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Abstract This paper provides an overview of the science of supernetworks, highlighting

some of the major achievements in terms of theory, methodology, and applications. The

goal is to demonstrate the depth and breadth of contributions to the modeling, analysis,

and solution of complex networks that underly our modern economies and societies. Some

promising areas for future research are also identified.
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1. Introduction and Motivation

Science advances through innovations in observation, theory, methodologies, experimen-

tation and data collection. Science builds on earlier discoveries and illuminates our under-

standing of the world (and beyond) by providing tools to guide and assist in decision-making.

The world has become increasingly complex with the human population soaring to almost

7 billion, with our resources from natural to financial ones being limited, and with the number

of disasters growing, as well as the people affected by them. At the same time, the world

is more interconnected through communication and transportation technologies. Hence,

disruptions in one part of the world may propagate and impact sectors in other parts, even

thousands of miles away from the original disruption.

Networks provide the infrastructure for connectivity and for the functioning of our modern

economies and societies. Transportation networks give us the means for mobility and the

shipment and delivery of goods. Communication networks today allow for the spread of

information at speeds never before imagined. Logistical networks enable the manufacture

of products and their delivery to points of demand across the globe. The reality of today’s

networks include: large-scale nature and complexity, increasing congestion, especially in,

but not limited to, transportation and telecommunications, alternative behaviors of users of

the networks, which can lead to paradoxical phenomena, as well as interactions between the

networks themselves (which was rarely observed prior to the advent of the Internet). The

decisions made by the users of the networks, in turn, may affect not only the users themselves

but others, as well, in terms of profits and costs, the timeliness of deliveries, and the quality

of the environment.

Indeed, many of today’s networks are characterized by both a large-scale nature and

complexity of the underlying network topology. For example, in Chicago’s Regional Trans-

portation Network, there are 12,982 nodes, 39,018 links, and 2,297,945 origin/destination

(O/D) pairs (see Bar-Gera (2002)), whereas in the Southern California Association of Gov-

ernments model there are 3,217 origins and/or destinations, 25,428 nodes, and 99,240 links,

plus 6 distinct classes of users (cf. Wu, Florian, and He (2000)). In the case of the Internet,

in 2010, there were 1.8 billion users (cf. Miniwatts Marketing Group (2011)).
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In regards to congestion, in the case of transportation networks in the United States

alone, in 2009, it was estimated that congestion resulted in $115 billion in lost productivity,

requiring 4.8 billion hours of extra travel time (see Schrank, Lomax, and Turner (2010)).

Supernetworks are “networks of networks,” and their prevalence in the world around us

is illustrated by multimodal transportation networks; complex logistical networks consisting

of manufacturers, shippers and carriers, distributors, and retailers; electric power generation

and distribution networks, multitiered financial networks, and such software technology social

network platforms as Facebook and Twitter, along with the Internet itself.

Supernetwork theory, as a body of scientific inquiry, has harnessed optimization theory,

network theory, game theory, multicriteria decision-making, the theory of variational in-

equalities (cf. Nagurney (1999)), as well as projected dynamical systems theory (see Zhang

and Nagurney (1995), Nagurney and Zhang (1996), and the references therein), and, in the

process, has helped in the advancement and integration, as appropriate, of such method-

ologies and has broadened both models and applications thereof (cf. Nagurney and Dong

(2002) and Nagurney and Qiang (2009)).

In particular, the supernetwork framework allows one to formalize the alternatives avail-

able to decision-makers, to model their individual behavior, typically, characterized by par-

ticular criteria which they wish to optimize, and to, ultimately, compute the flows on the

supernetwork, which may consist of product shipments, travelers between origins and desti-

nations, financial flows, information flows, resource and energy flows, as well as the associated

costs and “prices.” Hence, the concern is with complex decision-making and how the super-

network concept can be utilized to crystallize and inform in this dimension.

“Super” networks are networks that are “above and beyond” existing classical networks,

which consist of nodes, links, and flows, with nodes corresponding to locations in space,

links to connections in the form of roads, cables, etc., and flows to vehicles, data, etc. Su-

pernetworks are conceptual in scope, graphical in perspective, and, with the accompanying

theory, predictive in nature. Moreover, supernetworks also enable the conceptualization,

abstraction, and illumination of a spectrum of problems that may not appear, initially, to

involve networks at all, such as a variety of financial and economic problems as well as

knowledge production and dissemination. Hence, the study of supernetworks is not limited
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to physical networks where nodes coincide with locations in space but applies also to ab-

stract networks. The ability to harness the power of a supernetwork formalism provides a

competitive advantage since:

(1). many present-day problems are concerned with flows be they, material, human, capital,

energy, and/or informational over space and time and, hence, well-suited as an application

domain for supernetwork theory;

(2). a graphical or visual depiction of different problems provides a commonality for both

theory and practice, and an enhancement of problem description;

(3). one may identify similarities and differences in distinct problems through their under-

lying network structure, and gain new, deeper insights as a consequence, and

(4) one may apply efficient network algorithms for problem solution, since network problems

today very often being large-scale.

The origin of supernetworks, as a science for complexity, begins with the invited essay of

Nagurney (2000a) in OR/MS Today . In that essay, the need to capture the interrelationships

among the foundational networks in our economies and societies was emphasized and it was

noted that: “The interactions among transportation networks, telecommunication networks,

as well as financial networks is creating supernetworks ...” . The essay, in turn, was based on

a Distinguished Faculty Lecture given at the University of Massachusetts on April 5, 2000

(see Nagurney (2000b)). Subsequent research, and interest, plus funding support, led to the

establishment of the Virtual Center for Supernetworks at the Isenberg School of Management

at the University of Massachusetts Amherst in the Fall of 2001, followed by the first book

on supernetworks by Nagurney and Dong (2002).

Below the theme of supernetworks is further elaborated upon and, in particular, the

origins of the concept and the term supernetworks identified. The goal of this paper is to

provide a high-level overview of supernetworks and to highlight both the foundations and

some of the successes with a focus on developments since Nagurney and Dong (2002).

Transportation, telecommunication, and economic and financial networks have served

not only as the basis for the origins of the term “supernetwork,” but are also the principal
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subnetworks in the applications that are relevant to decision-making today. In addition,

interestingly, and, as noted in Nagurney and Dong (2002), the term “supernetworks” is also

used in genetics and biology.

Clearly, transportation networks are complex network systems, in which the decisions of

individual travelers affect the efficiency and productivity of the entire system. Transportation

networks come in many forms from urban networks and freight networks to airline networks.

The “supply” in such a network system is represented by the network topology and the

underlying cost characteristics, whereas the “demand” is represented by the users of the

network system, that is, the travelers.

Dafermos (1972) established how a multiclass transportation network could be trans-

formed into a single-class transportation network through the construction of an expanded

abstract network consisting of as many copies of the original network as there were classes

of users (which could, equivalently, correspond to modes of transportation). Moreover, she

noted that such networks “arise not only in street networks where vehicles of different types

share the same roads (e.g., trucks and passenger cars) but also in other types of transporta-

tion networks (e. g., telephone networks).” Therefore, she explicitly recognized that abstract

networks could be used to handle multiclass/multimodal transportation networks as well as

telecommunication networks! In addition, she considered both user-optimizing and system-

optimizing behavior, terms which she had coined with Sparrow in a paper in 1969. Fasci-

natingly, the concepts of user-optimization versus system-optimization from transportation

(see, also, Beckmann, McGuire, and Winsten (1956) and Boyce, Mahmassani, and Nagurney

(2005)) are now being used in the formal study of telecommunication networks, including

the Internet (cf. Roughgarden (2005)) with the Braess Paradox (1968) (cf. Braess, Nagur-

ney, and Wakolbinger (2005)) also being relevant to both application domains (see also, e.g.,

Nagurney, Parkes, and Daniele (2007)).

As emphasized in Nagurney and Dong (2002), Dafermos (1976) proposed an integrated

transportation network equilibrium model in which one could formally capture the entire

transportation planning process, consisting of origin selection, or destination selection, or

both, in addition to route selection, in an optimal way, as path choices over an appropriately

constructed abstract network. The genesis and formal treatment of decisions more complex
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than route choices as path choices on abstract networks, that is, supernetworks, were, hence,

evident as early as 1972 and 1976.

The importance and wider relevance of such abstract networks in decision-making, with

a continued focus on transportation planning, were further emphasized through the term

“hypernetwork,” used by Sheffi (1978) and Sheffi and Daganzo (1978, 1980), which was later

renamed as a “supernetwork” by Sheffi (1985).

As also noted in Nagurney and Dong (2002), the recognition and appropriate construction

of abstract networks was pivotal in that it allowed for the incorporation of transportation-

related decisions (where as noted by Dafermos (1972), transportation applied also to com-

munication networks) which were not based only on route selection in a classical sense, that

is, what route should one take from one’s origin, say, place of residence, to one’s destination,

say, place of employment. Abstract networks, with origins and destinations corresponding

to appropriately defined nodes, links connecting nodes having associated disutilities (that is,

costs), and paths comprised of links (directed) connecting the origins and destinations, could

capture such travel alternatives as not simply just a route but, also, the “mode” of travel,

that is, for example, whether one chose to use private or public transportation. Moreover,

through the use of both added abstract links and paths, and abstract origin and destina-

tion nodes one could include the selection of such locational decisions as the origins and

destinations themselves within the same decision-making framework.

The behavioral principle utilized by Dafermos (1976) and by Sheffi and Daganzo (1978,

1980) (who also formulated stochastic models) was that decision-makers select the “cost-

minimizing” routes among all their available choices. Hence, they behaved according to

Wardrop’s (1952) first principle of travel behavior, which corresponds to what is referred to

now as user-optimization, as opposed to system-optimization (Wardrop’s second principle

of travel behavior). Note that the user-optimization corresponds to decentralized decision-

making as opposed to centralized decision-making.

Dafermos (1972) considered both system-optimization as well as user-optimization. Ac-

cording to Sheffi and Daganzo (1978), the selection of cost-minimizing routes “this is consis-

tent with the principle of utility maximization of choice theory.” Moreover, they stated that:

“Although hypernetworks enable us to visualize choice problems in a unified way... their

6



main advantage is that they enable us to perform supply-demand equilibrium analysis on a

mathematically consistent basis with disaggregate demand models.” Additional references to

supernetworks and transportation can be found in the book by Nagurney and Dong (2002).

We now turn to a discussion of the use of the term “supernetworks” in the context of

telecommunication networks. Denning (1985) noted that a system of national supercomputer

centers would be a network of networks, that is, a “supernetwork,” and a powerful tool for

science. In addition, he emphasized the importance of location-independent naming, so that

if a physical location of a resource would change, none of the supporting programs or files

would need to be edited or recompiled. Hence, in a sense, his view of supernetworks is in

concert with that of ours in that nodes do not need to correspond to locations in space and

may have an abstract association.

Schubert, Goebel, and Cercone (1979) used the term “supernetworks” in the context of

knowledge representation and stated that: “Networks are compositional: a node in a network

can be some other network, and the same subnetwork can be a subnetwork of several larger

supernetworks,...”

Fallows (1996) recognized that “The Internet is the supernetwork that links computer

networks around the world.” In 1997, the Illinois Bar Association defined the Internet as: “ a

supernetwork of computers that links together individual computers and computer networks

located at academic, commercial, government and military sites worldwide, generally by

ordinary local telephone lines and long-distance transmission facilities. Communications

between computers or individual networks on the Internet are achieved through the use of

standard, nonproprietary protocols.”

The first instance of an abstract network or supernetwork in the context of economic

applications, was due to Quesnay (1758), who depicted the circular flow of funds in an

economy as a network. Cournot (1838) not only seems to have first explicitly stated that a

competitive price is determined by the intersection of supply and demand curves, but had

done so in the context of two spatially separated markets in which the cost of transporting

the good between markets was considered, with a network being implicit. Pigou (1920), in

turn, studied a transportation network consisting of two routes and noted that the “system-

optimized” solution was distinct from the “user-optimized” solution.
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Since Quesnay’s contribution, numerous economic and financial models have been con-

structed over abstract networks. In particular, Dafermos and Nagurney (1985) identified the

isomorphism between transportation network equilibrium problems and spatial price equilib-

rium problems, whose development had been initiated by Enke (1951) and Samuelson (1952)

(who noted the bipartite network structure of the classical spatial price equilibrium problem),

further advanced by Takayama and Judge (1964, 1971), and, subsequently, by Florian and

Los (1982) and Dafermos and Nagurney (1984, 1987). The volumes by Nagurney and Siokos

(1997) and Nagurney (2003) contain many models and applications of financial networks,

along with references. Nagurney (2009a) provides an overview of network economics.

A plethora of abstract networks in economics were modeled and studied in the book by

Nagurney (1999), which also contains extensive references to the subject. In the book on

supernetworks, we have demonstrated that the abstract network concept also captures the

interactions between/among the underlying networks of economies and societies.

Nagurney et al. (2002b) demonstrated how multitiered supply chains with electronic

commerce could be modeled in an integrated network model, using as the foundation the

general supply chain network equilibrium model of Nagurney, Dong and Zhang (2002), which

was formulated as a variational inequality problem. In addition, Nagurney et al. (2002a) de-

veloped a dynamic multilevel supernetwork model which included financial, informational,

and logistical flows using projected dynamical systems. Subsequent supernetwork model-

ing innovations included the integration of electronic transactions with multitiered financial

networks by Nagurney and Ke (2003) as well as the introduction of environmental decision-

making into multitiered complex supply chain networks by Nagurney and Toyasaki (2003).

Moreover, Nagurney, Dong, and Mokhtarian (2002) developed a multicriteria supernetwork

framework for the quantification of commuting versus telecommuting decision-making as

well as shopping versus teleshopping decision-making with multiple decision-makers. Global

issues were modeled in the context of supply chains by Nagurney, Cruz, and Matsypura

(2003) and for financial networks by Nagurney and Cruz (2003).

The term supernetwork has also been used in biology, specifically, in genetics. Noveen,

Hartenstein, and Chuong (1998) noted that interacting genes give rise to a gene network,

with many interacting gene networks giving rise to a gene “supernetwork.” Interestingly,
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supernetworks are getting increased prominence in biology, notably, in ecology, and even in

neuroscience, a topic that we return to in the final section of this paper.

This paper is organized as follows. In Section 2, the fundamental methodologies used

in supernetwork modeling and analysis from both static and dynamic perspectives are re-

viewed. Section 3 describes how supernetwork theory has answered questions posed over

half a century ago in the case of finance and electric power. Section 4 then turns to network

efficiency and performance assessment, and vulnerability analysis, as initiatited by Nagur-

ney and Qiang (2007a-c) and shows how, through the unification of a variety of network

systems through supernetworks, the importance and ranking of network components can be

determined. Section 5 identifies disciplines in which recent breakthroughs have been made

because of the methodological advances related to supernetworks and suggests directions for

future research.

9



2. Fundamental Methodologies

In this Section, for completeness, we review some of the fundamental methodologies

that have been used for the modeling, analysis, and solution of supernetwork problems.

We begin with the theory of variational inequalities and then recall some of the important

results for projected dynamical systems. Since the focus is on a scientific perspective for

supernetworks, it is important to highlight the methodologies that have had the most impact

on supernetwork model formulation, analysis, solution, and application.

In Section 2.1, we discuss the variational inequality problem and in Section 2.2, projected

dynamical systems.

2.1 The Variational Inequality Problem

Variational inequalities were introduced by Hartman and Stampacchia (1966), principally,

for the study of partial differential equation problems drawn from mechanics. That research

focused on infinite-dimensional variational inequalities. An exposition of infinite-dimensional

variational inequalities and references can be found in Kinderlehrer and Stampacchia (1980).

Dafermos (1980) proved that Smith’s (1979) formulation of the transportation network

equilibrium problem satisfied a finite-dimensional variational inequality problem. This con-

nection allowed for the development of more general models and rigorous computational

techniques for transportation network equilibrium problems, spatial price equilibrium prob-

lems, oligopolistic market equilibrium problems, as well as economic and financial equilibrium

problems (see, e.g., Nagurney (1999, 2003, 2006b) and the references therein).

The theory of variational inequalities is especially suitable for the formulation of a wide

range of supernetwork problems, since in such problems there may be several or numerous

decision-makers that interact. Hence, one wishes to model and analyze not only individual

behavior but the complexity of interactions among a spectrum of decision-makers, be they

travelers, consumers, financial decision-makers, supply chain network decision-makers, etc.

Moreover, since many mathematical problems can be formulated as variational inequality

problems, this formulation is particularly convenient since it allows for a unified treatment of

equilibrium problems (governed by distinct equilibrium concepts, including game theoretic
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Figure 1: Geometric Interpretation of VI(F,K)

ones, as in the case of Nash (1950, 1951) equilibria) as well as optimization problems.

In this Section, we assume that the vectors are column vectors, except where noted. We

begin with a fundamental definition.

Definition: The Variational Inequality Problem

The finite - dimensional variational inequality problem, VI(F,K), is to determine a vector

X∗ ∈ K ⊂ Rn, such that

〈F (X∗)T , X −X∗〉 ≥ 0, ∀X ∈ K,

where F is a given continuous function from K to Rn, K is a given closed convex set, and

〈·, ·〉 denotes the inner product in Rn, where Rn in the n-dimensional Euclidean space.

A geometric interpretation of a variational inequality problem is given in Figure 1.

Note that, in the case of network and, hence, supernetwork problems, the underlying

feasible set K will have a network structure.

We now discuss optimization problems, both unconstrained and constrained, and their
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relationships with the variational inequality problem. Proofs of the below theoretical results

for variational inequalities may be found in books by Kinderlehrer and Stampacchia (1980)

and Nagurney (1999). For algorithms for the computation of variational inequalities, see

the books by Bertsekas and Tsitsiklis (1989), Nagurney (1999), Patriksson (1994), Nagurney

and Zhang (1996). The solution of specific supernetwork models may be found in the books

by Nagurney and Dong (2002), Nagurney (2006b), and Nagurney and Qiang (2009).

Relationships to Optimization Problems

Optimization problems consider explicitly an objective function to be minimized (or maxi-

mized), subject to constraints that may consist of both equalities and inequalities. Let f be

a continuously differentiable function where f : K 7→ R. Mathematically, the statement of

an optimization problem is:

Minimize f(X)

subject to:

X ∈ K.

The relationship between an optimization problem and a variational inequality problem

is now given.

Proposition

Let X∗ be a solution to the optimization problem:

Minimize f(X)

subject to: X ∈ K,

where f is continuously differentiable and K is closed and convex. Then X∗ is a solution of

the variational inequality problem:

〈∇f(X∗)T , X −X∗〉 ≥ 0, ∀X ∈ K.

Furthermore, we have the following:
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Proposition

If f(X) is a convex function and X∗ is a solution to VI(∇f,K), then X∗ is a solution to the

above optimization problem.

If the feasible set K = Rn, then the unconstrained optimization problem is also a varia-

tional inequality problem.

On the other hand, in the case where a certain symmetry condition holds, the variational

inequality problem can be reformulated as an optimization problem. In other words, in

the case that the variational inequality formulation of the governing (network) equilibrium

conditions underlying a specific problem is characterized by a function with a symmetric

Jacobian, then the solution of the equilibrium conditions and the solution of a particular

optimization problem are one and the same. We first introduce the following definition and

then note this relationship in a theorem.

Definition

A matrix M(X), whose elements mij(X); i = 1, . . . , n; j = 1, . . . , n, are functions defined

on the set S ⊂ Rn, is said to be positive semidefinite on S if

vT M(X)v ≥ 0, ∀v ∈ Rn, X ∈ S.

It is said to be positive definite on S if

vT M(X)v > 0, ∀v 6= 0, v ∈ Rn, X ∈ S.

It is said to be strongly positive definite on S if

vT M(X)v ≥ α‖v‖2, for some α > 0, ∀v ∈ Rn, X ∈ S.

Note that if γ(X) is the smallest eigenvalue, which is necessarily real, of the symmetric

part of M(X), that is, 1
2

[
M(X) + M(X)T

]
, then it follows that (i). M(X) is positive

semidefinite on S if and only if γ(X) ≥ 0, for all X ∈ S; (ii). M(X) is positive definite on

S if and only if γ(X) > 0, for all X ∈ S; and (iii). M(X) is strongly positive definite on S

if and only if γ(X) ≥ α > 0, for all X ∈ S.
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Theorem

Assume that F (X) is continuously differentiable on K and that the Jacobian matrix

∇F (X) =


∂F1

∂X1
· · · ∂F1

∂Xn
...

...
∂Fn

∂X1
· · · ∂Fn

∂Xn


is symmetric and positive semidefinite. Then there is a real-valued convex function f : K 7→
R1 satisfying

∇f(X) = F (X)

with X∗ the solution of VI(F,K) also being the solution of the mathematical programming

problem:

Minimize f(X)

subject to: X ∈ K.

Hence, although the variational inequality problem encompasses the optimization prob-

lem, a variational inequality problem can be reformulated as a convex optimization problem,

only when the symmetry condition and the positive semidefiniteness condition hold.

The variational inequality is the more general problem in that it can also handle a func-

tion F (X) with an asymmetric Jacobian. Historically, many equilibrium problems were

reformulated as optimization problems, under precisely such a symmetry assumption, in-

cluding, originally, spatial price equilibrium problems as well as transportation network

equilibrium problems and certain game theoretic problems. The assumption, however, in

terms of applications was restrictive and precluded the more realistic modeling of multi-

ple commodities, multiple modes and/or classes in competition. In addition, the objective

function that resulted was sometimes artificial, without a clear economic interpretation, and

simply a mathematical device. because of variational inequality theory, we no longer need to

impose restrictive symmetry assumptions and, hence, can capture asymmetric interactions

of decision-makers on complex networks.

Variational inequality theory is also a powerful tool for the qualitative analysis of solu-

tions, notably, for obtaining existence and uniqueness results. For stability and sensitivity
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analysis of variational inequalities, including applications, see Nagurney (1999), and the

references therein.

Existence of a solution to a variational inequality problem follows from continuity of the

function F entering the variational inequality, provided that the feasible set K is compact,

as stated in the following theorem.

Theorem

If K is a compact (closed and bounded) convex set and F (X) is continuous on K, then the

variational inequality problem admits at least one solution X∗.

In the case of an unbounded feasible set K, this Theorem is no longer applicable; the

existence of a solution to a variational inequality problem can, nevertheless, be established

under the subsequent condition.

Let BR(0) denote a closed ball with radius R centered at 0 and let KR = K∩BR(0). KR

is then bounded. By VIR is denoted then the variational inequality problem:

Determine X∗
R ∈ KR, such that

〈F (X∗
R)T , y −X∗

R〉 ≥ 0, ∀y ∈ KR.

We now state

Theorem

VI(F,K) admits a solution if and only if there exists an R > 0 and a solution of V IR, X∗
R,

such that ‖X∗
R‖ < R.

Although ‖X∗
R‖ < R may be difficult to check, one may be able to identify an appropriate

R based on the particular application.

Existence of a solution to a variational inequality problem may also be established under

a coercivity condition.

Qualitative properties of existence and uniqueness become easily obtainable under certain

monotonicity conditions. First we outline the definitions and then present the results.
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Definition: Monotonicity

F (X) is monotone on K if

〈(F (X1)− F (X2))
T
, X1 −X2〉 ≥ 0, ∀X1, X2 ∈ K.

Definition: Strict Monotonicity

F (X) is strictly monotone on K if

〈(F (X1)− F (X2))
T
, X1 −X2〉 > 0, ∀X1, X2 ∈ K, X1 6= X2.

Definition: Strong Monotonicity

F (X) is strongly monotone if for some α > 0

〈(F (X1)− F (X2))
T
, X1 −X2〉 ≥ α‖X1 −X2‖2

, ∀X1, X2 ∈ K.

Definition: Lipschitz Continuous

F (X) is Lipschitz continous if there exists an L > 0, such that

‖F (X1)− F (X2)‖ ≤ L‖X1 −X2‖, ∀X1, X2 ∈ K.

A uniqueness result is presented in the subsequent theorem.

Theorem

Suppose that F (X) is strictly monotone on K. Then the solution is unique, if one exists.

Monotonicity is closely related to positive definiteness.
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Theorem

Suppose that F (X) is continuously differentiable on K and the Jacobian matrix

∇F (X) =


∂F1

∂X1
· · · ∂F1

∂Xn
...

...
∂Fn

∂X1
· · · ∂Fn

∂Xn

 ,

which need not be symmetric, is positive semidefinite (positive definite). Then F (X) is

monotone (strictly monotone).

Proposition

Assume that F (X) is continuously differentiable on K and that ∇F (X) is strongly positive

definite. Then F (X) is strongly monotone.

The following theorem provides a condition under which both existence and uniqueness

of the solution to the variational inequality problem are guaranteed. Here no assumption on

the compactness of the feasible set K is made.

Theorem

Assume that F (X) is strongly monotone. Then there exists precisely one solution X∗ to

VI(F,K).

Hence, in the case of an unbounded feasible set K, strong monotonicity of the function

F guarantees both existence and uniqueness. If K is compact, then existence is guaranteed

if F is continuous, and only the strict monotonicity condition needs to hold for uniqueness

to be guaranteed.

In the case of supernetwork problems in which the demands are fixed, one would have a

compact feasible set and, therefore, existence would be guaranteed under the sole assumption

that the function F that enters the corresponding variational inequality would be continuous.

Uniqueness of a solution then, in turn, would be guaranteed if the F was strictly monotone.

On the other hand, as would arise in the case of elastic demand problems, in which, for

example, the demand price function or the demand functions are known, the feasible set

may no longer be compact and, hence, strong monotonicity of F would guarantee both
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existence of a solution as well as uniqueness. Of course, other conditions (as noted above)

may also be relevant and guarantee existence of a solution.

Another important definition is given below.

Definition: Norm Projection

Let K be a closed convex set in RN . Then for each X ∈ RN , there is a unique point y ∈ K,

such that:

‖X − y‖ ≤ ‖X − z‖, ∀z ∈ K,

and y is known as the orthogonal projection of X on the set K with respect to the Euclidean

norm, that is:

y = PKX = arg min
z∈K

‖X − z‖.

Specifically, one of the most effective algorithms for the solution of variational inequality

problems is the projection method as well as the modified projection method.

We now provide an illustration of how variational inequality theory was utilized to estab-

lish that multitiered supply chain network equilibrium problems could be transformed into

transportation network equilibrium problems through a supernetwork construction. Specifi-

cally, Nagurney (2006a) proved that supply chain network equilibrium problems (cf. Figure

2) originated by Nagurney, Dong, and Zhang (2002), and consisting of m manufacturers, n

retailers, and o consumers at demand markets, each with his own explicit behavior, could be

refomulated as transportation network equilibrium problems on a supernetwork, as depicted

in Figure 3. The latter consists of a single origin node 0 and as many demand nodes as there

are demand markets in the supply chain. The representative functions are then mapped onto

the links of the supernetwork and the conservation of flow equations are satisfied as well.

The formulation of supply chain network equilibrium problems as supernetworks provides

an alternative interpretation of the governing equilibrium conditions and also enables the

application of numerous algorithms that have been developed for transportation network

equilibrium problems (see Patriksson (1994) and Nagurney (1999)).
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The world is, nevertheless, dynamic, and some of the most challenging problems that we

are faced with are dynamic in nature. Ideed, we are in an era of complex dynamical network

systems or complex dynamic supernetworks. Finite-dimensional variational inequality theory

by itself, provides no framework for the study of the dynamics of competitive systems.

Rather, it captures the system at its equilibrium state and, hence, the focus of this tool is

static in nature.

Dupuis and Nagurney (1993) established that, given a variational inequality problem,

there is a naturally associated dynamical system, the stationary points of which correspond

precisely to the solutions of the variational inequality problem. This association was first

noted by Dupuis and Ishii (1991). This dynamical system, named a projected dynamical sys-

tem by Zhang and Nagurney (1995), is non-classical, in that its right-hand side, which is a

projection operator, is discontinuous. The discontinuities arise because of the constraints un-

derlying the variational inequality problem modeling the application in question. Therefore,

classical dynamical systems theory is no longer applicable (cf. Hartman (1964)).

Here we recall some results in projected dynamical systems theory (cf. Nagurney and

Zhang (1996)). Projected dynamical systems theory, however, goes further than finite-

dimensional variational inequality theory in that it extends the static study of equilibrium

states by introducing an additional time dimension in order to allow for the analysis of

disequilibrium behavior that precedes the equilibrium. Moreover, it has been used, to-date,

to capture the underlying dynamics os supernetworks from complex supply chain networks

to financial networks as well as the integration of social networks with financial networks

as well as supply chain networks (cf. Wakolbinger and Nagurney (2004), Cruz, Nagurney,

and Wakolbinger (2006), and Nagurney, Wakolbinger, and Zhao (2006)). New models and

applications are regularly being developed using this methodology.

In particular, we associate with a given variational inequality problem a projected dy-

namical system. The projected dynamical system is appropriate both as a dynamical model

for the system whose equilibrium behavior is described by the variational inequality, and,

also, because its set of stationary points coincides with the set of solutions to a variational

inequality problem. In this framework, the feasibility constraints in the variational inequal-

ity problem correspond to discontinuities in the right-hand side of the differential equation,
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which is a projection operator.

Below we provide some important theoretical results. For additional qualitative results,

in particular, stability analysis results, see Nagurney and Zhang (1996). For a discussion

of the general iterative scheme and proof of convergence, see Dupuis and Nagurney (1993).

For applications to dynamic spatial price equilibrium problems, oligopolistic market equilib-

rium problems, and transportation network equilibrium problems, see Zhang and Nagurney

(1995) and Nagurney and Zhang (1996), and the references therein. For a focus on network

economics, see Nagurney (2009). For extensions of these results to infinite-dimensional pro-

jected dynamical systems and evolutionary variational inequalities, see Cojocaru, Daniele,

and Nagurney (2005, 2006) and the books by Daniele (2006) and Nagurney (2006b).

2.2 The Projected Dynamical System

Finite-dimensional variational inequality theory provides no framework for studying the un-

derlying dynamics of systems, since it considers only equilibrium solutions in its formulation.

Hence, in a sense, it provides a static representation of a system at its “steady state.” One

would, therefore, like a theoretical framework that allows for the study of a system not only

at its equilibrium point, but also in a dynamical setting.

The definition of a projected dynamical system (PDS) is given with respect to a closed

convex set K, which is usually the constraint set underlying a particular application, such as,

for example, supernetwork equilibrium problems, and a vector field F whose domain contains

K. Such projected dynamical systems provide mathematically convenient approximations to

more “realistic” dynamical models that might be used to describe non-static behavior. The

relationship between a projected dynamical system and its associated variational inequality

problem with the same constraint set is then highlighted. We also, for self-containment,

recall the fundamental properties of existence and uniqueness of the solution to the ordinary

differential equation (ODE) that defines such a projected dynamical system.

Let K ⊂ Rn be closed and convex. Denote the boundary and interior of K, respectively,

by ∂K and K0. Given X ∈ ∂K, define the set of inward normals to K at X by

N(X) = {γ : ‖γ‖ = 1, and 〈γT , X − y〉 ≤ 0, ∀y ∈ K}.
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We define N(X) to be {γ : ‖γ‖ = 1} for X in the interior of K.

When K is a convex polyhedron (for example, when K consists of linear constraints), K
takes the form ∩Z

i=1Ki, where each Ki is a closed half-space with inward normal Ni. Let PK be

the norm projection. Then PK projects onto K “along N ,” in that if y ∈ K, then P (y) = y,

and if y 6∈ K, then P (y) ∈ ∂K, and P (y)− y = αγ for some α > 0 and γ ∈ N(P (y)).

Definition

Given X ∈ K and v ∈ Rn, define the projection of the vector v at X (with respect to K) by

ΠK(X, v) = lim
δ→0

(PK(X + δv)−X)

δ
.

The class of ordinary differential equations that are of interest here take the following

form:

Ẋ = ΠK(X,−F (X)),

where K is a closed convex set, corresponding to the constraint set in a particular application,

and F (X) is a vector field defined on K.

A classical dynamical system, in contrast, is of the form

Ẋ = −F (X).

We have the following results (cf. Dupuis and Nagurney (1993)):

(i). If X ∈ K0, then

ΠK(X,−F (X)) = −F (X).

(ii). If X ∈ ∂K, then

ΠK(X,−F (X)) = −F (X) + β(X)N∗(X),

where

N∗(X) = arg max
N∈N(X)

〈(−F (X))T ,−N〉,
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and

β(X) = max{0, 〈(−F (X))T ,−N∗(X)〉}.

Since the right-hand side of the ordinary differential equation is associated with a projec-

tion operator, it is discontinuous on the boundary of K. Therefore, one needs to explicitly

state what is meant by a solution to an ODE with a discontinuous right-hand side.

Definition

We say that the function X : [0,∞) 7→ K is a solution to the equation Ẋ=ΠK(X,−F (X))

if X(·) is absolutely continuous and Ẋ(t) = ΠK(X(t),−F (X(t))), save on a set of Lebesgue

measure zero.

In order to distinguish between the pertinent ODEs from the classical ODEs with con-

tinuous right-hand sides, we refer to the above as ODE(F,K).

Definition: An Initial Value Problem

For any X0 ∈ K as an initial value, we associate with ODE(F,K) an initial value problem,

IVP(F,K, X0), defined as:

Ẋ = ΠK(X,−F (X)), X(0) = X0.

Note that if there is a solution φX0(t) to the initial value problem IVP(F,K, X0), with

φX0(0) = X0 ∈ K, then φX0(t) always stays in the constraint set K for t ≥ 0.

We now present the definition of a projected dynamical system, governed by such an

ODE(F,K), which, correspondingly, will be denoted by PDS(F,K).

Definition: The Projected Dynamical System

Define the projected dynamical system

PDS (F,K) as the map Φ : K×R 7→ K where

Φ(X, t) = φX(t)
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Figure 4: A Trajectory of a PDS that Evolves both on the Interior and on the Boundary of
the Constraint Set K

solves the IVP(F,K, X), that is,

φ̇X(t) = ΠK(φX(t),−F (φX(t))), φX(0) = X.

The behavior of the dynamical system is now described. Please refer to Figure 4 for an

illustration of this behavior. If X(t) ∈ K0, then the evolution of the solution is directly

given in terms of F : Ẋ = −F (X). However, if the vector field −F drives X to ∂K (that is,

for some t one has X(t) ∈ ∂K and −F (X(t)) points “out” of K) the right-hand side of the

ODE becomes the projection of −F onto ∂K. The solution to the ODE then evolves along

a “section” of ∂K, e. g., ∂Ki for some i. At a later time the solution may re-enter K0, or

it may enter a lower dimensional part of ∂K, e.g., ∂Ki ∩ ∂Kj. Depending on the particular

vector field F , it may then evolve within the set ∂Ki ∩ ∂Kj, re-enter ∂Ki, enter ∂Kj, etc.

We now define a stationary or an equilibrium point. For further details, see Nagurney

and Zhang (1996).

24



Definition: A Stationary Point or an Equilibrium Point

The vector X∗ ∈ K is a stationary point or an equilibrium point of the projected dynamical

system PDS(F,K) if

0 = ΠK(X∗,−F (X∗)).

In other words, we say that X∗ is a stationary point or an equilibrium point if, once the

projected dynamical system is at X∗, it will remain at X∗ for all future times.

From the definition it is clear that X∗ is an equilibrium point of the projected dynamical

system PDS(F,K) if the vector field F vanishes at X∗. The contrary, however, is only true

when X∗ is an interior point of the constraint set K. Indeed, when X∗ lies on the boundary

of K, we may have F (X∗) 6= 0.

Note that for classical dynamical systems, the necessary and sufficient condition for an

equilibrium point is that the vector field vanish at that point, that is, that 0 = −F (X∗).

The following theorem, due to Dupuis and Nagurney (1993), states a basic connection be-

tween the static world of finite-dimensional variational inequality problems and the dynamic

world of projected dynamical systems.

Theorem

Assume that K is a convex polyhedron. Then the equilibrium points of the PDS(F,K) coincide

with the solutions of VI(F,K). Hence, for X∗ ∈ K and satisfying

0 = ΠK(X∗,−F (X∗))

also satisfies

〈F (X∗)T , X −X∗〉 ≥ 0, ∀X ∈ K.

This Theorem establishes the equivalence between the set of equilibria of a projected

dynamical system and the set of solutions of a variational inequality problem. Moreover, it

provides a natural underlying dynamics (out of equilibrium) of such systems.
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Before recalling the fundamental theorem of projected dynamical systems, we introduce

the following assumption needed for the theorem.

Assumption: Linear Growth Condition: There exists a B < ∞ such that the vector

field −F : Rn 7→ Rn satisfies the linear growth condition: ‖F (X)‖ ≤ B(1+‖X‖) for X ∈ K,

and also

〈(−F (X) + F (y))T , X − y〉 ≤ B‖X − y‖2, ∀X, y ∈ K.

Theorem: Existence, Uniqueness, and Continuous Dependence Assume that the

linear growth condition holds. Then

(i). For any X0 ∈ K, there exists a unique solution X0(t) to the initial value problem;

(ii). If Xk → X0 as k →∞, then Xk(t) converges to X0(t) uniformly on every compact set

of [0,∞).

The second statement of this Theorem is sometimes called the continuous dependence

of the solution path to ODE(F,K) on the initial value. By virtue of the Theorem, the

PDS(F,K) is well-defined and inhabits K whenever the Assumption holds.

Lipschitz continuity is a condition that plays an important role in the study of variational

inequality problems. It also is a critical concept in the classical study of dynamical systems.

Lipschitz continuity implies the Assumption and is, therefore, a sufficient condition for

the fundamental properties of projected dynamical systems stated in the Theorem.

Cruz, Nagurney, and Wakolbinger (2006) developed a projected dynamical systems model

of a supernetwork consisting of a social network and a global supply chain network (see Figure

5). They modeled the dynamic evolution of the product flows between tiers of the supply

chain network as well as that of the relationship levels. They applied the Euler method,

which is induced by the general iterative scheme of Dupuis and Nagurney (1993), in order

to track the dynamic trajectories of both the product flows and the relationship levels in

discrete time.

26



Social Network

m1 m· · · j · · · mJ

Flows are
Relationship Levelsm11 · · · mil · · · mIL

m111 m· · · khl̂ · · · mKHL

?

@
@

@
@R

H
H

H
H

H
H

HHj

�
�

�
�	 ?

@
@

@
@R

�����������)

�
�

�
�

�
�

���

�
�

�
�	

?

@
@

@
@R

PPPPPPPPPPPq

�
�

�
�	 ?

HHHH
HHHHj

����
�����

�
�

�
�	

@
@

@
@R

· · · · · · · · ·

?

'

&

$

%
The Supernetwork

Global Supply Chain
Network

m1 m· · · j · · · mJ

Flows are
Product Transactionsm11 m· · · il · · · mIL

m111 m· · · khl̂ · · · mKHL

· · · · · · · · ·

??

�
�

�
�	

�
�

�
�

�
�

���

@
@

@
@R?

�
�

�
�	

PPPPPPPPPPPq

H
H

H
H

H
H

HHj

@
@

@
@R

?

�
�

�
�	

�����������)

@
@

@
@R?

�
�

�
�

�
�

���

H
H

H
H

H
H

HHj

@
@

@
@R

�
�

�
�	

Figure 5: The Multilevel Supernetwork Structure of the Integrated Global Supply Chain
Network / Social Network System

3. Supernetwork Theory Yields Answers to Questions Raised Years Ago

A theory is only as powerful as its ability to explain, to illuminate, and to answer ques-

tions.

In 1952, Copeland raised the question of how does money flow and wondered whether it

flows like water or electricity.

In 2007, Liu and Nagurney established that multitiered financial networks, as introduced

by Nagurney and Ke (2003), and depicted in Figure 6, could be transformed into trans-

portation networks over appropriately constructed supernetworks, as displayed in Figure

7.

In 1956, Beckmann, McGuire, and Winsten hypothesized in their classical book, Studies

in the Economics of Transportation, that electric power generation and distribution networks

could be modeled as transportation networks. In 2005, Nagurney and Liu (see also Nagurney

et al. (2007)) proved, using supernetworks, that it was, indeed, possible, yielding new insights
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Figure 6: The Structure of the Financial Network with Intermediation and with Electronic
Transactions

into the behavior of complex networks as well as the commonality of their structure. Please

refer to Figures 8 and 9.

These theoretical results enabled Liu and Nagurney (2009) to model and solve an inte-

grated electric power supply chain and fuel market network for New England, using varia-

tional inequalities. They used real data for 82 power generators, who own and operate 573

power plants, with 5 different fuels, and 10 regions, and utilized hourly demand price data

for the entire month of July 2006. The computational results well-reproduced the true price

data, showing both the theoretical and empirical validity of the modeling and computational

approach.

Hence, through the use of supernetworks, we were able to show that both money, as well

as electricity, flow like transportation flows, answering, thus, questions posed more than a

half a century earlier! The full model descriptions and proofs can be found in the above

cited papers.
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By developing supernetwork representations, we enable not only alternative interpreta-

tion of the governing equilibrium conditions, but also can avail ourselves of a plethora of

algorithms that have been developed for the solution of transportation network equilibrium

problems. In addition, such connections have yielded not only new, dynamic models but

also allowed for large-scale empirical modeling and applications.

In Nagurney et al. (2007), the supernetwork model for electric power supply chains was

then utilized to develop an evolutionary, that is, time-dependent (and infinite-dimensional)

variational inequality model to demonstrate the evolution of electric power flows as the

demand varied. It is important to note that evolutionary variational inequalities were also

utilized to develop a dynamic model of the Internet by Nagurney, Parkes, and Daniele (2007)

and to formulate the time-dependent Braess paradox (see also Pas and Principio (1997)).
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4. Network Efficiency / Performance Assessment and Vulnerability Analysis

The topic of complex networks, as a body of research and practice, has attracted re-

searchers and practitioners from different disciplines from operations research / management

science, computer science, and engineering, sociology, and more recently, from physics and

even biology (cf. Nagurney and Dong (2002), Roughgarden (2005), and Newman, Barabási,

and Watts (2006)). This is due not only to the wide applications but also, in part, to a

spectrum of catastrophic events such as 9/11, the North American electric power blackout

in 2003, Hurricane Katrina in 2005, the Minneapolis bridge collapse in 2007, the Mediter-

ranean cable disruption in 2008, Cyclone Nargis and the Sichuan Earthquake in China in

2008, the H1N1 pandemic in 2009, the earthquakes in Haiti and Chile in 2010, and the triple

earthquake / tsunami / nuclear disaster in Japan in 2011, among others, all of which have

drawn great attention to network vulnerability and fragility (cf. Nagurney, Yu, and Qiang

(2009) and Nagurney and Qiang (2009, 2011)).

As noted in the Introduction, the number of disasters is increasing globally, as well as

the number of people affected by disasters, posing new challenges for emergency and dis-
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aster preparedness and for the critical network infrastructure itself from transportation to

telecommunications. For example, between 2000 and 2004 the average annual number of

disasters was 55% higher than in the period 1994 through 1999, with 33% more humans af-

fected in the former period than in the latter (cf. Balcik and Beamon (2008) and Nagurney

and Qiang (2009)). The International Strategy for Disaster Reduction (2006) determined

that approximately 150 million people required assistance, because of disasters, in 2005, with

157 million requiring assistance in 2006.

Nagurney and Qiang (2009, 2011) noted that the recent theories of scale-free and small-

world networks in complex network research have enhanced our understanding of some of

the behavior and the vulnerability of specific real-world networks (see Amaral et al. (2000),

Chassin and Posse (2005), and Holmgren (2007)). However, most network vulnerability

studies have concentrated on the topological characteristics of networks, such as the connec-

tivity or the shortest path length of the network (see, e.g., Callaway et al. (2000) and the

references therein). Although the topological structure of a network provides information

regarding network vulnerability, the flow on a network is also an important indicator, as are

the operational and economic aspects, such as the flow-induced costs, and the behavior of

users both prior and post any disruptions. Barabási (2003) emphasized that: “To achieve

that [understanding of complexity] we must move beyond structure and topology and start

focusing on the dynamics that take place along the links. Networks are only skeletons of

complexity, the highways for various processes that make our world hum.”

Latora and Marchiori (2001, 2002, 2004) proposed a network efficiency measure that

exhibited advantages over several existing network measures and applied their measure to

study the (MBTA) Boston subway network and the Internet. Their measure, however,

considers only geodesic information and does not capture information contained in network

flows, the associated costs, and users’ behavior, be it according to centralized or decentralized

decision-making principles.

Clearly, complex networks are not simply “graphs” in which nodes are connected by links

(whether directed or undirected, as is relatively common in social network analysis). It is

not just the roads, telecommunication links, transmission lines, etc., that matter but also

the behavior of the decision-makers, coupled with the induced flows, the incurred costs (and
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prices or disutilities) as they cooperate or compete over time.

Supernetwork theory allows us to apply consistent network efficiency performance mea-

sures to identify the importance and ranking of network components, whether nodes, links,

or combinations thereof. Such metrics are critically important, in that one can assess which

network components should be prioritized for maintenance (or reconstruction and recovery)

for both emergency preparedness and disaster recovery purposes.

Nagurney and Qiang (2007a-c, 2008a) introduced a consistent network efficiency / per-

formance measure and importance indicator to incorporate such important network char-

acteristics as decision-making induced flows and costs in order to quantify the importance

of network components in network systems, ranging from congested urban transportation

networks to electric power supply chains and financial networks. This network measure

has significant advantages and captures the reality of networks today in that it captures

congestion. In addition, the measure can handle both fixed and elastic demand network

problems (cf. Qiang and Nagurney (2008) and Nagurney and Qiang (2008a)) plus time-

dependent, dynamic networks (see Nagurney, Parkes, and Daniele (2007) and Nagurney and

Qiang (2008c)). The topic of centrality of nodes (and that of links or “edges”) in a network

is a major issue in network characterization (cf. Barrat et al. (2004)) with contributors

from sociology (cf. Freeman (1979), Bonacich (1972), and Freeman, Borgatti, and White

(1991)) as well as physics (see Newman (2004), Barrat, Barthélémy, and Vespignani (2005),

and Dall’Asta et al. (2006)). The behavior of decision-makers, and the readjustment after

nodal or link removal, is not captured in their centrality measures, but it is in ours.

4.1 A Unified Network Performance Measure

Before we recall the unified network performance measure of Qiang and Nagurney (2008)

(see also Nagurney and Qiang (2007a-c), (2008a-c)) we review an important property that

such a measure should have.

Network Performance Property:

The performance/efficiency measure for a given network should be nonincreasing with respect

to the equilibrium disutility for each O/D pair, holding the equilibrium disutilities for the
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other O/D pairs constant.

This performance measure is for network operations under decentralized decision-making

behavior, such as congested urban transportation networks, the Internet, certain supply

chains and financial networks, as well as electric power generation and distribution net-

works. Hence, the overarching modeling paradigm,and the fundamental network model is

that of the transportation network equilibrium model (with either fixed or elastic demands)

(cf. Dafermos (1980, 1982)) with the underlying behavioral principle being that of user-

optimization (as opposed to system-optimization). The full description of the methodology

can be found in Nagurney and Qiang (2009, 2011) and the references therein (where we also

address robustness and provide measures based on system-optimizing behavior). Here we

note some of the highlights from an extensive body of research.

Given this property of a network performance measure, the unified network performance

measure is as below.

Definition: A Unified Network Performance Measure

The network performance/efficiency measure, E(G, d), for a given network topology G and

the equilibrium (or fixed) demand vector d, is:

E = E(G, d) =

∑
w∈W

dw

λw

nW

, (10)

where recall that nW is the number of O/D pairs in the network, and dw and λw denote, for

simplicity, the equilibrium (or fixed) demand and the equilibrium disutility for O/D pair w,

respectively.

In applying E , it is important to note that the elimination of a link is treated by removing

that link from the network while the removal of a node is managed by removing the links

entering and exiting that node. If the removal results in no path connecting an O/D pair,

we just assign the demand for that O/D pair (either fixed or elastic) to an abstract path at

a cost of infinity.

As established in Qiang and Nagurney (2008), under certain assumptions, the unified

measure collapses to the Latora and Marchiori (2001) measure, which, however, considers
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neither explicit demands nor flows and is as follows:

Definition: The Latora and Marchiori Measure

Let n be the number of nodes in G. Then the Latora and Marchiori network efficiency

measure E is:

E = E(G) =
1

n(n− 1)

∑
i6=j∈G

1

dij

, (11)

where dij is the shortest path length (geodesic distance) between nodes i and j.

Theorem

If positive demands exist for all pairs of nodes in the network G, and each of these demands

is equal to 1 and if dij is set equal to λw, where w = (i, j), for all w ∈ W then the proposed

network efficiency measure E and the E measure are one and the same.

The proof of the above theorem assumes that dij is equal to the corresponding λw, which

is not unreasonable. The E measure, however, is more general since it captures the flows on

networks and their reallocation, in the case of disruptions, through the demands, disutilities,

and costs.

As discussed in Nagurney and Qiang (2009), for a network with fixed demands, it is easy

to verify that the unified measure E is well-defined. In a network with elastic demands, when

there is a disconnected O/D pair w, we have, from the above discussion, that the associated

“path cost” of the abstract path, say, r, Cr(x
∗), is equal to infinity. If the disutility functions

are known, according to the equilibrium conditions, we then have that Cr(x
∗) > λw(d∗),

and, hence, x∗r = 0, so that d∗w = 0, which leads to the conclusion of d∗w/λw = 0. Therefore,

the disconnected O/D pair w makes zero “contribution” to the efficiency measure and E is

well-defined in both the fixed and elastic demand cases. We can expect a network to get

disconnected in the case of disasters and, consequently, our measure has the essential feature

that it is well-defined even in such situations.

The unified measure E has the following interpretation in the case of transportation

networks. The equilibrium O/D pair disutility, λw, is proportional to the (travel) time

between each O/D pair w. dw is the equilibrium demand (in terms of total vehicles) between
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each O/D pair w. Therefore, dw/λw is the (vehicle) throughput between O/D pair w. E(G, d)

is the average (vehicle) throughput on the network G with demand vector d. The higher the

throughput that a network has, the better its performance and the more efficient it is. For

general networks, E is actually the average demand to price ratio. When G and d are fixed,

a network is more efficient if it can satisfy a higher demand at a lower price.

4.2 The Importance of Network Components

With the network performance/efficiency measure, we can quantifiably determine the im-

portance of network components by studying their impact on the network efficiency through

their removal. The network efficiency can be expected to deteriorate when a critical network

component is eliminated from the network. We expect that the removal of a critical network

component will cause greater impact than that of a trivial one. The importance of a network

component is defined, following Qiang and Nagurney (2008), as follows.

Definition: Importance of a Network Component

The importance of a network component g ∈ G, I(g), is measured by the relative network

efficiency drop after g is removed from the network:

I(g) =
4E
E

=
E(G, d)− E(G − g, d)

E(G, d)
(12)

where G − g is the resulting network after component g is removed from network G.

The upper bound of the importance of a network component is 1. The higher the value,

the more important a network component is.

It is important to also recognize that the Nagurney and Qiang measure has been applied

in practice. Indeed, as noted in Nagurney and Qiang (2011), it has been applied by Schulz

(2007) to evaluate highways in Germany and found to outperform several existing measures.

The above importance indicator can also be used to evaluate additions to a network in terms

of the improvement of a network’s efficiency / performance. Walsh (2009) applied E to

determine how efficient the proposed North Dublin metro would be.

Also, this measure has been adapted to evaluate the performance of supply chains as

well as financial networks (see Nagurney and Qiang (2008b)). In addition, it has generated
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extensions to assess supply chain networks under risk and uncertainty (cf. Nagurney and

Qiang (2009, 2011) and the references therein).

This research has now turned to network design issues with the full recognition that

different applications may require different performance measures to capture the relevant

objectives. For example, supply chain network design that captures both capacity expansion

(or link construction) as well as operational issues was initiated by Nagurney (2010a) who

used a system-optimization for network design and redesign. Extensions have included the

inclusion of competition in an oligopolistic framework by Nagurney (2010b) as well as the

inclusion of uncertainty and risk by Nagurney, Yu, and Qiang (2011) as in the case of critical

needs products that would be vital in the case of emergencies and disasters. In addition,

multiproduct supply chain network design models have been developed by Nagurney, Yu,

and Qiang (2010) with a focus on healthcare. It is important to note that the behavior of

users must be captured in network design since as first demonstrated by Braess (1968), the

addition of a new road to a network, under travelers’ use-optimizing behavior, may make all

travelers worse off in terms of travel cost / time!

Network design may also be accomplished through the merging of networks, as can occur

in the case of mergers and acquisitions (cf. Nagurney (2009b)). In such settings multicriteria

decision-making may play an important role and should be part of the synergy measures, as

done by Nagurney and Woolley (2010) who included environmental issues to assess synergy

(in addition to cost) in the context of mergers and acquisitions. More recently, Liu and

Nagurney (2011) showed how risk can also be quantified, in a supernetwork framework, to

assess a priori the possible synergy of mergers and acquisitions.

The supernetwork approach has also been applied to assess the potential teaming of

organizations for humanitarian logistics by Nagurney and Qiang (2009). A bi-criteria metric

to assess supply chain network performance for critical needs products under capacity and

demand disruptions was recently developed by Qiang and Nagurney (2010).

Recent novel applications have also been studied in the fashion and apparel industries

where multicriteria decision-making with especial emphasis on time issues as well as compe-

tition is very relevant (see Nagurney and Yu (2010, 2011).
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5. Some Other Successes and Suggestions for Future Research

Methodologies that break down boundaries between disciplines are especially valued in

science. Some notable recent successes have included the use of networks and variational

inequality theory to model complex food webs, using what the authors, Mullon, Shin, and

Cury (2009), deemed to be a network economics approach of Nagurney (1999). In such

ecological predator-prey networks, which may have a bipartite structure, may even express

cannibalism, depending on the species, or be quite complex and large-scale, as in the case

of ocean fisheries, the flows are biomass flows and the individual species are represented as

nodes. Directed links then capture the prey-predator relationships. Nagurney and Nagur-

ney (2011a) were able to demonstrate that the bipartite predator-prey networks actually

correspond to “classical” spatial price equilibrium problems, well-known in economics and

regional science. Nagurney and Nagurney (2011b) then developed a projected dynamical

systems model of multitiered predator-prey networks and proved, using supernetworks, that

they are identical to multitiered supply chain network problems (see also Figure 2) both

in equilibrium (and disequilibrium). Hence, ecological predator-prey networks are truly na-

ture’s supply chains. This research helps to bridge the disciplines of economics and ecology

as well as operations research / management science.

Fascinatingly, projected dynamical systems theory is now being utilized in neuroscience

to model the brain, one of the most complex networks in existence, and is also being applied

to robotics (see Girard et al. (2008)).

Finally, we note that projected dynamical systems theory of Dupuis and Nagurney (1993)

and Nagurney and Zhang (1996) and the references therein has now become a powerful

methodology in economics for evolutionary game theory and evolutionary dynamics (see

Sandholm (2005, 2011)).

It is the era of supernetworks, complex dynamical systems, and risk. Research in the

future will break down additional barriers between disciplines and, it is expected, will unveil

new frontiers in risk modeling and dynamic network systems. Clearly, supernetwork theory

will also advance and will play an important role in helping to explain the complexity and

the interconnectedness of the world around us.
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Dall’Asta, L., Barrat, A., Barthélemy, M., and Vespignani, A. (2006), “Vulnerability of

weighted networks,” Journal of Statistical Mechanics, Article no. P04006.

Daniele, P. (2006), Dynamic Networks and Variational Inequalities , Edward Elgar Publish-

ing, Cheltenham, England.

Denning, P. J. (1985), “The science of computing: Supernetworks,” American Scientist 73,

127-129.

Dupuis, P., and Ishii, H. (1991), “On Lipschitz continuity of the solution mapping to the

Skorokhod Problem, with applications,” Stochastics and Stochastic Reports 35, 31-62.

41



Dupuis, P., and Nagurney, A. (1993), “Dynamical systems and variational inequalities,”

Annals of Operations Research 44, 9-42.

Enke, S. (1951), “Equilibrium among spatially separated markets: solution by electronic

analogue,” Econometrica 10, 40-47.

Fallows, J. (1996), “The java theory,” The Atlantic Online, The Atlantic Monthly/Digital

Edition; http://www2.theatlantic.com/issues/96mar/java/java.htm

Florian, M., and Los, M. (1982), “A new look at static spatial price equilibrium models,”

Regional Science and Urban Economics 12, 579-597.

Freeman, L. C. (1979), “Centrality in social networks: Conceptual clarification,” Social

Networks 1, 215-239.

Freeman, L. C., Borgatti, S. P., and White, D. R. (1991), “Centrality in valued graphs: A

measure of betweenness based on network flow, Social Networks 13, 141-154.

Girard, B., Tabareau, N., Pham, Q. C., Berthoz, A., and Slotine, J.-J. (2008), “Where

neuroscience and dynamic system theory meet autonomous robotics: A contracting basal

ganglia model for action selection,” Neural Networks 21, 628-641.

Hartman, P. (1964), Ordinary Differential Equations, John Wiley & Sons, New York, New

York.

Hartman, P., and Stampacchia, G. (1966), “On some nonlinear elliptic differential functional

equations,” Acta Mathematica 115, 271-310.

Holmgren, A. J. (2007), “A framework for vulnerability assessment of electric power sys-

tems,” in Reliability and Vulnerability in Critical Infrastructure: A Quantitative Geographic

Perspective, Murray, A., and Grubesic, T., Editors, Springer, New York, pp. 31-55.

Illinois State Bar Association (1997), Advisory opinion on professional conduct, Opinion No.

96-10, Topic: Electronic Communications; Confidentiality of Client Information; Advertising

and Solicitation, May 16; http://www.chicago-law.net/cyberlaw/electric.html

International Strategy for Disaster Reduction (2006), Press Release. January 30, 2006.

42



http://www.unisdr.org/eng/media-room/press-release/2006/ PR-2006-02-Disasters

-increase-18-per-cent-2005-but-death-rates-drop.pdf Accessed on January 5, 2009.

Kinderlehrer, D., and Stampacchia, G. (1980), An Introduction to Variational Inequalities

and Their Applications, Academic Press, New York, New York, 1980.

Latora, V., and Marchiori, M. (2001), “Efficient behavior of small-world networks,” Physics

Review Letters 87, 198701-1 – 198701-4.

Latora, V. and Marchiori, M. (2002), “Is the Boston subway a small-world network?” Physica

A 314, 109-113.

Latora, V., and Marchiori, M. (2004), “How the science of complex networks can help de-

veloping strategies against terrorism,” Chaos, Solitons and Fractals 20, 69-75.

Liu, Z., and Nagurney, A. (2007), “Financial networks with intermediation and transporta-

tion network equilibria: A supernetwork equivalence and reinterpretation of the equilibrium

conditions with computations,” Computational Management Science 4, 243-281.

Liu, Z., and Nagurney, A. (2009), “An integrated electric power supply chain and fuel market

network framework: theoretical modeling with empirical analysis for New England,” Naval

Research Logistics 56, 600-624.

Liu, Z., and Nagurney, A. (2010), “Risk reduction and cost synergy in mergers and acquisi-

tions via supply chain network integration,” to appear in the Journal of Financial Decision

Making.

Miniwatts Marketing Group (2011); http://www.internetworldstats.com/stats.htm extracted

on April 6, 2011.

Mullon, C., Shin, Y., and Cury, P. (2009), “NEATS: A network economic approach to trophic

systems,” Ecological Modelling 220, 3033-3045.

Nagurney, A. (1999), Network Economics: A Variational Inequality Approach, second and

revised edition, Kluwer Academic Publishers, Boston, Massachusetts.

Nagurney, A. (2000a), “Navigating the Network Economy,” OR/MS Today , June, pp. 74-75,

43



Lionheart Publishing Company, Atlanta, Georgia.

Nagurney, A. (2000b), “Distinguished Faculty Lecture: Networks for fun and profit,” April

5, University of Massachusetts, Amherst; http://intra.som.umass.edu/fomgt/dislec.pdf

Nagurney, A., Editor (2003), Innovations in Financial and Economic Networks , Edward

Elgar Publishing, Cheltenham, England.

Nagurney, A. (2006a), “On the relationship between supply chain and transportation network

equilibria: A supernetwork equivalence with computations,” Transportation Research E 42,

293-316.

Nagurney, A. (2006b), Supply Chain Network Economics: Dynamics of Prices, Flows, and

Profits , Edward Elgar Publishing, Cheltenham, England.

Nagurney, A. (2009a), “Networks in finance,” in Handbook of Computational Econometrics ,

Belseley, D., and Kontoghiorghes, E., Editors, John Wiley & Sons, Cichester, England, pp.

429-486.

Nagurney, A. (2009b), “A system-optimization perspective for supply chain network inte-

gration: The horizontal merger case,” Transportation Research E 45, 1-15.

Nagurney, A. (2010a), “Optimal supply chain network design and redesign at minimal total

cost and with demand satisfaction,” International Journal of Production Economics 128,

200-2008.

Nagurney, A. (2010b), “Supply chain network design under profit maximization and oligopolis-

tic competition,” Transportation Research E 46, 281-294.

Nagurney, A., and Cruz, J. (2003a), “International financial networks with intermediation:

Modeling, analysis, and computations,” Computational Management Science 1, 31-58.

Nagurney, A., Cruz, J., and Matsypura, D. (2003), “Dynamics of global supply chain super-

networks,” Mathematical and Computer Modelling 37, 963-983.

Nagurney, A., and Dong, J. (2002), Supernetworks: Decision-Making for the Information

Age, Edward Elgar Publishers, Cheltenham, England.

44



Nagurney, A., Dong, J., and Mokhtarian, P. L. (2002), “Multicriteria network equilibrium

modeling with variable weights for decision-making in the Information Age with applications

to telecommuting and teleshopping,” Journal of Economic Dynamics and Control 26, 1629-

1650.

Nagurney, A., Dong, J., and Zhang, D. (2002), “A supply chain network equilibrium model,”

Transportation Research E 38, 281-303.

Nagurney, A., and Ke, K. (2003), “Financial networks with electronic transactions: Model-

ing, analysis, and computations,” Quantitative Finance 3, 71-87.

Nagurney, A., Ke, K., Cruz, J., Hancock, K., and Southworth, F. (2002a), “Dynamics of

supply chains: A multilevel (logistical / informational / financial) network perspective,”

Environment & Planning B 29, 795-818.

Nagurney, A., and Liu, Z. (2005), “Transportation network equilibrium reformulations of

electric power networks with computations,” Isenberg School of Management, University of

Massachusetts, Amherst, Massachusetts.

Nagurney, A., Liu, Z., Cojocaru, M.-G., and Daniele, P. (2007), “Dynamic electric power

supply chains and transportation networks: An evolutionary variational inequality formula-

tion,” Transportation Research E 43, 624-646.

Nagurney, A., Loo, J., Dong, J., and Zhang, D. (2002b), “Supply chain networks and elec-

tronic commerce: A theoretical perspective,” Netnomics 4, 187-220.

Nagurney, A., and Nagurney, L. S. (2011a), “Spatial price equilibrium and food webs: The

economics of predator-prey networks,” in Proceedings of the 2011 IEEE Conference on Su-

pernetworks and System Management, May 29-30, 2011, Shanghai, China, in press.

Nagurney, A., and Nagurney, L. S. (2011a), “Dynamics and equilibria of ecological predator-

prey networks as nature’s supply chains,” Isenberg School of Management. University of

Massachusetts Amherst.

Nagurney, A., Parkes, D., and Daniele, P. (2007), “The Internet, evolutionary variational

inequalities, and the time-dependent Braess paradox,” Computational Management Science

45



4, 355-375.

Nagurney, A., and Qiang, Q. (2007a), “A network efficiency measure for congested networks,”

Europhysics Letters 79, 38005, 1-5.

Nagurney, A., and Qiang, Q. (2007b),“A transportation network efficiency measure that

captures flows, behavior, and costs with applications to network component importance

identification and vulnerability,” in Proceedings of the 18th Annual POMS Conference, Dal-

las, Texas.

Nagurney, A., and Qiang, Q. (2007c).,“Robustness of transportation networks subject to

degradable links,” Europhysics Letters 80, 68001, 1-6.

Nagurney, A., and Qiang, Q. (2008a), “A network efficiency measure with application to

critical infrastructure networks,” Journal of Global Optimization 40, 261-275.

Nagurney, A., and Qiang, Q. (2008b), “Identification of critical nodes and links in financial

networks with intermediation and electronic transactions,” in Computational Methods in Fi-

nancial Engineering. Kontoghiorghes, E. J., Rustem, B., and Winker, P., Editors, Springer,

Berlin, Germany, pp. 273-297.

Nagurney, A., and Qiang, Q. (2008c), “An efficiency measure for dynamic networks with

application to the Internet and vulnerability analysis,” Netnomics 9, 1-20.

Nagurney, A., and Qiang, Q. (2009), Fragile Networks: Identifying Vulnerabilities and Syn-

ergies in an Uncertain World , John Wiley & Sons, Hoboken, New Jersey.

Nagurney, A., and Qiang, Q. (2011), “Fragile networks: Identifying vulnerabilities and syn-

ergies in an uncertain age,” International Transactions in Operational Research, in press.

Nagurney, A., and Siokos, S. (1997), Financial Networks: Statics and Dynamics , Springer-

Verlag, Heidelberg, Germany.

Nagurney, A., and Toyasaki, F. (2003), “Supply chain supernetworks and environmental

criteria,” Transportation Research D 8, 185-213.

Nagurney, A., Wakolbinger, T., and Zhao, L. (2006), “The evolution and emergence of inte-

46



grated social and financial networks with electronic transactions: A dynamic supernetwork

theory for the modeling, analysis, and computation of financial flows and relationship levels,”

Computational Economics 27, 353-393.

Nagurney, A. and Woolley, T. (2010), “Environmental and cost synergy in supply chain

network integration in mergers and acquisitions,” in Sustainable Energy and Transportation

Systems, in Proceedings of the 19th International Conference on Multiple Criteria Decision

Making, Lecture Notes in Economics and Mathematical Systems, Ehrgott, M., Naujoks, B.,

Stewart, T. J., and Wallenius, J., Editors, Springer, Berlin, Germany, pp. 51-78.

Nagurney, A., and Yu, M. (2010), “Fashion supply chain management through cost and time

minimization from a network perspective,” in Fashion Supply Chain Management: Industry

and Business Analysis, Choi, T. -M., Editor, IGI Global, Hershey, Pennsylvania, in press.

Nagurney, A., and Yu, M. (2011), “Sustainable fashion supply chain management under

oligopolistic competition and brand differentiation,” International Journal of Production

Economics , in press.

Nagurney, A., Yu, M., and Qiang, Q. (2010), “Multiproduct supply chain network design with

applications to healthcare,” Isenberg School of Management, University of Massachusetts

Amherst.

Nagurney, A., Yu, M.,and Qiang, Q. (2011), “Supply chain network design for critical needs

with outsourcing,” Papers in Regional Science 90, 123-142.

Nagurney, A., and Zhang, D. (1996), Projected Dynamical Systems and Variational Inequal-

ities with Applications, Kluwer Academic Publishers, Boston, Massachusetts.

Nash, J. F. (1950), “Equilibrium points in n-person games,” Proceedings of the National

Academy of Sciences, USA 36, 48-49.

Nash, J. F. (1950), “Noncooperative games,” Annals of Mathematics 54, 286-298.

Newman, M. E. J. (2004), “Analysis of weighted networks,” Physical Review E 70, Article

No. 056131.

Newman, M. E. J., Barabási, A. L., and Watts, D. J., Editors (2006), The Structure and

47



Dynamics of Networks, Princeton University Press, Princeton, New Jersey.

Noveen, A., Hartenstein, V., and Chuong, C.-M. (1998), “Gene networks and supernetworks:

Evolutionarily conserved gene interactions,” in Molecular Basis of Epithelial Appendage Mor-

phogenesis , Chuong, C. -M., Editor, Landes Bioscience, Austin, Texas, pp. 371-391.

Pas, E., and Principio, S. I. (1997), “Braess’ paradox: Some new insights,” Transportation

Research B 31, 265-276.

Patriksson, M. (1994), The Traffic Assignment Problem, VSP, Utrecht, The Netherlands.

Pigou, A. C.(1920), The Economics of Welfare, MacMillan, London, England.

Quesnay, F. (1758), Tableau Economique, reproduced in facsimile with an introduction by

H. Higgs by the British Economic Society, 1895.

Qiang, Q., and Nagurney, A. (2008), “A unified network performance measure with im-

portance identification and the ranking of network components,” Optimization Letters 2,

127-142.

Qiang, Q., Nagurney, A., and Dong, J. (2009), “Modeling of supply chain risk under disrup-

tions with performance measurement and robustness analysis,”in Managing Supply Chain

Risk and Vulnerability: Tools and Methods for Supply Chain Decision Makers. Wu, T., and

Blackhurst, J., Editors, Springer, London, England, pp. 91-111.

Roughgarden, T. (2005), The Price of Anarchy , MIT Press, Cambridge, Massachusetts.

Samuelson, P. A. (1952), “Spatial price equilibrium and linear programming,” American

Economic Review 42, 283-303.

Sandholm, W. (2005), “Excess payoff dynamics and other well-behaved evolutionary dynam-

ics,” Journal of Economic Theory 124, 149-170.

Sandholm, W. (2011), Population Games and Evolutionary Dynamics , MIT Press, Cam-

bridge, Massachusetts.

Schrank, D., Lomax, T., and Turner, S. (2010), “TTI’s urban mobility report,” Texas Trans-

portation Institute, The Texas A&M University System, December.

48



Schubert, L., Goebel, R., and Cercone, N. (1979), “The structure and organization of a

semantic net for xomprehension and inference,” in Associative Networks: Representation

and Use of Knowledge by Computers, Findler, N. V., Editor, Academic Press, New York.

Schulz, C. (2007), “Identification of critical transportation infrastructures,” Forum DKKV/CEDM,

Disaster Reduction in Climate Change, Karlsruhe University, Germany.

Sheffi, Y. (1978), “Transportation Network Equilibrium with Discrete Choice Models,” Ph.D.

thesis, Civil Engineering Department, Massachusetts Institute of Technology, Cambridge,

Massachusetts.

Sheffi, Y. (1985), Urban Transportation Networks, Prentice-Hall, Englewood Cliffs, New

Jersey.

Sheffi, Y., and Daganzo, C. F. (1978), “Hypernetworks and supply-demand equilibrium

obtained with disaggregate demand models,” Transportation Research Record 673, 113-121.

Sheffi, Y., and Daganzo, C. F. (1980), “Computation of equilibrium over transportation

networks: The case of disaggregate demand models,” Transportation Science 14, 155-173.

Smith, M. J. (1979), “Existence, uniqueness, and stability of traffic equilibria,” Transporta-

tion Research 13B, 295-304.

Takayama, T., and Judge, G. G. (1964), “An intertemporal price equilibrium model,” Journal

of Farm Economics 46, 477-484.

Takayama, T., and Judge, G. G. (1971), Spatial and Temporal Price and Allocation Models,

North-Holland, Amsterdam, The Netherlands.

Wakolbinger, T., and Nagurney, A. (2004), “Dynamic supernetworks for the integration

of social networks and supply chains with electronic commerce: Modeling and analysis of

buyer-seller relationships with computations,” Netnomics 6, 153-185.

Walsh, J. R. (2009), “Route optimization: how efficient will the proposed north Dublin

metro be?” ERCIM News 79, October, 45-46.

Wardrop, J. G. (1952), “Some theoretical aspects of road traffic research,” in Proceedings of

49



the Institute of Civil Engineers, Part II, pp. 325-278.

Wu, J. H., Florian, M., and He, S. G. (2000), “EMME/2 Implementation of the SCAG-II

Model: Data Structure, System Analysis and Computation,” submitted to the Southern

California Association of Governments, INRO Solutions Internal Report, Montreal, Quebec,

Canada.

Zhang, D., and Nagurney, A. (1995), “On the stability of projected dynamical systems,”

Journal of Optimization Theory and its Applications 85, 97-124.

50


