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Migration Equilibrium

Human migration is a topic that has received atten-
tion from economists, demographers, sociologists, and
geographers. In this lecture, we focus on the develop-
ment of a network framework using variational inequality
theory in an attempt to formalize this challenging prob-
lem domain. In particular, we explore the utilization of
variational inequality theory in conceptualizing complex
problems in migration networks.

A series of migration models is presented of increasing

complexity and generality. We assume that each class

of migrant has a utility associated with locations, where

the utilities are functions of the population distribution

pattern. The framework is similar in spirit to the one

developed by Beckmann (1957), who also focused on

migratory flows and assumed that the attractiveness of

a location was a function of the population distribution

pattern.
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Costless Migration

We first describe a model of human migration, which
is shown to have a simple, abstract network structure
in which the links correspond to locations and the flows
on the links to populations of a particular class at the
particular location.

Assume a closed economy in which there are n loca-

tions, typically denoted by i, and J classes, typically

denoted by k. Assume further that the attractiveness

of any location i as perceived by class k is represented

by a utility uk
i . Let p̄k denote the fixed and known pop-

ulation of class k in the economy, and let pk
i denote the

population of class k at location i. Group the utilities

into a row vector u ∈ RJn and the populations into a

column vector p ∈ RJn. Assume no births and no deaths

in the economy.
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The conservation of flow equation for each class k is
given by

p̄k =
n∑

i=1

pk
i (1)

where pk
i≥0, ∀k=1, . . . , J; i=1,. . . , n. Equation (1) states

that the population of each class k must be conserved
in the economy.

Let K ≡ {p|p ≥ 0, and satisfy (1)}.
Assume that the migrants are rational and that migra-
tion will continue until no individual of any class has
any incentive to move since a unilateral decision will no
longer yield an increase in the utility. Mathematically,
hence, a multiclass population vector p∗ ∈ K is said to
be in equilibrium if for each class k; k =1,. . .,J:

uk
i

{
= λk, if pk

i
∗

> 0
≤ λk, if pk

i
∗
= 0.

(2)

Equilibrium conditions (2) state that for a given class

k only those locations i with maximal utility equal to

an indicator λk will have a positive volume of the class.

Moreover, the utilities for a given class are equilibrated

across the locations.
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The function structure is now addressed. Assume that,
in general, the utility associated with a particular loca-
tion as perceived by a particular class, may depend upon
the population associated with every class and every lo-
cation, that is, assume that

u = u(p). (3)

Note that in allowing the utility to depend upon the
populations of the classes, we are, in essence, using
populations as a proxy for amenities associated with
a particular location; at the same time, such a utility
function can handle the negative externalities associ-
ated with overpopulation, such as congestion, increased
crime, competition for scarce resources, etc.

The above migration model is equivalent to a network

equilibrium model with a single origin/destination pair

and fixed demands. Indeed, make the identification as

follows. Construct a network consisting of two nodes,

an origin node 0 and a destination node 1, and n links

connecting the origin node to the destination node (cf.

Figure 1).
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If we associate then with each link i, J costs: −u1
i , . . . ,−uJ

i ,
and link flows represented by p1

i , . . . , pJ
i . This model is,

hence, equivalent to a multimodal traffic network equi-
librium model with fixed demand for each mode, a single
origin/destination pair, and J paths connecting the O/D
pair. Of course, one can make J copies of the network,
in which case each k-th network will correspond to class
k with the cost functions on the links defined accord-
ingly. This identification enables us to immediately write
down the following:

Theorem 1 (Variational Inequality Formulation of
Costless Migration Equilibrium)

A population pattern p∗ ∈ K is in equilibrium if and only
if it satisfies the variational inequality problem:

〈−u(p∗), p − p∗〉 ≥ 0, ∀p ∈ K. (4)
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Qualitative Properties and Computation of Solu-
tions

Existence of an equilibrium then follows from the stan-
dard theory, since the feasible set K is compact, assum-
ing that the utility functions are continuous. Uniqueness
of the equilibrium population pattern also follows from
standard variational inequality theory, provided that the
−u function is strictly monotone. In the context of ap-
plications, this monotonicity condition implies that the
utility associated with a given class and location is ex-
pected to be a decreasing function of the population of
that class at that location; hence, for uniqueness to be
guaranteed, “congestion” of the system is critical.

This model is amenable to solution by a variety of algo-

rithms, including, the projection method. The projec-

tion method will resolve the solution of variational in-

equality (4) into separable quadratic programming prob-

lems, if the matrix G is chosen to be diagonal, which

can then, in turn, be solved exactly, and in closed form,

using the fixed demand market exact equilibration algo-

rithm.
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Note that the network equilibrium equivalent of the above

model is constructed over an abstract network in that

the nodes do not correspond to locations in space; in

contrast, the links are identified with locations in space.
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Migration with Migration Costs

Now a network model of human migration equilibrium is
developed, which allows not only for multiple classes but
for migration costs between locations. In this framework
the cost of migration reflects both the cost of trans-
portation (a proxy for distance) and the “psychic” costs
associated with dislocation.

The importance of translocation costs in migration decision-
making is well-documented in the literature from both
theoretical and empirical perspectives.

Economic research, however, has emphasized the devel-

opment of equilibrium models in which the population is

assumed to be perfectly mobile and the costs of migra-

tion insignificant. In such models, as in the model just

described, individuals and/or households are assumed to

select a location until the utilities are equalized across

the economy.
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Assume, as before, a closed economy in which there
are n locations, typically denoted by i, and J classes,
typically denoted by k. Further, assume that the at-
tractiveness of any location i as perceived by class k is
represented by a utility uk

i . Let p̄k
i denote the initial fixed

population of class k in location i, and let pk
i denote the

population of class k in location i. Group the utilities
into a row vector u ∈ RJn and the populations into a
column vector p ∈ RJn. Again, assume the situation in
which there are no births and no deaths in the economy.

Associate with each class k and each pair of locations i, j
a nonnegative cost of migration ck

ij and let the migration
flow of class k from origin i to destination j be denoted
by fk

ij.

The migration costs are grouped into a row vector c ∈
RJn(n−1) and the flows into a column vector f ∈ RJn(n−1).

Assume that the migration costs reflect not only the

cost of physical movement but also the personal and

psychic cost as perceived by a class in moving between

locations.
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The conservation of flow equations, given for each class
k and each location i, assuming no repeat or chain mi-
gration, are

pk
i = p̄k

i +
∑
l 6=i

fk
li −

∑
l 6=i

fk
il (5)

and ∑
l 6=i

fk
il ≤ p̄k

i , (6)

fk
il≥0, ∀k = 1,. . .,J; l 6= i.

K ≡ {(p, f)|f ≥ 0, (p, f) satisfy (5), (6)}.

Equation (5) states that the population at location i of

class k is given by the initial population of class k at

location i plus the migration flow into i of that class

minus the migration flow out of i for that class. Equa-

tion (6) states that the flow out of i by class k cannot

exceed the initial population of class k at i, since no

chain migration is allowed.
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The multiclass network model with migration costs is

now constructed. In particular, construct n nodes, i =

1, . . . , n, to represent the locations and a link (i, j) con-

necting each pair of nodes. There are, hence, n nodes

in the network and n(n − 1) links. With each link (i, j)

associate k costs ck
ij and corresponding flows fk

ij. With

each node i associate k utilities uk
i and the initial pos-

itive populations p̄k
i . A graphic depiction of a three-

location migration network is given in Figure 2, where

the classes are layered. Of course, rather than a mul-

ticlass network, one can construct J copies of the net-

work topology given in Figure 2 to represent the classes

where the costs on the links and the utilities are defined

accordingly.

12



�

��

�

��

�

��

�

��

�

��

�

��

2 3

1 2 3

1

-�

-�

�
�
���
�

�� A
A

AKA
A
AU

�
�
���
�

�� A
A

AKA
A
AU

u1
2 u1

3

u1
1 uJ

2 uJ
3

uJ
1

c132

c121 c131 cJ
32

cJ
21 cJ

31

· · ·
· · ·

The multiclass migration network
with three locations

13



We are now ready to state the equilibrium conditions.
As before, assume that migrants are rational and that
migration will continue until no individual has any incen-
tive to move since a unilateral decision will no longer
yield a positive net gain (gain in utility minus migra-
tion cost). Mathematically, the multiclass equilibrium
conditions are stated as follows. A multiclass popula-
tion and flow pattern (p∗, f∗) ∈ K is in equilibrium, if for
each class k; k = 1, . . . , J, and each pair of locations i, j;
i = 1, . . . , n; j 6= i:

uk
i + ck

ij

{
= uk

j − λk
i , if fk

ij
∗

> 0

≥ uk
j − λk

i , if fk
ij
∗
= 0

(7)

and

λk
i

{ ≥ 0, if
∑

l 6=i f
k
il
∗
= p̄k

i

= 0, if
∑

l 6=i f
k
il
∗

< p̄k
i .

(8)
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Equilibrium conditions (7) and (8), although similar in
structure to the equilibrium conditions governing the
multicommodity spatial price equilibrium problem, differ
significantly in that the indicator λk

i is present. The
necessity of λk

i , and, in particular, condition (8), are
now interpreted.

Observe that, unlike spatial price equilibrium problems

(or the related traffic network equilibrium problem with

elastic demand), the level of the population p̄k
i may not

be large enough so that the gain in utility uk
j − uk

i is ex-

actly equal to the cost of migration ck
ij. Nevertheless,

the utility gain minus the migration cost will be maximal

and nonnegative. Moreover, the net gain will be equal-

ized for all locations and classes which have a positive

flow out of a location. In fact, λk
i is exactly the equalized

net gain for all individuals of class k of location i.
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First, the function structure is discussed and then the
variational inequality formulation of the equilibrium con-
ditions (7) and (8) is derived.

Assume, as before, that the utility associated with a
particular location and class can depend upon the pop-
ulation associated with every class and every location,
that is,

u = u(p). (9)

Assume also that the cost associated with migrating
between two locations as perceived by a particular class
can depend, in general, upon the flows of every class
between every pair of locations, that is,

c = c(f). (10)
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The variational inequality formulation of the migration
equilibrium conditions is given by:

Theorem 2 (Variational Inequality Formulation of
Migration Equilibrium with Migration Costs)

A population and migration flow pattern (p∗, f∗) ∈ K
satisfies equilibrium conditions (7) and (8) if and only if
it satisfies the variational inequality problem

〈−u(p∗), p − p∗〉+ 〈c(f∗), f − f∗〉 ≥ 0, ∀(p, f) ∈ K. (11)

Proof: We first show that if a pattern (p∗, f∗) satis-
fies equilibrium conditions (7) and (8), subject to con-
straints (5) and (6), then it also satisfies the variational
inequality in (11).

Suppose that (p∗, f∗) satisfies the equilibrium conditions.
Then

fk
ij
∗ ≥ 0 and

∑
l 6=i

fk
il
∗ ≤ p̄k

i , ∀i, j, k.
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For fixed class k we define Γk
1 = {l|fk

il
∗

> 0} and Γk
2 =

{l|fk
il
∗
= 0}. Then

∑
l 6=i

[
uk

i (p
∗) + ck

il(f
∗) − uk

l (p
∗)

] × [
fk

il − fk
il
∗]

=
∑
l∈Γk

1

[
uk

i (p
∗) + ck

il(f
∗) − uk

l (p
∗)

] × [
fk

il − fk
il
∗]

+
∑
l∈Γk

2

[
uk

i (p
∗) + ck

il(f
∗) − uk

l (p
∗)

] × [
fk

il − fk
il
∗]

≥ −λk
i

∑
l∈Γk

1

(fk
il − fk

il
∗
) +

∑
l∈Γk

2

(−λk
i )(f

k
il)

= −λk
i (

∑
l 6=i

fk
il −

∑
l 6=i

fk
il
∗
)

{
= 0, if

∑
l 6=i f

k
il
∗

< p̄k
i

≥ 0, if
∑

l 6=i f
k
il
∗
= p̄k

i

holds for all such locations i.

Therefore, for this class k and all locations i, fk
il
∗≥0,∑

l 6=if
k
il
∗≤p̄k

i , and

n∑
i=1

∑
l 6=i

[
uk

i (p
∗) + ck

il(f
∗) − uk

l (p
∗)

] × [
fk

il − fk
il
∗] ≥ 0. (12)
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But inequality (12) holds for each k; hence,

J∑
k=1

n∑
i=1

∑
l 6=i

[
uk

i (p
∗) + ck

il(f
∗) − uk

l (p
∗)

] × [
fk

il − fk
il
∗] ≥ 0.

(13)

Observe now that inequality (13) can be rewritten as:

J∑
k=1

n∑
l=1

uk
l (p

∗) × ((
∑
j 6=l

fk
lj −

∑
j 6=l

fk
jl) − (

∑
j 6=l

fk
lj
∗ −

∑
j 6=l

fk
jl
∗
))

+
J∑

k=1

N∑
i=1

∑
l 6=i

ck
il(f

∗) × (fk
il − fk

il
∗
) ≥ 0. (14)

Using constraint (5), and substituting it into (14), one
concludes that

−
J∑

k=1

n∑
l=1

uk
l (p

∗)×(pk
l −pk

l
∗
)+

J∑
k=1

n∑
i=1

∑
l 6=i

ck
il(f

∗)×(fk
il−fk

il
∗
) ≥ 0,

(15)
or, equivalently, in vector notation,

〈−u(p∗), p−p∗〉+〈c(f∗), f−f∗〉 ≥ 0, ∀(p, f) ∈ K. (16)
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We now show that if a pattern (p∗, f∗) ∈ K satisfies vari-
ational inequality (11), then it also satisfies equilibrium
conditions (7) and (8). Suppose that (p∗, f∗) satisfies
variational inequality (5.11). Then

〈−u(p∗), p〉+〈c(f∗), f〉 ≥ 〈−u(p∗), p∗〉+〈c(f∗), f∗〉, ∀(p, f) ∈ K.

Hence, (p∗, f∗) solves the minimization problem

Min(p,f)∈K〈−u(p∗), p〉 + 〈c(f∗), f〉, (17)

or, equivalently, (17) may be expressed solely in terms
of f , that is,

Minf ′∈K1
〈−û(Af∗), Af〉 + 〈c(f∗), f〉 (18)

where K1 ≡ {f |f ≥ 0, satisfying (5.6)}, A is the arc-node
incidence matrix in (5), and û(Af∗) ≡ u(p∗).

Since the constraints in K are linear, one has the fol-
lowing Kuhn-Tucker conditions: There exist

λ = (λk
i ) ≥ 0, (19)

such that

λk
i (

∑
l 6=i

fk
il
∗ − p̄k

i ) = 0 (20)

and

uk
i − uk

j + ck
ij + λk

i ≥ 0 (21)

(uk
i − uk

j + ck
ij + λk

i )f
k
ij
∗
= 0. (22)

Clearly, equilibrium conditions (7) and (8) follow from

(19) – (22). The proof is complete.
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Qualitative Properties

Existence of at least one solution to variational inequal-
ity (11) follows from the standard theory of variational
inequalities, under the sole assumption of continuity of
the utility and migration cost functions u and c, since
the feasible convex set K is compact. Uniqueness of
the equilibrium population and migration flow pattern
(p∗, f∗) follows under the assumption that the utility and
movement cost functions are strictly monotone, that is,

−〈u(p1) − u(p2), p1 − p2〉 + 〈c(f1) − c(f2), f1 − f2〉 > 0,

∀(p1, f1), (p2, f2) ∈ K, such that (p1, f1) 6= (p2, f2).
(23)

We now interpret monotonicity condition (23) in terms
of the applications. Under reasonable economic situa-
tions, the monotonicity condition (23) can be verified.

Essentially, it is assumed that the system is subject
to congestion; hence, the utilities are decreasing with
larger populations, and the movement costs are increas-
ing with larger migration flows.

Furthermore, each utility function uk
i (p) depends mainly

on the population pk
i , and each movement cost ck

ij(f) de-

pends mainly on the flow fk
ij. Mathematically, the strict

monotonicity condition will hold, for example, when −∇u

and ∇c are diagonally dominant.
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Migration with Class Transformations

A network model of human migration equilibrium is now
developed, which allows not only for multiple classes
and migration costs between locations but also for class
transformations.

In this model users select the class/location combination
that will yield the greatest net gain, where the net gain
is defined as the gain in utility minus the migration cost.

The cost here reflects both the cost associated with

translocation and the cost associated with training, ed-

ucation, and the like, if there is migration across classes

either within a location or across locations. This model

may also be viewed as a framework for labor move-

ments.
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As in the preceding two migration models, assume a
closed economy in which there are n locations, typically
denoted by i, and J classes, typically denoted by k. The
utility functions and the population vectors are as de-
fined for the preceding model. However, now associate
with each pair of class/location combinations k, i and l, j
a nonnegative cost of migration ckl

ij and let the migration
flow of class k from origin i to class l at destination j
be denoted by fkl

ij .

Note that in the case where the destination class l is
identical to the origin class k, then the migration cost ckk

ij
represents the cost of translocation, which includes not
only the cost of physical movement but also the psychic
cost as perceived by this class in moving between the
pair of locations.

On the other hand, when the destination location j is

equal to the origin location i, the cost ckl
ii represents

the cost of transforming from class k to class l while

staying in location i. Hence, the migration cost here is

interpreted in a general setting as including the cost of

migrating from class to class. The migration costs are

grouped into a row vector c ∈ RJn(Jn−1), and the flows

into a column vector f ∈ RJn(Jn−1).
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The conservation of flow equations are given for each
class k and each region i, assuming no repeat or chain
migration, by

pk
i = p̄k

i +
∑

(l,h)6=(k,i)

flk
hi −

∑
(l,h)6=(k,i)

fkl
ih (24)

and ∑
(l,h)6=(k,i)

fkl
ih ≤ p̄k

i , (25)

where fkl
ih ≥ 0, for all (k, l); k=1, . . . , J; l=1, . . . , J, (h, i);

h = 1, . . . , n; i=1, . . . , n. Let K ≡{(p, f)|f ≥ 0, and sat-
isfy (24), (25).

Equation (24) states that the population in location i

of class k is given by the initial population of class k in

location i plus the migration flow into i of that class and

transformations of other classes into that class from this

and other locations minus the migration flow out of i

for that class and transformations of that class to other

classes at this and other locations. Equation (25) states

that the flow out of i by class k cannot exceed the initial

population of class k at i, since no chain migration is

allowed.
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The general network model with class transformations
is now presented. For each class k, construct n nodes,
(k, i); i = 1, . . . , n, to represent the locations and a link
(ki, kj) connecting each such pair of nodes.

These links, hence, represent migration links within a
class. From each node (k, i) construct Jn−1 links joining
each node (k, i) to node (l, h) where l 6= k; l = 1, . . . , J;
h = 1, . . . , n.

These links represent migration links which are class
transformation links. There are, hence, a total of Jn
nodes in the network and Jn(Jn − 1) links. Note that
each node may be interpreted as a state in class/location
space.

With each link (ki, lj) associate the cost ckl
ij and the

corresponding flow fkl
ij . With each node (k, i) associate

the utility uk
i and the initial positive population p̄k

i . A

graphical depiction of a two-region, three-class migra-

tion network is given in Figure 3.
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We are now ready to state the equilibrium conditions,
following those presented for the model with migration
costs. Assume that migrants are rational and that mi-
gration will continue until no individual has any incentive
to move since a unilateral decision will no longer yield a
positive net gain (gain in utility minus migration cost).

Mathematically, the multiclass equilibrium conditions are
stated as follows. A multiclass population and flow pat-
tern (p∗, f∗) ∈ K is said to be in equilibrium if for each
pair (k, i) and (l, j); (k, l), k = 1, . . . , J; l = 1, . . . , J, (i, j),
i = 1, . . . , n; j = 1, . . . , n:

uk
i + ckl

ij

{
= ul

j − λk
i , if fkl

ij
∗

> 0

≥ ul
j − λk

i , if fkl
ij

∗
= 0

(26)

and

λk
i

{ ≥ 0, if
∑

(l,h)6=(k,i) fkl
ih

∗
= p̄k

i

= 0, if
∑

(l,h)6=(k,i) fkl
ih

∗
< p̄k

i .
(27)
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Observe that the population p̄k
i may not be large enough

so that the gain in utility ul
j − uk

i is exactly equal to

the cost of migration ckl
ij . Nevertheless, the utility gain

minus the migration cost will be maximal and nonneg-

ative. Moreover, the net gain will be equalized for all

classes/locations which have a positive flow out of a

location of that class. In fact, λk
i is exactly the equal-

ized net gain for all individuals of class k in location

i. In the case where no class transformations are al-

lowed, in other words, l = k, then the above equilibrium

conditions collapse to those given for the model with

migration costs.
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Assume that, in general, the utility associated with a
particular location and class can depend upon the pop-
ulation associated with every class and every location,
as similarly assumed in the preceding migration models.

Also assume that, in general, the cost associated with

migrating between two distinct pairs of classes/locations

as perceived by a particular class can depend, in gen-

eral, upon the flows of every class between every pair

of locations, as well as the flows between every pair of

classes.
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The equilibrium conditions are illustrated through the
following example.

Example 1

Consider the migration problem with two classes and
two locations where the utility functions are:

u1
1(p) = −p1

1 + 5 u2
1(p) = −p2

1 − .5p1
1 + 20

u1
2(p) = −p1

2 + 15 u2
2(p) = −p2

2 + .5p1
1 + 10

and assume that the migration cost functions are:

c1211(f) = f12
11 + .5f12

12 + 1 c2111(f) = f21
11 + 1

c1112(f) = f11
12 + .2f12

12 + 10 c1121(f) = f11
21 + 10

c1212(f) = f12
12 + .1f11

12 + 5 c2121(f) = f21
21 + 20

c2212(f) = f22
12 + .3f12

21 + 2 c2221(f) = f22
21 + 3

c2112(f) = f21
12 + 15 c1221(f) = f12

21 + .2f11
21 + 15

c1222(f) = f12
22 + 10 c2122(f) = 3f21

22 + 2f21
11 + 1.
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The fixed populations are:

p̄1
1 = 1 p̄2

1 = 5 p̄1
2 = 1 p̄2

2 = 3,

with associated initial utilities

u1
1 = 4 u2

1 = 15 u1
2 = 14 u2

2 = 7.

The equilibrium populations and the flow pattern are:

p1
1
∗
= 0 p2

1
∗
= 7 p1

2
∗
= 2 p2

2
∗
= 1

f12
11

∗
= f22

21
∗
= f21

22
∗
= 1, all other fkl

ij
∗
= 0,

and with associated equilibrium utilities

u1
1 = 5 u2

1 = 13 u1
2 = 13 u2

2 = 9.
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We now verify that this population and flow pattern
satisfies equilibrium conditions (26) and (27).

Class 1, Location 1

Observe that in this case the final population is p1
1
∗
= 0,

and, hence, the original population was exhausted. Note
that

u1
1+c1211 = 5+2 = u2

1 = 13−λ1
1, whereλ1

1 = 6and f12
11

∗
> 0

u1
1 + c1212 = 5 + 5 ≥ u2

2 = 9, and f12
12

∗
= 0

u1
1 + c1112 = 5 + 10 ≥ u1

2 = 13, and f11
12

∗
= 0.

Class 2, Location 2

Note that here the final population is p2
2
∗

= 1, and,
hence, this population is not exhausted. Note also that

u2
2 + c2221 = 9 + 4 = u2

1 = 13, and f22
21

∗
> 0

u2
2 + c2122 = 9 + 4 = u1

2 = 13, and f21
22

∗
> 0

u2
2 + c2121 = 9 + 20 ≥ u1

1 = 5, and f21
21

∗
= 0.
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Both class 1, location 2 and class 2, location 1 have

zero migration flow out with the equilibrium conditions

uk
i + ckl

ij ≥ ul
j holding, as is easy to verify. Thus, the

above population and flow distribution patterns satisfy

the migration equilibrium conditions (26) and (27), and

the conservation of flow equations (24) and (25) also

hold.
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The variational inequality formulation of the above mi-
gration equilibrium conditions is given below. The proof
follows from similar arguments as given in the proof of
the preceding variational inequality.

Theorem 3 (Variational Inequality Formulation of
Migration Equilibrium with Class Transformations)

A population and migration flow pattern (p∗, f∗) ∈ K
satisfies equilibrium conditions (26) and (27) if and only
if it satisfies the variational inequality problem

〈−u(p∗), p − p∗〉+ 〈c(f∗), f − f∗〉 ≥ 0, ∀(p, f) ∈ K, (28)

where K ≡ {(p, f)|f ≥ 0, and (p, f) satisfy (24), (25)}.
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Existence of at least one solution to variational inequal-
ity (28) is again guaranteed by the standard theory un-
der the sole assumption of continuity of the utility and
migration cost functions u and c, since the feasible set
K is compact. Uniqueness of the equilibrium population
and migration flow pattern follows from the assumption
that the utility and migration cost functions are strictly
monotone.

The above model can be further interpreted in the con-
text of the migration network model described before
as follows. If one makes the identification that each
node in the network model (cf. Figure 3) is, indeed,
a “location,” albeit a location in class/location space,
then the model developed here with J classes and n re-
gions is structurally isomorphic to the human migration
model of Section 2 in the case of a single class and Jn
locations, in which asymmetric utility functions and mi-
gration cost functions are, of course, permitted. The
model just described, nevertheless, is the richer model
conceptually and more general from an application point
of view.

Furthermore, the development here illustrates and yet

another network equilibrium model in which the net-

work representation is fundamental to the formulation,

understanding, and, as shall be demonstrated in the sub-

sequent section, the ultimate solution of the problem at

hand.
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Computation of Migration Equilibria

The variational inequality decomposition algorithm for
the solution of the multiclass human migration equi-
librium problem is now presented. Note that, as dis-
cussed above, the network model with class transforma-
tions can be reformulated as the model with migration
costs with the appropriate identification between nodes
corresponding to locations and nodes corresponding to
class/location combinations. Hence, the algorithm de-
scribed below is applicable to both models. The de-
composition algorithm is based crucially on the special
structure of the underlying network (cf. Figure 2).

In particular, note that the feasible set K for variational
inequality (11) can be expressed as the Cartesian prod-
uct

K =
J∏

k=1

Kk, (29)

where Kk ≡ {(pk, fk)|pk = {pk
i ; i = 1, . . . , n}}; fk = {fk

ij, i =

1, . . . , n; j = 1, . . . , n; j 6= i}, and satisfying (5) and (6).
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One can, hence, decompose the variational inequality
governing the multiclass migration network equilibrium
problem into J simpler variational inequalities in lower
dimensions. Each variational inequality in the decom-
position corresponds to a particular class which, after
linearizing, is equivalent to a quadratic programming
problem and can be solved by the migration equilibration
algorithm developed in Nagurney (1989).

That algorithm is a relaxation scheme and proceeds

from location (node) to location (node), at each step

computing the migratory flow out of the location exactly

and in closed form. This can be accomplished because

the special network structure of the problem lies in that

each of the paths from an origin location to the n − 1

potential destination locations are disjoint.
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The statement of the decomposition algorithm by classes
is as follows

The Linearization Decomposition Algorithm by Classes

Step 0: Initialization

Given an initial feasible solution (p0, f0), set t := 0 and
k := 1.

Step 1: Linearization and Computation

Solve for (pk)
t+1

, (fk)
t+1

in the following separable vari-
ational inequality:

n∑
i=1

(qk
i − (pk

i )
t+1

)

×(−uk
i ((p

1)
t+1

, . . . , (pk−1)
t+1

, (pk)
t
, . . . , (pJ)

t
)

−∂uk
i

∂pk
i

((p1)
t+1

, . . . , (pk−1)
t+1

, (pk)
t
, . . . , (pJ)

t
)

×((pk
i )

t+1 − (pk
i )

t
))

+
∑

i

∑
j 6=i

(gk
ij − (fk

ij)
t+1

)

×(ck
ij((f

1)
t+1

, . . . , (fk−1)
t+1

, (fk)
t
, . . . , (fJ)

t
)
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+
∂ck

ij

∂fk
ij

((f1)
t+1

, . . . , (fk−1)
t+1

, (fk)
t
, . . . , (fJ)

t
)

×((fk
ij)

k+1 − (fk
ij)

t
)) ≥ 0 (30)

∀qk
i ≥ 0, gk

ij ≥ 0,

such that
∑

j 6=i g
k
ij ≤ p̄k

i and qk
i = p̄k

i − ∑
j 6=i(g

k
ij − gk

ji).

If k < J, then let k := k+1, and go to Step 1; otherwise,
go to Step 2.

Step 2: Convergence Verification

If equilibrium conditions (7) and (8) hold for a given
prespecified tolerance ε > 0, then stop; otherwise, let
t := t + 1, and go to Step 1.
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The global convergence proof for the above linearized
decomposition algorithm is now stated. In addition, suf-
ficient conditions that guarantee the convergence are
also given.

Let

A(p, f) =


 A1(p, f)

. . .
AJ(p, f)


 (31)

where

Ak(p, f) =




−∂uk
1

∂pk
1 . . .

−∂uk
n

∂pk
n . . .

∂ck
ij

∂fk
ij

. . .




n2×n2

(32)

and (p, f) is feasible.
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Theorem 4 (Convergence of the Linearized De-
composition Algorithm)

Suppose that there exist symmetric positive definite ma-
trices Gk such that Ak(p, f)− Gk is positive semidefinite
for all feasible (p, f) and that there exists a β ∈ (0,1]
such that

‖G−1
k (−uk

1(p)+uk
1(q)+

∂uk
1

∂pk
1

(q)×(pk
1−qk

1), . . . ,−uk
n(p)+uk

n(q)

+
∂uk

n

∂pk
n

(q) × (pk
n − qk

n), . . . , c
k
ij(f) − ck

ij(g)

−∂ck
ij

∂fk
ij

(g) × (fk
ij − gk

ij) . . .)T
n2‖k

≤ β max
β

‖(pk
1 − qk

1, . . . , pk
n − qk

n, . . . , fk
ij − gk

ij, . . .)n2‖k (33)

where ‖ · ‖k = (·TGk·)
1

2 . Then the linearized decom-

position algorithm by classes converges to the unique

solution of the variational inequality geometrically.
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In the case when −u, c are separable, that is,

uk
i (p) = uk

i (p
k
i ), ck

ij(f) = ck
ij(f

k
ij), (34)

the positive semidefiniteness of Ak(p, f)−Gk is equivalent
to the strong monotonicity of (−uk, ck) for each block
k.

In fact, if Ak(p, f) − Gk is positive semidefinite, then

n∑
i=1

(−uk
i (p) + uk

i (q)) × (pk
i − qk

i )

+
n∑

i=1

∑
j 6=i

(ck
ij(f) − ck

ij(g)) × (fk
ij − gk

ij)

=
n∑

i=1

(−∂uk
i

∂pk
i

(η)) × (pk
i − qk

i )
2 +

∑
i,j 6=i

∂ck
ij

∂fk
ij

(ζ) × (fk
ij − gk

ij)
2

≥ α(
n∑

i=1

(pk
i − qk

i )
2
+

n∑
i=1

∑
j 6=i

(fk
ij − gk

ij)
2
), (35)

that is, (−uk, ck) is strongly monotone. The converse is

clear from the above inequality.
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The norm inequality condition is actually a measure of

linearity of −u and c. In particular, when −u, c are linear

and separable, the inequality is automatically satisfied,

since the lefthand side is zero. Of course, the variational

inequality can be solved for each class by the migration

equilibration algorithm in this extremal case. A not-too-

large perturbation from this case means not-too-strong

interactions among classes and locations.
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Numerical Results

The numerical results for the decomposition algorithm
are presented in this section.

The algorithm was implemented in FORTRAN and com-
piled using the FORTVS compiler, optimization level 3.
The special-purpose migration equilibration algorithm
outlined in Nagurney (1989) was used for the embed-
ded quadratic programming problems. The system used
was an IBM 3090/600J at the Cornell National Super-
computer Facility. All of the CPU times reported are
exclusive of input/output times, but include initializa-
tion times. The initial pattern for all the runs was set
to (p0, f0) = 0. The convergence tolerance used was
ε = .01, with the equilibrium conditions serving as the
criteria.

We first considered migration examples without class
transformations with asymmetric and nonlinear utility
and migration cost functions. The utility functions were
of the form

uk
i (p) = −αkk

ii (pk
i )

2 −
∑
l,j

akl
ijp

l
j + bk

i , (36)

and the migration cost functions were of the form

ck
ij(f) = γk

ijij(f
k
ij)

2
+

∑
l,rs

gkl
ijrsf

l
rs + hk

ij. (37)
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The data were generated randomly and uniformly in the
ranges as follows: αkk

ii ∈ [1,10] × 10−6,γkk
ijij ∈ [.1, .5, ] ×

10−6,−akk
ij ∈ [1,10], bk

i ∈ [10,100], gkk
ijij ∈ [.1, .5], and

hk
ij ∈ [1,5], for all i, j, k, with the diagonal terms gener-

ated so that strict diagonal dominance of the respective
Jacobians of the utility and movement cost functions
held, thus guaranteeing uniqueness of the equilibrium
pattern (p∗, f∗).

The number of cross-terms for the functions (5.36) and

(37) was set at five. The initial population p̄k
i was gen-

erated randomly and uniformly in the range [10,30], for

all i, k.
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Numerical results for nonlinear
multiclass migration networks

Number of Number of Classes
Locations 5 10

CPU Time in sec. (# of Iterations)

10 .24(4) .41(3)
20 1.18(4) 2.38(4)
30 3.87(4) 9.73(4)
40 8.73(4) 17.01(5)
50 16.22(5) 33.07(4)
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In Table 1 we varied the number of locations from 10
through 50, in increments of 10, and fixed the number
of classes at 5 and 10.

As can be seen from the Table 1, the decomposition

algorithm by classes required only several iterations for

convergence. As expected, the problems with 10 classes

required, typically, at least twice the CPU time for com-

putation as did the problems with 5 classes. Finally, note

that, although the decomposition algorithm by classes

implemented here was a serial algorithm, the parallel

version converges under the same conditions as given

in Theorem 4. Hence, the parallel analogue allows for

implementation on parallel computers. We now turn to

the computation of large-scale migration network equi-

librium problems with class transformations and present

numerical results for the linearization decomposition al-

gorithm.
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We now report the numerical results for multiclass mi-
gration problems with class transformations in Table 2.
As in the previous examples, we considered examples
with asymmetric and nonlinear utility and migration cost
functions, that is, the utility functions were of the form

uk
i (p) = −αk

i (p
k
i )

2 −
∑
l,j

akl
ijp

l
j + bk

i , (38)

and the migration cost functions were of the form

ckl
ij(f) = γkl

ij (f
kl
ij )

2
+

∑
uv,rs

gkluv
ijrs fuv

rs + hkl
ij . (39)

The data were generated in a similar fashion to the
preceding examples, i.e., randomly and uniformly in the
ranges as follows: αk

i ∈ [1,10]×10−6, γkl
ij ∈ [.1, .5]×10−6,

akk
ii ∈ [1,10], bk

i ∈ [10,100], gklkl
ijij ∈ [.1, .5], and hkl

ij ∈ [1,5],
for all i, j, k, l, with the off-diagonal terms generated so
that strict diagonal dominance of the respective Jaco-
bians of the utility and migration cost functions held,
thus guaranteeing uniqueness of the equilibrium pattern
(p∗, f∗). However, the Jacobians were asymmetric.

The number of cross-terms for the functions (38) and

(39) was set at 5. The initial population p̄k
i was gener-

ated randomly and uniformly in the range [10,30], for

all i, k.
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Numerical results for nonlinear multiclass
migration networks with class transformations

Number of Number Number of CPU Time in sec.

Locations of Classes (Nodes; Links) (# of Iterations)

10 5 (50; 2,450) 2.70(4)
20 5 (100; 9,900) 16.89(4)
30 5 (150; 22,350) 80.40(5)
40 5 (200; 39,800) 171.95(6)
50 5 (250; 72,250) 321.06(5)
10 10 (100; 9,900) 23.71(4)
20 10 (200; 39,800) 131.63(5)
30 10 (300; 89,700) 512.03(4)
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In Table 2 the problems ranged in size from 10 regions,
5 classes through 50 regions, 5 classes, to 30 regions,
10 classes. The problems, hence, ranged in size from
50 nodes and 2,450 links to 300 nodes and 89,700 links.
The number of nodes and the number of links for each
problem are also reported in the tables.

As can be seen from the two tables, the linearization de-
composition algorithm required only several iterations
for convergence. The problems solved here represent
large-scale problems from both numerical as well as
application-oriented perspectives. Although the class
transformation problems solved here cannot directly be
compared to those solved without class transformations,
some inferences can, nevertheless, be made.

The problems in Table 2 are more time-consuming to

solve for a fixed number of locations and classes. This

is due, in part, to the fact that a problem with J classes

and n locations, in the absence of class transformations,

has only Jn(n − 1) links, whereas a problem with the

same number of classes and regions in the presence of

class transformations has the number of links now equal

to Jn(Jn − 1).
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Hence, the dimensionality of a given problem now in-
creases in terms of the number of links by a factor on
the order of the number of classes J.

The largest problem solved in Table 1 had 50 regions

and 10 classes and consisted of 24,500 links, whereas

the largest problem solved in Table 2 consisted of 30

regions and 10 classes and had 89,700 links.
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The literature on human migration is extensive and spans
disciplines ranging from economics through geography
to sociology. Some precursors to a network formal-
ism are the contributions of Beckmann (1957), Tobler
(1981), and Dorigo and Tobler (1983). Tobler (1981)
and Dorigo and Tobler (1983) establish connections be-
tween migration problems and transportation problems.
The importance of migration cost in migration decision-
making has been documented in the literature from
both theoretical and empirical perspectives (cf. To-
bler (1981) and Sjaastad (1962), and the references
therein), and such costs are explicitly included in our
more general migration models. Some surveys of the
migration literature are Greenwood (1975, 1985).

A related problem has been studied by Faxen and Thore

(1990) who utilize a network analysis for studying la-

bor markets and discuss the relationship between their

model and classical spatial price equilibrium models. Here

our emphasis has been on developing the fundamentals

of a unifying network framework for the study of human

population movements. Of course, our model of class

transformations captures labor movements as well.
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Below we include the references to the above material
as well as additional ones for the interested reader.
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