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Abstract—In this paper, we prove that the equilibrium of
predator-prey networks is, in fact, a spatial price equilibrium.
This result demonstrates the underlying economics of predator-
prey relationships and interactions and provides a foundation
for the formulation and analysis of complex food webs, which
are nature’s supply chains, through the formalism of network
equilibrium. Moreover, it rigorously links the equilibrium con-
ditions of commodity networks in which a product is produced,
transported, and consumed, with those of ecological networks in
which prey are consumed by predators.

Index Terms—spatial price equilibrium, supply chains, food
webs, predator prey models, food chains, networks, network
economics, economics of biological systems, ecological networks,
network equilibrium, regional science, operations research, trans-
portation, supernetworks

I. INTRODUCTION

Equilibrium is a central concept in numerous disciplines
from economics and regional science to operations research
/ management science and even in ecology and biology.
Examples of specific equilibrium concepts include the well-
known Walrasian price equilibrium in economics, Wardropian
(traffic network) equilibrium in transportation science, and
Nash equilibrium in game theory [1]. In ecology, equilibrium
is in concert with the balance of nature, in that, since an
ecosystem is a dynamical system, we can expect there to
be some persistence or homeostasis in the system [2], [3],
[4]. Moreover, equilibrium serves as a valuable paradigm that
assists in the evaluation of the state of a complex system.

Equilibrium, as a concept, implies that there is more than
a single decision-maker or agent, who, typically, seeks to op-
timize, subject to the underlying resource constraints. Hence,
the formulation, analysis, and solution of such problems may
be challenging. Notable methologies that have been developed
over the past several decades that have been successfully
applied to the analysis and computation of solutions to a
plethora of equilibrium problems include variational inequality
theory and the accompanying theory of projected dynamical
systems ([1], [5] and the references therein).

Fascinatingly, it has now been recognized that numerous
equilibrium problems as varied as the classical Walrasian
price equilibrium problem, the classical oligopoly problem, the
portfolio optimization problem, and even migration problems
[6], which in their original formulations did not have a network
structure identified, actually possess a network structure. In
addition, such well-recognized network equilibrium problems
as traffic network equilibrium problems with applications to
congestion management on urban roads as well as to air
traffic, and even to the Internet [7], as well as spatial price
equilibrium problems, ([8], [9], [10]) also have an underlying
network structure (with nodes corresponding to locations in
space). Furthermore, it has now been established, through the
supernetwork [11] formalism that even supply chain network
problems, in which decision-makers (be they manufacturers,
retailers, or consumers at demand markets) compete across a
tier, but necessarily cooperate (to various degrees) between
tiers, can be reformulated and solved as (transportation) net-
work equilibrium problems. The same holds for complex
financial networks with intermediaries [12]. In addition, the
supernetwork framework has even been applied to the inte-
gration of social networks with supply chains [13] and with
financial networks [14].

Hence, it is becoming increasingly evident that seemingly
disparate equilibrium problems, in a variety of disciplines, can
be uniformly formulated and studied as network equilibrium
problems. Such identifications allow one to:
1. graphically visualize the underlying structure of systems as
networks;
2. avail oneself of existing frameworks and methodologies for
analysis and computations, and
3. gain insights into the commonality of structure and behavior
of disparate complex systems that underly our economies and
societies.

Nevertheless, although deep connections and equivalences
have been made (and continue to be discovered) be-
tween/among different systems through the (super)network
formalism, the systems studied, to-date, have been exclusively



m

m

Prey

Predators

1

1

m

m

. . .

. . .

i

j

· · ·

· · ·

m

m

m

n
?

J
J

J
J

J
J

J
J
Ĵ
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Fig. 1. The bipartite network with directed links representing the predator-
prey problem

of a socio-technical-economic variety.
In this paper, we take on the challenge of proving the

equivalence between ecological food webs and spatial price
equilibrium problems; thereby, providing a foundation for the
unification of these disparate systems and, in a sense, we bring
the fields of economics (and operations research and regional
science) closer to ecology (and biology).

This paper is organized as follows. In Section II, we briefly
recall the predator-prey model of [4], which serves as the
basis for the equivalence. In Section III, we establish the
equivalence between predator-prey equilibrium and spatial
price equilibrium. In Section IV, we develop extensions and
propose a dynamic adjustment process, along with stabil-
ity analysis results. Section V presents numerical examples,
whereas Section VI contains a summary and suggestions for
future research.

II. THE PREDATOR-PREY MODEL

In this Section, we briefly review the predator-prey model
[4], whose structure is given in Figure 1. We consider an
ecosystem in which there are m distinct types of prey and
n distinct typed of predators with a typical prey species
denoted by i and a typical predator species denoted by j.
The biomass of a species i is denoted by Bi; i = 1, . . . ,m.
Ei denotes the inflow (energy and nutrients) of species i with
the autotroph species, that is, the prey, in Figure 1, having
positive values of Ei; i = 1, . . . ,m, whereas the predators
have Ej = 0; j = 1, . . . , n. The parameter γi denotes the
trophic assimilation efficiency of species i and the parameter
µi denotes the coefficient that relates biomass to somatic
maintenance. The variable Xij is the amount of biomass of
species i preyed upon by species j and we are interested in
determining their equilibrium values for all prey and predator
species pairs (i, j).

The prey equations that must hold are given by:

γiEi = µiBi +
n∑

j=1

Xij , 1, . . . ,m. (1)

Equation (1) means that for each prey species i, the assimilated
biomass must be equal to its somatic maintenance plus the
amount of its biomass that is preyed upon.

The predator equations, in turn, are given by:

γj

m∑
i=1

Xij = µjBj , j = 1, . . . , n. (2)

Equation (2) signifies that for each predator species j, its
assimilated biomass is equal to its somatic maintenance (which
is represented by its coefficient µj times its biomass).

Equations (1) and (2) may be interpreted as the conserva-
tion of flow equations, in network parlance, from a biomass
perspective.

In addition, there is a parameter φij ; 1, . . . ,m; j = 1, . . . , n,
which reflects the distance (note the spatial component) be-
tween distribution areas of prey i and predator j, with this
parameter also capturing the transaction costs associated with
handling and ingestion.

According to [4], the predation cost between prey i and
predator j, denoted by Fij , is given by:

Fij = φij −κiBi +λjBj , i = 1, . . . ,m; j = 1, . . . , n, (3)

where −κiBi represents the easiness of predation due to the
abundance of prey Bi and λjBj denotes the intra-specific
competition of predator species j. We group the species
biomasses and the biomass flows intro the respective m + n
and mn dimensional vectors B∗ and X∗.

Definition 1: Predator-Prey Equilibrium Conditions
A biomass and flow pattern (B∗, X∗), satisfying constraints
(1) and (2), is said to be in equilibrium if the following
conditions hold for each pair of prey and predators (i, j);
i = 1, . . . ,m; j = 1, . . . , n:

Fij

{
= 0, if X∗

ij > 0,
≥ 0, if X∗

ij = 0. (4)

These equilibrium conditions reflect that, if there is a
biomass flow from i to j, then there is an economic balance
between the advantages (κiBi) and the inconveniences of
predation (φij + λjBj).

Observe that, in view of (1), (2), and (3), we may write
Fij = Fij(X), ∀i, j.

Clearly, the predator-prey equilibrium conditions (4) may
be formulated as a variational inequality problem, as given
below.

Theorem 1: Variational Inequality Formulation of
Predator-Prey Equilibrium
A biomass flow pattern X∗ ∈ Rmn

+ is an equilibrium accord-
ing to Definition 1 if and only if it satisfies the variational
inequality problem:

m∑
i=1

n∑
j=1

κi

µi

n∑
j=1

X∗
ij −

κi

µi
γiEi + φij +

λjγj

µj

m∑
i=1

X∗
ij


×

[
Xij −X∗

ij

]
≥ 0, ∀X ∈ Rmn

+ . (5)



Proof: Note that, by making use of (1), (2), and (3):

Fij(X) =
κi

µi

n∑
j=1

Xij −
κi

µi
γiEi + φij +

λjγj

µj

m∑
i=1

Xij . (6)

We first establish necessity. From (4) we have thatκi

µi

n∑
j=1

X∗
ij −

κi

µi
γiEi + φij +

λjγj

µj

m∑
i=1

X∗
ij


×

[
Xij −X∗

ij

]
≥ 0, ∀Xij ≥ 0, (7)

since, indeed, if X∗
ij > 0, then the left-hand-side of inequality

(7) prior to the multiplication sign is zero, since the equi-
librium conditions (4) are assumed to hold, and, hence, the
inequality in (7) holds; on the other hand, if X∗

ij = 0, then
both the expression before the multiplication sign in (7) (due
to the equilibrium conditions) is nonnegative as is the one
after the multiplication sign (due to the assumption of the
nonnegativity of the biomass flows), and the result in (7) also
follows. Summing now (7) over all prey species i and over all
predator species j yields the variational inequality (5).

In order to prove sufficiency, we proceed as follows. Assume
that variational inequality (5) holds. Set Xkl = X∗

kl for all
kl 6= ij and substitute into (5), which yields:κi

µi

n∑
j=1

X∗
ij −

κi

µi
γiEi + φij +

λjγj

µj

m∑
i=1

X∗
ij


×

[
Xij −X∗

ij

]
≥ 0, ∀Xij ≥ 0, (8)

from which equilibrium conditions (4) follow with note of (6).

III. THE EQUIVALENCE BETWEEN PREDATOR PREY
PROBLEMS AND SPATIAL PRICE EQUILIBRIA

As noted in [1], the concept of a network in economics
was implicit as early as in the classical work of Cournot
[15], who not only seems to have first explicitly stated that a
competitive price is determined by the intersection of supply
and demand curves, but had done so in the context of two
spatially separated markets in which the cost of transporting
the good between markets was considered.

Samuelson [8] provided a rigorous mathematical formula-
tion of the spatial price equilibrium problem and explicitly
recognized and utilized the network structure, which was
bipartite. In spatial price equilibrium problems, unlike classical
transportation problems, the supplies and the demands are vari-
ables, rather than fixed quantities. The work was subsequently
extended by [9] and others (cf. [16], [17], [10], [1], and the
references therein) to include, respectively, multiple commodi-
ties, and asymmetric supply price and demand functions, as
well as other extensions, made possible by such advances as
quadratic programming techniques, complementarity theory,
as well as variational inequality theory (which allowed for the
formulation and solution of equilibrium problems for which
no optimization reformulation of the governing equilibrium
conditions was available).

We now briefly recall the spatial price equilibrium problem.
For a variety of spatial price equilibrium models, we refer the
interested reader to [1]. There are m supply markets and n
demand markets involved in the production / consumption of
a homogeneous commodity. Denote a typical supply market
by i and a typical demand market by j. Let si denote the
supply of the commodity associated with supply market i and
let πi denote the supply price of the commodity associated
with supply market i. Let dj denote the demand associated
with demand market j and let ρj denote the demand price
associated with demand market j. Group the supplies into the
vector s ∈ Rm and the demands into the vector d ∈ Rn.

Let Qij denote the nonnegative commodity shipment be-
tween the supply and demand market pair (i, j) and let
cij denote the nonnegative unit transaction cost associated
with trading the commodity between (i, j). Assume that the
transaction cost includes the cost of transportation. Group the
commodity shipments into the vector Q ∈ Rmn

+ .
The following feasibility (conservation of flow) equations

must hold: for every supply market i and each demand market
j:

si =
n∑

j=1

Qij , i = 1, . . . ,m, (9)

and

dj =
m∑

i=1

Qij , j = 1, . . . , n. (10)

Equations (9) and (10) reflect that the markets clear and that
the supply at the supply market is equal to the sum of the
commodity flows to all the demand markets. Also, the demand
at each demand market must be satisfied by the sum of the
commodity shipments from all the supply markets.

Definition 2: Spatial Price Equilibrium
The spatial price equilibrium conditions, assuming perfect
competition, take the following form: for all pairs of supply
and demand markets (i, j) : i = 1, . . . ,m; j = 1, . . . , n:

πi + cij

{
= ρj , if Q∗ij > 0
≥ ρj , if Q∗ij = 0.

(11)

The spatial price equilibrium conditions (11) state that if
there is trade between a market pair (i, j), then the supply
price at supply market i plus the unit transaction cost between
the pair of markets must be equal to the demand price at
demand market j in equilibrium; if the supply price plus the
transaction cost exceeds the demand price, then there will be
no shipment between the supply and demand market pair. Let
K denote the closed convex set where K≡{(s,Q, d)|Q ≥
0, (9) and (10) hold}.

The supply price, demand price, and transaction cost struc-
tures are now discussed. Assume that, for the sake of gener-
ality, the supply price associated with any supply market may
depend upon the supply of the commodity at every supply
market, that is,

πi = πi(s), i = 1, . . . ,m, (12)



where each πi is a known continuous function.
Similarly, the demand price associated with a demand

market may depend upon, in general, the demand of the
commodity at every demand market, that is,

ρj = ρj(d), j = 1, . . . , n, (13)

where each ρj is a known continuous function.
The unit transaction cost between a pair of supply and

demand markets may, in general, depend upon the shipments
of the commodity between every pair of markets, that is,

cij = cij(Q), i = 1, . . . ,m; j = 1, . . . , n, (14)

where each cij is a known continuous function.
In the special case where the number of supply markets m

is equal to the number of demand markets n, the transaction
cost functions (14) are assumed to be fixed, and the supply
price functions and demand price functions are symmetric, i.e.,
∂πi

∂sk
= ∂πk

∂si
, for all i = 1, . . . , n; k = 1, . . . , n, and ∂ρj

∂dl
= ∂ρl

∂dj
,

for all j = 1, . . . , n; l = 1, . . . , n, then the above model with
supply price functions (12) and demand price functions (13)
collapses to a class of single commodity models introduced in
[9] for which an equivalent optimization formulation exists.

We now present the variational inequality formulation of the
equilibrium conditions (11).

Theorem 2: Variational Inequality Formulation of Spatial
Price Equilibrium
A commodity production, shipment, and consumption pattern
(s∗, Q∗, d∗) ∈ K is in equilibrium according to Definition 2
if and only if it satisfies the variational inequality problem:

m∑
i=1

n∑
j=1

πi(s∗)× (si − s∗i ) +
m∑

i=1

n∑
j=1

cij(Q∗)× (Qij −Q∗ij)

−
n∑

j=1

ρj(d∗)× (dj − d∗j ) ≥ 0, ∀(s,Q, d) ∈ K. (15)

Proof: See [1].

We now establish our main result.

Theorem 3: Equivalence Between Predator-Prey Equilibria
and Spatial Price Equilibria
An equilibrium biomass flow pattern satisfying equilibrium
conditions (4) coincides with an equilibrium commodity ship-
ment pattern satisfying equilibrium conditions (11).

Proof: We establish the equivalence by utilizing the respective
variational inequalities (5) and (15). First, we note that (5) may
be expressed as: determine X∗ ∈ Rmn

+ such that

m∑
i=1

κi

µi

n∑
j=1

X∗
ij −

κi

µi
γiEi

×

 n∑
j=1

Xij −
n∑

j=1

X∗
ij


+

m∑
i=1

n∑
j=1

φij × (Xij −X∗
ij)

+

 n∑
j=1

λjγj

µj

m∑
i=1

X∗
ij

×[
m∑

i=1

Xij −
m∑

i=1

X∗
ij

]
≥ 0,∀X ∈ Rmn

+ .

(16)
Letting now:

Qij ≡ Xij , ∀i, j,

it follows then that si =
∑n

j=1 Qij =
∑n

j=1 Xij and dj =∑m
i=1 Qij = Xij , for all i, j, in which case we may rewrite

(16) as: determine (s∗, Q∗, d∗) ∈ K such that
m∑

i=1

[
κi

µi
s∗i −

κi

µi
γiEi

]
× [si − s∗i ]+

m∑
i=1

n∑
j=1

φij × (Qij −Q∗ij)

+
n∑

j=1

[
λjγj

µj
d∗j

]
×

[
dj − d∗j

]
≥ 0, ∀(s,Q, d) ∈ K. (17)

Letting now:

πi(s) ≡
κi

µi
si −

κi

µi
γiEi, i = 1, . . . ,m; (18)

cij(Q) ≡ φij , i = 1, . . . ,m; j = 1, . . . , n; (19)

and
ρj(d) ≡ −λjγj

µj
dj , j = 1, . . . , n, (20)

we conclude that, indeed, a biomass equilibrium pattern coin-
cides with a spatial price equilibrium pattern.

The above equivalence provides a novel interpretation of
the predator-prey equilibrium conditions in that there will be
a positive flow of biomass/commodity from a supply market
(prey species) to a demand market (predator species) if the
supply price (or value of the biomass/commodity) plus the unit
transaction cost is equal to the demand price that consumers
(predators) are willing to “pay.”

Interestingly, the predator-prey model on a bipartite network
proposed by [4] is actually a classical one in that, from a
spatial price equilibrium perspective, the supply price at a
supply market depends only upon the supply of the commodity
at the market; the same for the demand markets. Moreover,
the unit transaction/transportation cost between a pair of
supply and demand markets is assumed to be independent
of the flow. Hence, for this specific food web model there
is an optimization reformulation of the governing equilibrium
conditions.

With the above connection, we can now transfer the nu-
merous special-purpose algorithms that are available for the
solution of spatial price equilibria, and which effectively ex-
ploit the underlying network structure, for the computation of
predator prey biomass equilibria. Moreover, since spatial price
equilibrium problems can be transformed into transportation
network equilibrium problems [18] further theoretical and
practical results can be expected.

For completeness, we now provide an alternative variational
inequality to (15) which captures product differentiation in
predator-prey networks. Specifically, we define differentiated
demand price functions ρij , which reflect the demand price



associated with demand (predator) market j for supply (prey)
market i, such that

ρij(Q) ≡ −λjγj

µj

m∑
i=1

Qij +
κi

µi
γiEi, ∀i, j. (21)

The following result is immediate, with notice to (5), (21),
and that Qij ≡ Xij , ∀i, j, and with πi(s) ≡ κi

µi
si, ∀i:

Corollary 1: Alternative Variational Inequality Formula-
tion of Predator-Prey Equilibrium as a Network Equilib-
rium with Product Differentiation
An equilibrium biomass flow pattern satisfying equilibrium
conditions (4) coincides with an equilibrium commodity ship-
ment pattern with differentiated product prices with the vari-
ational inequality formulation: determine (s∗, Q∗) with Q ∈
Rmn

+ and (9) satisfied, such that
m∑

i=1

πi(s∗)× [si − s∗i ]

+
m∑

i=1

n∑
j=1

[φij − ρij(Q∗)]×
[
Qij −Q∗ij

]
≥ 0,

∀(s,Q) such that Q ∈ Rmn
+ and (9) holds. (22)

IV. MODEL EXTENSIONS

Through the equivalences established in Section III, many
possibilities exist for extending the fundamental network eco-
nomics model(s) of food webs (including the predator-prey
model recalled in Section II) presented in [4]. Specifically,
we propose that the unit transaction costs, the φijs, need no
longer be fixed, but can be flow-dependent, and monotone
increasing, so that competition associated with foraging can
also be captured. Of course, one may also generalize the
corresponding biomass functions to correspond to nonlinear
supply price and demand price functions and to also generalize
the unit transaction cost functions to be nonlinear. Such
general spatial price equilibrium models [1] already exist and
the methodologies can then be applied to ecological predator
prey network systems.

In addition, we believe that general food web models can be
reformulated and solved as spatial price equilibrium problems
on more general networks as in [10]. Finally, we note that,
due to the variational inequality formulation (15), we may
exploit the connection between sets of solutions to variational
inequality problems and sets of stationary points of projected
dynamical systems. In so doing, a natural dynamic adjustment
process becomes:

Q̇ij = max{0, ρj(d)− cij(Q)− πi(s))}, ∀i, j. (23)

Letting F̂ij=πi(s) + cij(Q) − ρj(d), ∀i, j, we can write the
following pertinent ordinary differential equation (ODE) for
the adjustment process of commodity (biomass) shipments in
vector form as [5]:

Q̇ = ΠK(Q,−F̂ (Q)), (24)

where F̂ is the vector with components F̂ij ; i = 1, . . . ,m;
j = 1, . . . , n and

ΠK(x, v) = lim
δ→0

(PK(x + δv)− x)
δ

, (25)

where
PK(x) = arg min

z∈K
‖x− z‖. (26)

We now present a stability result (see [5]) since, due to the
equivalence established between the two network systems, its
relevance to predator-prey problems is notable.

Theorem 4
Suppose that (s∗, Q∗, d∗) is a spatial price equilibrium ac-
cording to Definition 2 and that the supply price functions π,
the transaction cost functions c, and the negative demand price
functions ρ are (locally) monotone, respectively, at s∗, Q∗,
and d∗. Then (s∗, Q∗, d∗) is a globally monotone attractor
(monotone attractor) for the adjustment process solving ODE
(24).

Stronger results, including stability analysis results, can
be obtained under strict as well as strong monotonicity of
these functions, with the latter guaranteeing both existence
and uniqueness of the solution (s∗, Q∗, d∗) to (15).

We exploit the above connection through our numerical
procedure in the next section where we provide numerical
examples.

Of course, a dynamic adjustment process, analogous to (23),
can be constructed for variational inequality (22).

V. NUMERICAL EXAMPLES

In this Section, we present several numerical examples.
We used the Euler method, which is induced by the general
iterative scheme of [19] and which has been applied to
solve spatial price equilibrium problem as projected dynamical
systems ([20], [5], where convergence results may also be
found).

Specifically, one initializes the Euler method with an initial
nonnegative commodity shipment pattern and then, at each
iteration τ , one computes the commodity shipments for all
pairs of supply and demand markets according to the formula:

Qτ+1
ij = max{0, aτ (ρj(dτ )− cij(Qτ )− πi(sτ )) + Qτ

ij}.∀i, j
(27)

The algorithm was considered to have converged to a
solution when the absolute value of each of the successive
commodity shipment iterates differed by no more than ε =
10−5. We utilized the sequence aτ = .1{1, 1

2 , 1
2 , . . .}, which

satisfies the requirements for convergence of the Euler method.
The Euler method was implemented in FORTRAN on a Linux-
based computer system at the University of Massachusetts
Amherst.

In order to appropriately depict the reality of predator-prey
ecosystems, we utilized parameters, in ranges, as outlined
in [4]. The computed equilibrium biomass flows for all the
numerical examples are given in Table 1.

Example 1



TABLE I
EQUILIBRIUM SOLUTIONS FOR THE EXAMPLES

(i, j) Q∗
ij Example 1 Example 2 Example 3

(1, 1) Q∗
11 429.61 454.83 341.08

(1, 2) Q∗
12 110.81 122.85 332.97

(1, 3) Q∗
13 416.66 361.72 324.95

(2, 1) Q∗
21 405.34 246.49 332.73

(2, 2) Q∗
22 101.32 114.67 334.59

(2, 3) Q∗
23 407.62 496.85 331.18

This example consisted of two prey species and three predator
species. The parameters for prey species 1 were: κ1 = .10,
µ1 = .50, and γ1 = 1.00, with E1 = 1, 000. The parameters
for prey species 2 were: κ2 = .10, µ2 = 1.00, and γ2 =
1.00, with E2 = 1, 000. These values resulted in supply price
functions given by:

π1 = .2s1 − 100, π2 = .1s2 − 100.

The unit transaction costs were:

φ11 = .10, φ12 = .20, φ13 = .30,

φ21 = .15, φ22 = .10, φ23 = .20.

The parameters for the predators were: for predator 1: λ1 =
.02, µ1 = .20, and γ1 = .10; for predator 2: λ2 = .04, µ2 =
.20, and γ2 = .20. The parameters for predator 3 were: λ3 =
.02, µ3 = .2, and γ3 = .1.

These parameters resulted in demand price functions given
by:

ρ1 = −.01d1, ρ2 = −.04d2, ρ3 = −.01d3.

The computed equilibrium commodity/biomass flow pattern
is given in Table 1.
Example 2
The second example had the same data as Example 1 except
that now we considered unit transaction cost functions that
captured congestion (as in the model extension in Section IV).
The unit transaction cost functions were now:

φ11 = .01Q11+.1, φ12 = .02Q12+.2, φ13 = .01Q13+.3,

φ21 = .03Q21+.15, φ22 = .04Q22+.1, φ23 = .01Q23+.2.

The computed solution is given in Table 1.

Example 3
Example 3 had the same supply price function and unit
transaction cost data as Example 1 but here we considered
the interesting scenario identified in [4] where λj = 0.00
for all predators j. This scenario results in all the demand
price functions to be identically equal to 0.00. The computed
solution for this example is also reported in Table 1.

VI. SUMMARY AND SUGGESTIONS FOR FUTURE
RESEARCH

In this paper we established the equivalence between two
network systems occurring in entirely different disciplines
– in ecology (and biology) with economics (and opera-
tions research and regional science). In particular, we proved
the equivalence of the governing equilibrium conditions of
predator-prey systems with spatial price equilibrium problems
through their corresponding variational inequality formula-
tions. Through this connection, we then unveiled natural exten-
sions of the basic bipartite predator-prey network model along
with a dynamic adjustment process. We also presented an
alternative variational inequality formulation using a product
differentiation concept. We provided both theoretical results
as well as numerical examples.

We can expect continuing research in network equilibrium
models of complex food webs, nature’s supply chains, in the
future.
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