson (1952) in the framework of spatial
price equilibrium problems in which there were, however,
no congestion effects.

Specifically, Beckmann, McGuire, and Winsten (1956)
established the equivalence between the traffic network
equilibrium conditions, which state that all used paths
connecting an origin/destination pair will have equal
and minimal travel times (or costs) (corresponding to
Wardrop’s first principle), and the Kuhn-Tucker condi-
tions of an appropriately constructed optimization prob-
lem, under a symmetry assumption on the underlying
functions.

Hence, in this case, the equilibrium link and path flows

could be obtained as the solution of a mathematical pro-

gramming problem. Their approach made the formula-

tion, analysis, and subsequent computation of solutions

to traffic network problems based on actual transporta-

tion networks realizable.
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User-Optimization versus System-Optimization

Dafermos and Sparrow (1969) coined the terms user-
optimized (U-O) and system-optimized (S-O) trans-
portation networks to distinguish between two distinct
situations in which, respectively, users act unilaterally, in
their own self-interest, in selecting their routes, and in
which users select routes according to what is optimal
from a societal point of view, in that the total cost in
the system is minimized.

In the latter problem, marginal costs rather than average
costs are equilibrated.

The former problem coincides with Wardrop’s first prin-

ciple, and the latter with Wardrop’s second principle.
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See the Table for the two distinct behavioral princi-
ples underlying transportation networks. The concept
of “system-optimization” is also relevant to other types
of “routing models” in transportation (as well as in com-
munications), including those concerned with the rout-
ing of freight.

Dafermos and Sparrow (1969) also provided explicit com-

putational procedures, that is, algorithms, to compute

the solutions to such network problems in the case where

the user travel cost on a link was an increasing (in or-

der to handle congestion) function of the flow on the

particular link and linear.
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Distinct behavior on transportation networks

User-Optimization System-Optimization
⇓ ⇓

Equilibrium Principle: Optimality Principle:
User travel
costs on used
paths for each
O/D pair are
equalized and
minimal.

Marginals of
the total travel
cost on used
paths for each
O/D pair are
equalized and
minimal.
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For definiteness, and for easy reference, both the classi-
cal system-optimized traffic network model and then the
classical user-optimized network model are presented.

Subsequently, I discuss toll policies which guarantee that
the user-optimized flow pattern is also system-optimizing.
Note that at this point in the discussion in this chapter
no environmental concerns have as yet been raised. I
later return to this topic in in this lecture.

I also consider more general models, in which the user

link travel cost functions are no longer separable and are

also asymmetric. I construct link- and path-toll policies

for such transportation networks. Subsequently, I then

consider the U-O traffic network problem with general

user link travel cost functions and provide the variational

inequality formulations of the governing equilibrium con-

ditions, since, in this case, the conditions can no longer

be reformulated as the Kuhn-Tucker conditions of a con-

vex optimization problem. Finally, I present the varia-

tional inequality formulations in the case of elastic travel

demands.
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This lecture, subsequently, focuses on transportation
and the environment, and describes some basic policy
instruments drawn from environmental economics.

I also present highlights of some unique characteristics

of transportation networks as regards environmental is-

sues.
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System-Optimization Versus User-Optimization

Now, the basic traffic network models are reviewed, un-
der distinct assumptions of their operation and distinct
behavior of the travelers or users of the network. The
models are classical and due to Beckmann, McGuire,
and Winsten (1956) and Dafermos and Sparrow (1969).

System-Optimization

Consider a general network G = [N, L], where N de-

notes the set of nodes, and L the set of directed links.

Let a denote a link of the network connecting a pair of

nodes, and let p denote a path consisting of a sequence

of links connecting an O/D pair. In transportation net-

works, nodes correspond to origins and destinations, as

well as to intersections. Links, on the other hand, cor-

respond to roads/streets. A path, thus, is a sequence

of roads which comprise a route from an origin to a

destination. Pw denotes the set of paths connecting the

origin/destination (O/D) pair of nodes w. Let P denote

the set of all paths in the network and assume that there

are J origin/destination pairs of nodes.
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Let xp represent the flow on path p and let fa the load
on link a. The path flows on the network are grouped
in the column vector x ∈ RnP

+ , where nP denotes the
number of paths in the network. The link loads, in
turn, are grouped into the column vector f ∈ Rn

+, where
n denotes the number of links in the network.

The Conservation of Flow Equations

The following conservation of flow equation must hold:

fa =
∑
p∈P

xpδap, ∀a ∈ L, (1)

where δap = 1, if link a is contained in path p, and 0,
otherwise. Expression (1) states that the load on a link
a is equal to the sum of all the path flows on paths p
that contain (traverse) link a.

Moreover, if one lets dw denote the demand associated
with O/D pair w, then one must have that

dw =
∑
p∈Pw

xp, ∀w ∈ W, (2)

where xp ≥ 0, ∀p ∈ P ; that is, the sum of all the

path flows between an origin/destination pair w must

be equal to the given demand dw.
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The User Cost Functions

Let ca denote the user link travel cost associated with
traversing link a, and let Cp denote the user cost asso-
ciated with traversing the path p.

Assume that the user link travel cost function is given
by

ca = ca(fa), ∀a ∈ L, (3)

where ca is assumed to be an increasing function of the
link load fa in order to model the effect of the link load
on the travel cost.

The total cost on link a, denoted by ĉa(fa), hence, is
given by:

ĉa(fa) = ca(fa) × fa, ∀a ∈ L, (4)

that is, the total cost on a link is equal to the user

link travel cost on the link times the flow on the link.

Here the travel cost is interpreted in a general sense but

often principally from a transportation engineering per-

spective, the travel cost on a link is assumed to coincide

with the travel time on a link.
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See the Figure for such a typical user link travel time
function, where the free flow travel time refers to the
travel time to traverse a link when there is zero load on
the link (or zero vehicles).

In the system-optimized problem, there exists a central
controller who seeks to minimize the total cost in the
network system, where the total cost is expressed as∑

a∈L

ĉa(fa), (5)

where the total cost on a link is given by expression (4).
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The System-Optimized Problem

The system-optimization problem is, thus, given by:

Minimize
∑
a∈L

ĉa(fa) (6)

subject to: ∑
p∈Pw

xp = dw, ∀w ∈ W, (7)

fa =
∑
p∈P

xp, ∀a ∈ L, (8)

xp ≥ 0, ∀p ∈ P. (9)

The constraints (7) and (8), along with (9), are com-

monly referred to in network terminology as conserva-

tion of flow equations. In particular, they guarantee

that the flow in the network, that is, the travelers, do

not “get lost.”
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The total cost on a path, denoted by Ĉp, is the user link
travel cost on a path times the flow on a path, that is,

Ĉp = Cpxp, ∀p ∈ P, (10)

where the user travel cost on a path, Cp, is given by
the sum of the user link travel costs on the links that
comprise the path, that is,

Cp =
∑
a∈L

ca(fa)δap, ∀a ∈ L. (11)

In view of (8), one may express the cost on a path
p as a function of the path flow variables and, hence,
an alternative version of the above system-optimization
problem can be stated in path flow variables only, where
one has now the problem:

Minimize
∑
p∈P

Cp(x)xp (12)

subject to constraints (7) and (9).

Hence, without any loss of generality, I express the travel

cost on a path as a function of either the path flow or

the link load pattern.
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System-Optimality Conditions

Under the assumption of increasing user link cost func-
tions, the objective function in the S-O problem is con-
vex, and the feasible set consisting of the linear con-
straints is also convex. Therefore, the optimality con-
ditions, that is, the Kuhn-Tucker conditions are: For
each O/D pair w ∈ W , and each path p ∈ Pw, the flow
pattern x (and link load pattern f), satisfying (7)–(9)
must satisfy:

Ĉ ′
p

{
= µw, if xp > 0
≥ µw, if xp = 0,

(13)

where Ĉ ′
p denotes the marginal of the total cost on path

p, given by:

Ĉ ′
p =

∑
a∈L

∂ĉa(fa)

∂fa
δap, (14)

and in (13) is evaluated at the solution.

In the S-O problem, it is the marginal of the total costs

on each used path connecting an O/D pair which are

equalized and minimal. Conditions (13) state that a

system-optimized flow pattern is such that for each ori-

gin/destination pair the incurred marginals of the total

cost on each used path are equal and minimal.
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User-Optimization

Now, the user-optimized traffic network problem is con-
sidered, also commonly referred to as the traffic assign-
ment problem or the traffic network equilibrium prob-
lem. Again, as in the system-optimized problem, the
network G = [N, L], the travel demands associated with
the origin/destination pairs, as well as the user link
travel cost functions are assumed as given. Recall that
user-optimization follows Wardrop’s first principle.

Traffic Network Equilibrium Conditions

Now, however, one seeks to determine the path flow
pattern x∗ (and link load pattern f∗) which satisfies the
conservation of flow equations (1), (2) and the nonneg-
ativity assumption on the path flows, and which also
satisfies the traffic network equilibrium conditions given
by the following statement.

For each O/D pair w ∈ W and each path p ∈ Pw:

Cp

{
= λw, if x∗

p > 0
≥ λw, if x∗

p = 0.
(15)
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Hence, in the user-optimization problem there is no ex-

plicit optimization concept, since now travelers act inde-

pendently, in a noncooperative manner, until they can-

not improve on their situations unilaterally and, thus,

an equilibrium is achieved, governed by the above equi-

librium conditions. Indeed, conditions (15) are simply

a restatement of Wardrop’s (1952) first principle math-

ematically and mean that only those paths connecting

an O/D pair will be used which have equal and minimal

user travel costs. Otherwise, a traveler could improve

upon his situation by switching to a path with lower

travel cost.
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Optimization Reformulation in a Special Case

In order to obtain a solution to the this problem, Beck-
mann, McGuire, and Winsten (1956) established that
the solution to the equilibrium problem, in the case of
separable user link travel cost functions, could be ob-
tained by solving the following optimization problem:

Minimize
∑
a∈L

∫ fa

0
ca(x)dx (16)

subject to: ∑
p∈Pw

xp = dw, ∀w ∈ W, (17)

fa =
∑
p∈P

xpδap, ∀a ∈ L, (18)

xp ≥ 0, ∀p ∈ P. (19)

Note that the conservation of flow equations are iden-

tical in both the user-optimized network problem (see

(17)–(19)) and the system-optimized problem (see (7)

– (9)). The behavior of the travelers, however, is dif-

ferent.
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The objective function given by (16) is simply a device

constructed to obtain a solution using general purpose

convex programming algorithms. It does not possess

the economic meaning of the objective function encoun-

tered in the system-optimization problem given by (6),

equivalently, by (12).
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Remark 1

A simplified user function, used in practice, sometimes
also referred to as a common link performance function
(see Sheffi 1985), is the expression developed by the
Bureau of Public Roads (BPR). This equation is given
by

ca = c0a

[
1 + α(

fa

t′a
)
β]

,

where, in this formula, ca and fa are the travel time and

link load, respectively, on link a, c0a is the free-flow travel

time, and t′a is the “practical capacity” of link a. The

quantities α and β are model parameters, for which the

values α = 0.15 minutes and β = 4 are typical values.

For example, these values imply that the practical ca-

pacity of a link is the flow at which the travel time is

15% greater than the free-flow travel time.
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Toll Policies

I now describe how tolls, either in the form of path
tolls or link tolls, can be imposed in order to make the
system-optimizing solution also user-optimizing. Tolls
serve as a means for modifying the travel cost as per-
ceived by the individual travelers and are considered a
powerful pricing policy instrument.

Recall that the system-optimizing flow pattern is one
that minimizes the total travel cost over the entire net-
work, whereas the user-optimized flow pattern has the
property that no user has any incentive to make a uni-
lateral decision to alter his/her travel path. One would
expect the former pattern to be established when a cen-
tral authority dictates the paths to be selected, so as to
minimize the total cost in the system, and the latter,
when travelers are free to select their routes of travel so
as to minimize their individual travel cost. The latter
solution, however, typically results in a higher total sys-
tem cost and, in a sense, is an underutilization of the
transportation network.

In order to remedy this situation tolls can be applied

with the recognition that imposing tolls will not change

the travel cost as perceived by society since tolls are not

lost.
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In particular, it will first be shown how tolls can be
collected on a link basis, that is, every traveler on a
link will be charged the same toll, irrespective of origin
or final destination, or on a path basis, in which every
traveler traveling from an origin to a destination on a
particular path will be charged the same toll. (Note that
one can construct multimodal versions of such a toll
policy in which the pricing on links or paths is according
to mode; see Dafermos 1973 and Nagurney 1999a).

Let ta denote a toll associated with link a in the link-toll
collection policy and let tp denote the toll on path p as-
sociated with the path-toll collection policy. Of course,
even in the link-toll collection policy one may define a
“path toll” through the expression

tp =
∑
a∈L

taδap, ∀p ∈ P. (20)
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Observe that, after the imposition of tolls, the travel
cost as perceived by society remains ca(fa), for all links
a ∈ L. The travel cost on a path p as perceived by the
individual, however, is modified to

C̄p = Cp(f) + tp, ∀p ∈ P. (21)

Consequently, a system-optimizing flow pattern is still
defined as before, that is, it is one that solves the prob-
lem

Minimizef∈K

∑
a∈L

ĉa(fa), (22)

where K ≡ {f | there exists anx ≥ 0, satisfying (7) and (8)}.
In particular, the solution to (22), under the assumption
that each ĉa(fa) is convex, is equivalent to the conditions
(13). Note that conditions (13), in turn, are equivalent
to the statement For every O/D pair w ∈ W , there exists
an ordering of the paths p ∈ Pw, such that

Ĉ
′

p1
(f) = . . . = Ĉ

′

psw
(f) = µw ≤ Ĉ

′

psw+1
(f) ≤ . . . ≤ Ĉ

′

pnw
(f)

(23)

xprw
> 0, rw = 1, . . . , sw

xprw
= 0, rw = sw+1, . . . , nw,

where nw denotes the number of paths for O/D pair w.
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On the other hand, in view of equilibrium conditions
(15), one can deduce that the system-optimizing flow
pattern x, after the imposition of a toll policy, is at
the same time user-optimizing if: For every O/D pair
w ∈ W , every path p ∈ Pw:

C̄p1(f) = . . . = C̄psw
(f) = λ̄w ≤ C̄psw+1(f) ≤ . . . ≤ C̄pnw

(f)
(24)

xprw
> 0, rw = 1, . . . , sw

xprw
= 0, rw = sw+1, . . . , nw.

The following proposition (see Dafermos (1973)) en-

ables the construction of toll policies which render an

S-O flow pattern also a U-O one:
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Proposition 1

A toll-collection policy renders a system-optimizing flow
pattern user-optimizing if and only if for each O/D pair
w ∈ W :

tp1 = λ̄w − Cp1(f)

... ... (25)

tpsw
= λ̄w − Cpsw

(f)

tpsw+1
≥ λ̄w − Cpsw+1

(f)

... ...

tpnw
≥ λ̄w − Cpnw

(f). (26)

Proof:

It is clear that if (23) and (24) are satisfied for the same
flow pattern x, then (25) and (26) follow. Conversely,
if (25) and (26) are satisfied, then any f that satisfies
(23) also satisfies (24).
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I now turn to the determination of the link-toll and the
path-toll collection policies.

Solution of the Link-Toll Collection Policy

Using (23), (24), (25), and (26), one reaches the con-
clusion that the link-toll collection policy is determined
by

ta =
∂ĉa(fa)

∂fa
− ca(fa), ∀a ∈ L, (27)

where both the first and the second terms on the right-
hand side of expression (27) are evaluated at the system-
optimizing solution f .

Hence, to determine the link-toll policy, one first must

compute the system-optimizing solution. This can be

accomplished using a general-purpose convex program-

ming algorithm, an appropriate nonlinear network code,

or, in the case of separable linear user cost functions,

the equilibration algorithm of Dafermos and Sparrow

(1969). Once the system-optimizing solution is estab-

lished, one then substitutes the S-O load pattern f into

equation (2.27) to compute the link toll ta for all links

a ∈ L.
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Solution of the Path-Toll Collection Policy

It is clear from (25) and (26) that one may construct
an infinite number of solutions of the path-toll collec-
tion problem. For example, one may select, a priori, for
each w ∈ W , the level of personal travel cost λ̄w, as well
as the values of tpsw+1

, . . . , tpnw
, subject to only constraint

(26), and then determine a path-toll pattern according
to (25) and (26). Hence, in this case there is some flexi-
bility in selecting a toll pattern, and one can incorporate
additional objectives. Certain possibilities are:

(i) One may wish to ensure that some, if not all, travel-
ers are charged with a nonnegative toll; in other words,
no subsidization is allowed. This can be accomplished
by choosing the corresponding λ̄w sufficiently large.

(ii) Suppose one wishes a “fair” policy. A possible one

would be to ensure that the level of personal travel cost

λ̄w is equal to the personal travel cost λw before the

imposition of tolls.
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In summary, one computes the path-toll policy as fol-
lows. First, compute the system-optimizing solution.
Then determine the user travel cost Cp, for all paths
p ∈ P , evaluated at the system-optimizing solution and
λ̄w, ∀w ∈ W , so that an objective is met. Finally, com-
pute the path tolls tp, ∀p ∈ P , according to (25) and
(26).

A simple example is now presented in order to illustrate
how one computes a link-toll policy.

Example 1

Consider the network depicted in the next Figure in
which there are two nodes: 1, 2; two links: a, b; and a
single O/D pair w1 = (1,2). Let path p1 = a and path
p2 = b.

Assume, for simplicity, the user link travel cost func-
tions:

ca(fa) = 2fa + 5, cb(fb) = fb + 10,

and the travel demand:

dw1 = 10.
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In the absence of any policies, travelers operating in a
user-optimized manner will select the paths as follows:
xp1 = 5, and xp2 = 5 with induced link load patterns of:
fa = 5 and fb = 5. The incurred user travel costs on the
paths under this user-optimized flow pattern will be:

Cp1 = ca = 15, Cp2 = cb = 15,

which satisfies the traffic equilibrium conditions (15).

This path flow pattern, in turn, will yield a total cost on
the network given by ca × fa + cb × fb = 75 + 75 = 150.

The system-optimized flow pattern satisfying conditions
(13) is, however, given by: xp1 = 41

6
, xp2 = 55

6
, which

induces the link load pattern: fa = 41
6
, fb = 55

6
and the

marginals of the total travel costs on the paths are:

Ĉ ′
p1

= ĉ′a = 21
2

3
, Ĉ ′

p2
= ĉ′b = 21

2

3
,

with a total cost in the network under the S-O pattern

equal to 131 7
18

, which is clearly lower than the total cost

under the U-O flow pattern above, which was 150.
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I now turn to the computation of the link-toll policy
(cf. (27)) which will render the S-O flow pattern also
a U-O flow pattern. The link-toll policy that renders
the system-optimizing flow pattern also user-optimized
is given by:

ta = 8
1

3
, tb = 5

5

6
,

with the induced user costs (cf. (21)) C̄p1 = C̄p2 = 212
3
.
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Models with Asymmetric Link Costs

The past several decades have been witness to much
dynamic research activity in both the modeling and the
development of methodologies to enable the formula-
tion and computation of more general traffic network
equilibrium models.

Examples of general models include those that allow for
multiple modes of transportation or multiple classes of
users, who perceive cost on a link in an individual way.

In this part of the lecture, I consider traffic network
models in which the user travel cost on a link is no
longer dependent solely on the flow on that link.

Other traffic network models, including dynamic traffic

models, can be found in Mahmassani et al. (1993), and

in the books by Ran and Boyce (1996) and Nagurney

and Zhang (1996), and the references therein.
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Link- and Path-Toll Policies

I now consider user link travel cost functions which are
of the general form (refer to (3)), where the travel cost
on a link may depend also on the load of this as well as
other loads on the network, that is,

ca = ca(f), ∀a ∈ L. (28)

In the case where the symmetry assumption exists, that
is, ∂ca(f)

∂cb(f)
= ∂cb(f)

∂ca(f)
, for all links a, b ∈ L, one can still re-

formulate the solution to the traffic network equilibrium
problem satisfying equilibrium conditions (15) as the so-
lution to an optimization problem (cf. Nagurney 1999a
and the references therein), albeit, again, with an objec-
tive function that is artificial and simply a mathematical
device.

However, when the symmetry assumption is no longer

satisfied, such an optimization reformulation no longer

exists and one must appeal to variational inequality the-

ory .
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Indeed, it was in the problem domain of traffic network
equilibrium problems that the theory of finite-dimensional
variational inequalities realized its earliest success, be-
ginning with the contributions of Smith (1979) and Dafer-
mos (1980).

For an introduction to the subject, as well as appli-
cations ranging from traffic network equilibrium prob-
lems to financial equilibrium problems, see the book by
Nagurney (1999a). The methodology of finite-dimensional
variational inequalities is utilized in this book in order to
develop a spectrum of policy models.

The system-optimization problem, in turn, in the case
of nonseparable user link travel cost functions becomes
(see also (6)–(9)):

Minimize
∑
a∈L

ĉa(f), (29)

subject to (7)–(9), where ĉa(f) = ca(f) × fa, ∀a ∈ L.

The system-optimality conditions remain as in (13) but
where now the marginal of the total cost on a path
becomes, in the more general case:

Ĉ ′
p =

∑
a,b∈L

∂ĉb(f)

∂fa
δap, ∀p ∈ P. (30)
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The link-toll collection policy (see (27)) is now given
by:

ta =
∑
b∈L

∂ĉb(f)

∂fa
− ca(f), ∀a ∈ L. (31)

The path-toll policy, in turn, can still be computed ac-
cording to formulas (25) and (26), where C̄p is given by
(21).

See also Bergendorff, Hearn, and Ramana (1997) for

other toll policies for traffic networks with asymmetric

user link travel cost functions.
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Practical Considerations

Tolls, hence, provide an example of road pricing for con-
gestion management. As noted by Small and Gomez-
Ibanez (1998), public officials have become increasingly
interested in congestion pricing as a means to stem the
growth of traffic congestion. Refer to the Table for
various road pricing schemes in practice.

Practical experience with road pricing has been increas-
ing globally, with notable examples including those of
Singapore, Hong Kong, and Cambridge, England.

Singapore’s area license scheme was initiated in 1975
and is still operational. It has recently adopted an elec-
tronic version. Hong Kong has an electronic road pricing
scheme, whereas Cambridge has investigated congestion
pricing schemes which have included also rigorous mod-
eling and theoretical underpinnings.

Scandinavian cities, in turn, have adopted a type of

road pricing which, although the systems do not repre-

sent congestion pricing, do support highway financing.

Specifically, toll rings now surround the three Norwegian

cities of Oslo, Trondheim, and Bergen and such a ring

is also in the planning stages for Stockholm.
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Various road pricing schemes in practice

Type of road In place Under study
pricing
City center: Singapore, 1975 Hong Kong
congestion pricing Cambridge, UK
City center: Bergen, 1986 Stockholm
tolling Oslo, 1990

Trondheim, 1991
Single facility: Autoroute A1,
congestion pricing France, 1992

Route R1,
California, 1995

Interstate 15,
San Diego, 1996

Area-wide: Ramstad
congestion pricing London

Source: Small and Gomez-Ibanez (1998)
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France on Autoroute A1, which is an expressway con-
necting Paris to Lille, instituted congestion pricing, as
did California in Riverside County.

Indeed, the first site of congestion pricing in the United
States is a section of highway in southern California
which opened in 1995.

During the past decade, interest has grown both in

the United States and abroad, especially in Europe, to

utilize advanced computer, electronics, and communi-

cation technologies (collectively referred to as intelli-

gent transportation systems or ITS) in order to improve

transportation efficiency (as well as safety). With the

advent of such associated developments as electronic

toll technology, as well as intelligent vehicle highway sys-

tems (IVHS) and advanced traffic information manage-

ment systems (ATIMs) (cf. Boyce, Kirson, and Schofer

1994), it is becoming increasingly pragmatic to imple-

ment both the tolls described in this chapter, as well as

other road pricing and and permit schemes that are de-

scribed in this book and which focus both on congestion

reduction and emission abatement.
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Variational Inequality Formulations of Fixed De-
mand Problems

As mentioned earlier, in the case where the user link
travel cost functions are no longer symmetric, one can-
not compute the solution to the U-O, that is the traffic
network equilibrium, problem using standard optimiza-
tion algorithms. Such cost functions are very impor-
tant from an application standpoint since they allow for
asymmetric interactions on the network.

For example, allowing for asymmetric cost functions

permits one to handle the situation when the flow on a

particular link affects the cost on another link in a differ-

ent way than the cost on the particular link is affected

by the flow on the other link.

45



Returning to the network depicted in the first Figure, an
example of an asymmetric user link travel cost structure
would be:

ca(f) = 5fa + fb + 10, cb(f) = 3fb + 2fa + 15,

since ∂ca

∂fb
= 1 6= ∂cb

∂fa
= 2.

The allowance for such asymmetric interactions enables
also the more realistic modeling of multimodal traffic
networks in which a particular flow of a mode affects
the costs of other modes in a different manner than it
is affected by the other modes.

Since in this course equilibrium is such a fundamental
concept in terms of sustainable transportation networks
and since variational inequality theory is one of the basic
ways in which to study such problems I now, for com-
pleteness, also give variational inequality formulations of
the traffic network equilibrium conditions (15).

These formulations are presented without proof (for
derivations, see Smith 1979 and Dafermos 1980, as well
as Florian and Hearn 1995 and the book by Nagurney
1999a).

Moreover, appropriate variational inequalities for the spe-

cific models are derived later in this course.
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First, the definition of a variational inequality problem is
recalled. I then give both the path flow formulation as
well as the link load formulation for the traffic network
equilibrium conditions.

Specifically, the variational inequality problem (finite-
dimensional) is defined as follows:

Definition 1 (Variational Inequality Problem)

The finite-dimensional variational inequality problem,
VI(F,K), is to determine a vector X∗ ∈ K such that

〈F (X∗)T , X − X∗〉 ≥ 0, ∀X ∈ K, (32)

where F is a given continuous function from K to RN , K
is a given closed convex set, and 〈·, ·〉 denotes the inner

product in RN .
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Variational inequality (32) is referred to as being in stan-
dard form. Hence, for a given problem, typically an
equilibrium problem, one must determine the function
F that enters the variational inequality problem, the vec-
tor of variables X, as well as the feasible set K.

The variational inequality problem contains, as special
cases, such well-known problems as systems of equa-
tions, optimization problems, and complementarity prob-
lems.

Hence, it is a powerful unifying methodology for equi-

librium analysis and computation.
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Theorem 1 (Variational Inequality Formulation of
Traffic Network Equilibrium with Fixed Demands –
Path Flow Version)

A vector x∗ ∈ K1 is a traffic equilibrium path flow pat-
tern, that is, it satisfies equilibrium conditions (15) if
and only if it satisfies the variational inequality problem:∑

w∈W

∑
p∈Pw

Cp(x
∗) × (x − x∗) ≥ 0, ∀x ∈ K1, (33)

or, in vector form:

〈C(x∗)T , x − x∗〉 ≥ 0, ∀x ∈ K1, (34)

where C is the nP -dimensional column vector of path

user travel costs and K1 is defined as:

K1 ≡ {x ≥ 0, such that (17)holds}.
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Theorem 2 (Variational Inequality Formulation of
Traffic Network Equilibrium with Fixed Demands –
Link Load Version)

A vector f∗ ∈ K2 is a traffic equilibrium link load pat-
tern if and only if it satisfies the variational inequality
problem: ∑

a∈L

ca(f
∗) × (fa − f∗

a) ≥ 0, ∀f ∈ K2, (35)

or, in vector form:

〈c(f∗)T , f − f∗〉 ≥ 0, ∀f ∈ K2, (36)

where c is the n-dimensional column vector of link user
travel costs and K2 is defined as:
K2 ≡ {f | there exists an x ≥ 0
and satisfying (17)and (18)}.

Note that one may put variational inequality (34) in

standard form (32) by letting F ≡ C, X ≡ x, and K ≡ K1.

Also, one may put variational inequality (36) in standard

form where now F ≡ c, X ≡ f , and K ≡ K2.
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Variational Inequality Formulations of Elastic De-
mand Problems

Now, the general traffic network equilibrium model with
elastic travel demands due to Dafermos (1982) is re-
called. Specifically, it is assumed that now one has as-
sociated with each O/D pair w in the transportation
network a travel disutility λw, where here the general
case is considered in which the travel disutility may de-
pend upon the entire vector of travel demands, which
are no longer fixed, but are now variables, that is,

λw = λw(d), ∀w ∈ W, (37)

where d is the J-dimensional column vector of the travel

demands.
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Conservation of Flow Equations for Elastic De-
mand Model

The notation, otherwise, is as described earlier, except
that here I also consider user link travel cost functions
which are general, that is, of the form (28). The con-
servation of flow equations (see also (1) and (2)), in
turn, are given by

fa =
∑
p∈P

xpδap, ∀a ∈ L, (38)

dw =
∑
p∈Pw

xp, ∀w ∈ W, (39)

xp ≥ 0, ∀p ∈ P. (40)

Hence, in the elastic travel demand case, the travel de-

mands in expression (39) are now variables and no longer

given, as was the case for the fixed travel demand ex-

pression in (2).
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Traffic Network Equilibrium Conditions in the Case
of Elastic Travel Demand

The traffic network equilibrium conditions (see also (15))
now take on in the elastic travel demand case the fol-
lowing form: For every O/D pair w ∈ W , and each path
p ∈ Pw, a vector of path flows and travel demands (x∗, d∗)
satisfying (39)–(40) (which induces a link load pattern
f∗ through (38)) is a traffic network equilibrium pattern
if it satisfies:

Cp(x
∗)

{
= λw(d∗), if x∗

p > 0
≥ λw(d∗), if x∗

p = 0.
(41)

Equilibrium conditions (41) state that the travel costs

on used paths for each O/D pair are equal and minimal

and equal to the travel disutility associated with that

O/D pair. Travel costs on unutilized paths can exceed

the travel disutility.
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In the next two theorems, both the path flow version and
the link load version of the variational inequality formu-
lations of the traffic network equilibrium conditions (41)
are presented. These are analogues of the formulations
(33) and (34), and (35) and (36), respectively, for the
fixed demand model.

Theorem 3 (Variational Inequality Formulation of
Traffic Network Equilibrium with Elastic Demands
– Path Flow Version)

A vector (x∗, d∗) ∈ K3 is a traffic equilibrium path flow
pattern, that is, it satisfies equilibrium conditions (41) if
and only if it satisfies the variational inequality problem:∑

w∈W

∑
p∈Pw

Cp(x
∗) × (x − x∗) −

∑
w∈W

λw(d∗) × (dw − d∗
w) ≥ 0,

∀(x, d) ∈ K3, (42)

or, in vector form:

〈C(x∗)T , x−x∗〉−〈λ(d∗)T , d−d∗〉 ≥ 0, ∀(x, d) ∈ K3, (43)

where λ is the J-dimensional vector of travel disutilities

and K3 is defined as: K3 ≡ {x ≥ 0, such that (39)holds}.
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Theorem 4 (Variational Inequality Formulation of
Traffic Network Equilibrium with Elastic Demands
– Link Load Version)

A vector (f∗, d∗) ∈ K4 is a traffic equilibrium link load
pattern if and only if it satisfies the variational inequality
problem:∑

a∈L

ca(f
∗) × (fa − f∗

a) −
∑
w∈W

λw(d∗) × (dw − d∗
w) ≥ 0,

∀(f, d) ∈ K4, (44)

or, in vector form:

〈c(f∗)T , f −f∗〉−〈λ(d∗)T , d−d∗〉 ≥ 0, ∀(f, d) ∈ K4, (45)

where K4 ≡ {(f, d), such that there exists anx ≥ 0

satisfying (38), (39)}
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Note that, under a symmetry assumption on the travel
disutility functions, in addition to such an assumption
on the user link travel cost functions, one can obtain
(see Beckmann, McGuire, and Winsten 1956) an op-
timization reformulation of the traffic network equilib-
rium conditions (41), which in the case of separable user
link cost functions and travel disutility functions takes
is given by:

Minimize
∑
a∈L

∫ fa

0
ca(x)dx −

∑
w∈W

∫ dw

0
λw(y)dy (46)

subject to: (38)–(40).
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I now present an example of an elastic demand traffic
network equilibrium problem.

Example 2

Consider the network depicted in the next Figure in
which there are three nodes: 1, 2, 3; three links: a, b, c;
and a single O/D pair w1 = (1,3). Let path p1 = (a, c)
and path p2 = (b, c).

Assume that the user link travel cost functions are:

ca(f) = 5fa + 2fb + 5, cb(f) = 7fb + fa + 5,

cc(f) = 3fc + fa + fb + 7,

and the travel disutility is: λw1(dw1) = −2dw1 + 99.

The U-O flow and demand pattern that satisfies equi-
librium conditions (41) is:

x∗
p1

= 5, x∗
p2

= 4,

d∗
w1

= 9,

with associated link load pattern:

f∗
a = 5, f∗

b = 4, f∗
c = 9.

The incurred user travel costs on the paths are:

Cp1 = Cp2 = 81,

which is precisely the value of the travel disutility λw1.

Hence, this flow and demand pattern satisfies equilib-

rium conditions (41).
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An elastic demand example
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