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1.1 Introduction

Finance is concerned with the study of capital flows over space and time in the
presence of risk. As a subject, it has benefited from numerous mathematical
and engineering tools that have been developed and utilized for the modeling,
analysis, and computation of solutions in the present complex economic envi-
ronment. Indeed, the financial landscape today is characterized by the existence
of distinct sectors in economies, the proliferation of new financial instruments,
with increasing diversification of portfolios internationally, various transaction
costs, the increasing growth of electronic transactions through advances in in-
formation technology and, in particular, the Internet, and different types of
governmental policy interventions. Hence, rigorous methodological tools that
can capture the complexity and richness of financial decision-making today and
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that can take advantage of powerful computer resources have never been more
important and needed for financial quantitative analyses.

In this chapter, the focus is on financial networks as a powerful tool and
medium for the modeling, analysis, and solution of a spectrum of financial
decision-making problems ranging from portfolio optimization to multi-sector,
multi-instrument general financial equilibrium problems, dynamic multi-agent
financial problems with intermediation, as well as the financial engineering of
the integration of social networks with financial systems.

Throughout history, the emergence and evolution of various physical net-
works, ranging from transportation and logistical networks to telecommunica-
tion networks and the effects of human decision-making on such networks have
given rise to the development of rich theories and scientific methodologies that
are network-based (cf. Ford and Fulkerson 1962, Ahuja, Magnanti, and Orlin
1993, Nagurney 1999, and Geunes and Pardalos 2003). The novelty of networks
is that they are pervasive, providing the fabric of connectivity for our societies
and economies, while, methodologically, network theory has developed into a
powerful and dynamic medium for abstracting complex problems, which, at
first glance, may not even appear to be networks, with associated nodes, links,
and flows.

The topic of networks as a subject of scientific inquiry originated in the paper
by (Euler 1736), which is credited with being the earliest paper on graph theory.
By a graph in this setting is meant, mathematically, a means of abstractly
representing a system by its depiction in terms of vertices (or nodes) and edges
(or arcs, equivalently, links) connecting various pairs of vertices. Euler was
interested in determining whether it was possible to stroll around Königsberg
(later called Kaliningrad) by crossing the seven bridges over the River Pregel
exactly once. The problem was represented as a graph in which the vertices
corresponded to land masses and the edges to bridges.

(Quesnay 1758), in his Tableau Economique, conceptualized the circular flow
of financial funds in an economy as a network and this work can be identified
as the first paper on the topic of financial networks. Quesnay’s basic idea has
been utilized in the construction of financial flow of funds accounts, which are
a statistical description of the flows of money and credit in an economy (see
Cohen 1987).

The concept of a network in economics, in turn, was implicit as early as the
classical work of (Cournot 1838), who not only seems to have first explicitly
stated that a competitive price is determined by the intersection of supply and
demand curves, but had done so in the context of two spatially separated mar-
kets in which the cost associated with transporting the goods was also included.
(Pigou 1920) studied a network system in the form of a transportation network
consisting of two routes and noted that the decision-making behavior of the
users of such a system would lead to different flow patterns. Hence, the network
of concern therein consists of the graph, which is directed, with the edges or
links represented by arrows, as well as the resulting flows on the links.

(Copeland 1952) recognized the conceptualization of the interrelationships
among financial funds as a network and asked the question, “Does money flow
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like water or electricity?” Moreover, he provided a “wiring diagram for the
main money circuit.” Kirchhoff is credited with pioneering the field of electrical
engineering by being the first to have systematically analyzed electrical circuits
and with providing the foundations for the principal ideas of network flow theory.
Interestingly, (Enke 1951) had proposed electronic circuits as a means of solving
spatial price equilibrium problems, in which goods are produced, consumed,
and traded, in the presence of transportation costs. Such analog computational
devices, were soon to be superseded by digital computers along with advances
in computational methodologies, that is, algorithms, based on mathematical
programming.

In this chapter, we further elaborate upon historical breakthroughs in the
use of networks for the formulation, analysis, and solution of financial problems.
Such a perspective allows one to trace the methodological developments as well
as the applications of financial networks and provides a platform upon which
further innovations can be made. Methodological tools that will be utilized to
formulate and solve the financial network problems in this chapter are drawn
from optimization, variational inequalities, as well as projected dynamical sys-
tems theory. We begin with a discussion of financial optimization problems
within a network context and then turn to a range of financial network equilib-
rium problems.

1.2 Financial Optimization Problems

Network models have been proposed for a wide variety of financial problems
characterized by a single objective function to be optimized as in portfolio opti-
mization and asset allocation problems, currency translation, and risk manage-
ment problems, among others. This literature is now briefly overviewed with
the emphasis on the innovative work of (Markowitz 1952, 1959) that estab-
lished a new era in financial economics and became the basis for many financial
optimization models that exist and are used to this day.

Although many financial optimization problems (including Markowitz’s) had
an underlying network structure, and the advantages of network programming
were becoming increasingly evident (cf. Charnes and Cooper 1958)), not many
financial network optimization models were developed until some time later.
Some exceptions are several early models due to (Charnes and Miller 1957) and
(Charnes and Cooper 1961). It was not until the last years of the 1960s and the
first years of the 1970s that the network setting started to be extensively used
for financial applications.

Among the first financial network optimization models that appear in the lit-
erature were a series of currency translating models. (Rutenberg 1970) suggested
that the translation among different currencies could be performed through the
use of arc multipliers. Rutenberg’s network model was multiperiod with linear
costs on the arcs (a characteristic common to the earlier financial networks mod-
els). The nodes of such generalized networks represented a particular currency
in a specific period and the flow on the arcs the amount of cash moving from
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one period and/or currency to another. (Christofides, Hewins, and Salkin 1979)
and (Shapiro and Rutenberg 1976), among others, introduced related financial
network models. In most of these models, the currency prices were determined
according to the amount of capital (network flow) that was moving from one
currency (node) to the other.

(Barr 1972) and (Srinivasan 1974) used networks to formulate a series of
cash management problems, with a major contribution being (Crum’s 1976)
introduction of a generalized linear network model for the cash management of
a multinational firm. The links in the network represented possible cash flow
patterns and the multipliers incorporated costs, fees, liquidity changes, and ex-
change rates. A series of related cash management problems were modeled as
network problems in subsequent years by (Crum and Nye 1981) and (Crum,
Klingman, and Tavis 1983), and others. These papers further extended the ap-
plicability of network programming in financial applications. The focus was on
linear network flow problems in which the cost on an arc was a linear function
of the flow. (Crum, Klingman, and Tavis 1979), in turn, demonstrated how con-
temporary financial capital allocation problems could be modeled as an integer
generalized network problem, in which the flows on particular arcs were forced
to be integers.

In many financial network optimization problems the objective function must
be nonlinear due to the modeling of the risk function and, hence, typically, such
financial problems lie in the domain of nonlinear, rather than linear, network
flow problems. (Mulvey 1987) presented a collection of nonlinear financial net-
work models that were based on previous cash flow and portfolio models in
which the original authors (see, e.g., Rudd and Rosenberg 1979 and Soenen
1979) did not realize, and, thus, did not exploit the underlying network struc-
ture. Mulvey also recognized that the (Markowitz 1952, 1959) mean-variance
minimization problem was, in fact, a network optimization problem with a non-
linear objective function. The classical Markowitz models are now reviewed and
cast into the framework of network optimization problems. See Figure 1.1 for
the network structure of such problems. Additional financial network optimiza-
tion models and associated references can be found in (Nagurney and Siokos
1997) and in the volume edited by (Nagurney 2003).

Markowitz’s model was based on mean-variance portfolio selection, where
the average and the variability of portfolio returns were determined in terms
of the mean and covariance of the corresponding investments. The mean is a
measure of an average return and the variance is a measure of the distribution
of the returns around the mean return. Markowitz formulated the portfolio
optimization problem as associated with risk minimization with the objective
function:

Minimize V = XT QX (1.1)

subject to constraints, representing, respectively, the attainment of a specific
return, a budget constraint, and that no short sales were allowed, given by:

R =
n∑

i=1

Xiri (1.2)
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Figure 1.1: Network Structure of Classical Portfolio Optimization

n∑

i=1

Xi = 1 (1.3)

Xi ≥ 0, i = 1, . . . , n. (1.4)

Here n denotes the total number of securities available in the economy, Xi rep-
resents the relative amount of capital invested in security i, with the securities
being grouped into the column vector X , Q denotes the n×n variance-covariance
matrix on the return of the portfolio, ri denotes the expected value of the return
of security i, and R denotes the expected rate of return on the portfolio. Within
a network context (cf. Figure 1.1), the links correspond to the securities, with
their relative amounts X1, . . . , Xn corresponding to the flows on the respective
links: 1, . . . , n. The budget constraint and the nonnegativity assumption on
the flows are the network conservation of flow equations. Since the objective
function is that of risk minimization, it can be interpreted as the sum of the
costs on the n links in the network. Observe that the network representation is
abstract and does not correspond (as in the case of transportation and telecom-
munication) to physical locations and links.

Markowitz suggested that, for a fixed set of expected values ri and covari-
ances of the returns of all assets i and j, every investor can find an (R, V )
combination that better fits his taste, solely limited by the constraints of the
specific problem. Hence, according to the original work of (Markowitz 1952),
the efficient frontier had to be identified and then every investor had to select a
portfolio through a mean-variance analysis that fitted his preferences.

A related mathematical optimization model (see Markowitz 1959) to the
one above, which can be interpreted as the investor seeking to maximize his re-
turns while minimizing his risk can be expressed by the quadratic programming
problem:

Maximize αR − (1 − α) V (1.5)

subject to:
n∑

i=1

Xi = 1 (1.6)
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Xi ≥ 0, i = 1, . . . , n, (1.7)

where α denotes an indicator of how risk-averse a specific investor is. This
model is also a network optimization problem with the network as depicted in
Figure 1.1 with equations (1.6) and (1.7) again representing a conservation of
flow equation.

A collection of versions and extensions of Markowitz’s model can be found
in (Francis and Archer 1979), with α = 1/2 being a frequently accepted value.
A recent interpretation of the model as a multicriteria decision-making model
along with theoretical extensions to multiple sectors can be found in (Dong
and Nagurney 2001), where additional references are available. References to
multicriteria decision-making and financial applications can also be found in
(Doumpos, Zopounidis, and Pardalos 2000).

A segment of the optimization literature on financial networks has focused
on variables that are stochastic and have to be treated as random variables in
the optimization procedure. Clearly, since most financial optimization problems
are of large size, the incorporation of stochastic variables made the problems
more complicated and difficult to model and compute. (Mulvey 1987) and
(Mulvey and Vladimirou 1989, 1991), among others, studied stochastic financial
networks, utilizing a series of different theories and techniques (e.g., purchase
power priority, arbitrage theory, scenario aggregation) that were then utilized
for the estimation of the stochastic elements in the network in order to be able
to represent them as a series of deterministic equivalents. The large size and
the computational complexity of stochastic networks, at times, limited their
usage to specially structured problems where general computational techniques
and algorithms could be applied. See (Rudd and Rosenberg 1979, Wallace
1986, Rockafellar and Wets 1991, and Mulvey, Simsek, and Pauling 2003) for
a more detailed discussion on aspects of realistic portfolio optimization and
implementation issues related to stochastic financial networks.

1.3 General Financial Equilibrium Problems

We now turn to networks and their utilization for the modeling and analysis of
financial systems in which there is more than a single decision-maker, in contrast
to the above financial optimization problems. It is worth noting that (Quesnay
1758) actually considered a financial system as a network.

(Thore 1969) introduced networks, along with the mathematics, for the study
of systems of linked portfolios. His work benefited from that of (Charnes and
Cooper 1967) who demonstrated that systems of linked accounts could be rep-
resented as a network, where the nodes depict the balance sheets and the links
depict the credit and debit entries. Thore considered credit networks, with the
explicit goal of providing a tool for use in the study of the propagation of money
and credit streams in an economy, based on a theory of the behavior of banks
and other financial institutions. The credit network recognized that these sec-
tors interact and its solution made use of linear programming. (Thore 1970)
extended the basic network model to handle holdings of financial reserves in
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the case of uncertainty. The approach utilized two-stage linear programs un-
der uncertainty introduced by (Ferguson and Dantzig 1956) and (Dantzig and
Madansky 1961). See (Fei 1960) for a graph theoretic approach to the credit
system. More recently, (Boginski, Butenko, and Pardalos 2003) presented a de-
tailed study of the stock market graph, yielding a new tool for the analysis of
market structure through the classification of stocks into different groups, along
with an application to the US stock market.

(Storoy, Thore, and Boyer 1975), in turn, developed a network representation
of the interconnection of capital markets and demonstrated how decomposition
theory of mathematical programming could be exploited for the computation
of equilibrium. The utility functions facing a sector were no longer restricted
to being linear functions. (Thore 1980) further investigated network models of
linked portfolios, financial intermediation, and decentralization/decomposition
theory. However, the computational techniques at that time were not sufficiently
well-developed to handle such problems in practice.

(Thore 1984) later proposed an international financial network for the Euro
dollar market and viewed it as a logistical system, exploiting the ideas of
(Samuelson 1952) and (Takayama and Judge 1971) for spatial price equilibrium
problems. In this paper, as in Thore’s preceding papers on financial networks,
the micro-behavioral unit consisted of the individual bank, savings and loan, or
other financial intermediary and the portfolio choices were described in some
optimizing framework, with the portfolios being linked together into a network
with a separate portfolio visualized as a node and assets and liabilities as di-
rected links.

The above contributions focused on the use and application of networks for
the study of financial systems consisting of multiple economic decision-makers.
In such systems, equilibrium was a central concept, along with the role of prices
in the equilibrating mechanism. Rigorous approaches that characterized the for-
mulation of equilibrium and the corresponding price determination were greatly
influenced by the Arrow-Debreu economic model (cf. Arrow 1951, Debreu 1951).
In addition, the importance of the inclusion of dynamics in the study of such
systems was explicitly emphasized (see, also, Thore and Kydland 1972).

The first use of finite-dimensional variational inequality theory for the com-
putation of multi-sector, multi-instrument financial equilibria is due to (Nagur-
ney, Dong, and Hughes 1992), who recognized the network structure under-
lying the subproblems encountered in their proposed decomposition scheme.
(Hughes and Nagurney 1992 and Nagurney and Hughes 1992) had, in turn, pro-
posed the formulation and solution of estimation of financial flow of funds ac-
counts as network optimization problems. Their proposed optimization scheme
fully exploited the special network structure of these problems. (Nagurney and
Siokos 1997) then developed an international financial equilibrium model uti-
lizing finite-dimensional variational inequality theory for the first time in that
framework.

Finite-dimensional variational inequality theory is a powerful unifying meth-
odology in that it contains, as special cases, such mathematical programming
problems as: nonlinear equations, optimization problems, and complementar-
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ity problems. To illustrate this methodology and its application in general fi-
nancial equilibrium modeling and computation, we now present a multi-sector,
multi-instrument model and an extension due to (Nagurney, Dong, and Hughes
1992) and (Nagurney 1994), respectively. For additional references to varia-
tional inequalities in finance, along with additional theoretical foundations, see
(Nagurney and Siokos 1997) and (Nagurney 2001, 2003).

1.3.1 A Multi-Sector, Multi-Instrument Financial Equi-
librium Model

Recall the classical mean-variance model presented in the preceding section,
which is based on the pioneering work of (Markowitz 1959). Now, however, as-
sume that there are m sectors, each of which seeks to maximize his return and,
at the same time, to minimize the risk of his portfolio, subject to the balance
accounting and nonnegativity constraints. Examples of sectors include: house-
holds, businesses, state and local governments, banks, etc. Denote a typical
sector by j and assume that there are liabilities in addition to assets held by
each sector. Denote the volume of instrument i that sector j holds as an asset,
by Xj

i , and group the (nonnegative) assets in the portfolio of sector j into the
column vector Xj ∈ Rn

+. Further, group the assets of all sectors in the economy
into the column vector X ∈ Rmn

+ . Similarly, denote the volume of instrument i

that sector j holds as a liability, by Y j
i , and group the (nonnegative) liabilities

in the portfolio of sector j into the column vector Y j ∈ Rn
+. Finally, group the

liabilities of all sectors in the economy into the column vector Y ∈ Rmn
+ . Let

ri denote the nonnegative price of instrument i and group the prices of all the
instruments into the column vector r ∈ Rn

+.
It is assumed that the total volume of each balance sheet side of each sector is

exogenous. Recall that a balance sheet is a financial report that demonstrates the
status of a company’s assets, liabilities, and the owner’s equity at a specific point
of time. The left-hand side of a balance sheet contains the assets that a sector
holds at a particular point of time, whereas the right-hand side accommodates
the liabilities and owner’s equity held by that sector at the same point of time.
According to accounting principles, the sum of all assets is equal to the sum
of all the liabilities and the owner’s equity. Here, the term “liabilities” is used
in its general form and, hence, also includes the owner’s equity. Let Sj denote
the financial volume held by sector j. Finally, assume that the sectors under
consideration act in a perfectly competitive environment.

A Sector’s Portfolio Optimization Problem
Recall that in the mean-variance approach for portfolio optimization, the min-
imization of a portfolio’s risk is performed through the use of the variance-
covariance matrix. Hence, the portfolio optimization problem for each sector j
is the following:

Minimize
(

Xj

Y j

)T

Qj

(
Xj

Y j

)
−

n∑

i=1

ri

(
Xj

i − Y j
i

)
(1.8)
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subject to:
n∑

i=1

Xj
i = Sj (1.9)

n∑

i=1

Y j
i = Sj (1.10)

Xj
i ≥ 0, Y j

i ≥ 0, i = 1, 2, . . . , n, (1.11)

where Qj is a symmetric 2n × 2n variance-covariance matrix associated with
the assets and liabilities of sector j. Moreover, since Qj is a variance-covariance
matrix, one can assume that it is positive definite and, as a result, the objective
function of each sector’s portfolio optimization problem, given by the above, is
strictly convex.

Partition the symmetric matrix Qj , as

Qj =
(

Qj
11 Qj

12

Qj
21 Qj

22

)
,

where Qj
11 and Qj

22 are the variance-covariance matrices for only the assets
and only the liabilities, respectively, of sector j. These submatrices are each of
dimension n× n. The submatrices Qj

12 and Qj
21, in turn, are identical since Qj

is symmetric. They are also of dimension n×n. These submatrices are, in fact,
the symmetric variance-covariance matrices between the asset and the liabilities
of sector j. Denote the i-th column of matrix Qj

(αβ), by Qj
(αβ)i, where α and β

can take on the values of 1 and/or 2.

Optimality Conditions
The necessary and sufficient conditions for an optimal portfolio for sector j, are
that the vector of assets and liabilities, (Xj∗, Y j∗) ∈ Kj , where Kj denotes the
feasible set for sector j, given by (1.9) – (1.11), satisfies the following system
of equalities and inequalities: For each instrument i; i = 1, . . . , n, we must have
that:

2(Qj
(11)i)

T · Xj∗ + 2(Qj
(21)i)

T · Y j∗ − r∗i − µ1
j ≥ 0,

2(Qj
(22)i)

T · Y j∗ + 2(Qj
(12)i)

T · Xj∗ + r∗i − µ2
j ≥ 0,

Xj
i

∗ [
2(Qj

(11)i)
T · Xj∗ + 2(Qj

(21)i)
T · Y j∗ − r∗i − µ1

j

]
= 0,

Y j
i

∗ [
2(Qj

(22)i)
T · Y j∗ + 2(Qj

(12)i)
T · Xj∗ + r∗i − µj

2

]
= 0,

where µ1
j and µ2

j are the Lagrange multipliers associated with the accounting
constraints, (1.9) and (1.10), respectively.

Let K denote the feasible set for all the asset and liability holdings of all
the sectors and all the prices of the instruments, where K ≡ {K × Rn

+} and
K ≡

∏m
i=1 Kj . The network structure of the sectors’ optimization problems is

depicted in Figure 1.2.
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Economic System Conditions
The economic system conditions, which relate the supply and demand of each
financial instrument and the instrument prices, are given by: for each instrument
i; i = 1, . . . , n, an equilibrium asset, liability, and price pattern, (X∗, Y ∗, r∗) ∈
K, must satisfy:

J∑

j=1

(Xj
i

∗
− Y j

i

∗
)
{

= 0, if r∗i > 0
≥ 0, if r∗i = 0. (1.12)

The definition of financial equilibrium is now presented along with the vari-
ational inequality formulation. For the derivation, see (Nagurney, Dong, and
Hughes 1992) and (Nagurney and Siokos 1997). Combining the above opti-
mality conditions for each sector with the economic system conditions for each
instrument, we have the following definition of equilibrium.

Definition 1: Multi-Sector, Multi-Instrument Financial Equilibrium
A vector (X∗, Y ∗, r∗) ∈ K is an equilibrium of the multi-sector, multi-instrument
financial model if and only if it satisfies the optimality conditions and the eco-
nomic system conditions (1.12), for all sectors j; j = 1, . . . , m, and for all
instruments i; i = 1, . . . , n, simultaneously.

The variational inequality formulation of the equilibrium conditions, due to
(Nagurney, Dong, and Hughes 1992) is given by:

Theorem 1: Variational Inequality Formulation for the Quadratic
Model
A vector of assets and liabilities of the sectors, and instrument prices, (X∗, Y ∗, r∗)
∈ K, is a financial equilibrium if and only if it satisfies the variational inequality
problem:

m∑

j=1

n∑

i=1

[
2(Qj

(11)i)
T · Xj∗ + 2(Qj

(21)i)
T · Y j∗ − r∗i

]
×

[
Xj

i − Xj
i

∗]

+
m∑

j=1

n∑

i=1

[
2(Qj

(22)i)
T · Y j∗ + 2(Qj

(12)i)
T · Xj∗ + r∗i

]
×

[
Y j

i − Y j
i

∗]

+
n∑

i=1

m∑

j=1

[
Xj

i

∗
− Y j

i

∗]
× [ri − r∗i ] ≥ 0, ∀(X, Y, r) ∈ K. (1.13)

For completeness, the standard form of the variational inequality is now
presented. For additional background, see (Nagurney 1999). Define the N -
dimensional column vector Z ≡ (X, Y, r) ∈ K, and the N -dimensional column
vector F (Z) such that:

F (Z) ≡ D




X
Y
r


 where D =

(
2Q B
−BT 0

)
,
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Q =




Q1
11 Q1

21

. . . . . .
QJ

11 QJ
21

Q1
12 Q1

22

. . . . . .
QJ

12 QJ
22




2mn×2mn

,

and
BT =

(
−I . . . −I I . . . I

)
n×mn

,

and I is the n × n-dimensional identity matrix.
It is clear that variational inequality problem (1.13) can be put into standard

variational inequality form: determine Z∗ ∈ K, satisfying:

〈F (Z∗)T , Z − Z∗〉 ≥ 0, ∀Z ∈ K. (1.14)

1.3.2 Model with Utility Functions

The above model is a special case of the financial equilibrium model due to
Nagurney (1994) in which each sector j seeks to maximize his utility function,

U j(Xj , Y j , r) = uj(Xj , Y j) + rT · (Xj − Y j),

which, in turn, is a special case of the model with a sector j’s utility function
given by the general form: U j(Xj , Y j , r). Interestingly, it has been shown by
(Nagurney and Siokos 1997) that, in the case of utility functions of the form
U j(Xj , Y j , r) = uj(Xj , Y j) + rT · (Xj − Y j), of which the above described
quadratic model is an example, one can obtain the solution to the above varia-
tional inequality problem by solving the optimization problem:

Maximize
J∑

j=1

uj(Xj , Y j) (1.15)

subject to:
J∑

j=1

(Xj
i − Y j

i ) = 0, i = 1, . . . , n (1.16)

(Xj , Y j) ∈ Kj , j = 1, . . . , m, (1.17)

with Lagrange multiplier r∗i associated with the i-th “market clearing” con-
straint (1.16). Moreover, this optimization problem is actually a network opti-
mization problem as revealed in (Nagurney and Siokos 1997). The structure of
the financial system in equilibrium is as depicted in Figure 1.3.
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Figure 1.3: The Network Structure at Equilibrium

1.3.3 Computation of Financial Equilibria

In this section, an algorithm for the computation of solutions to the above finan-
cial equilibrium problems is recalled. The algorithm is the modified projection
method of (Korpelevich 1977). The advantage of this computational method
in the context of the general financial equilibrium problems is that the original
problem can be decomposed into a series of smaller and simpler subproblems
of network structure, each of which can then be solved explicitly and in closed
form. The realization of the modified projection method for the solution of the
financial equilibrium problems with general utility functions is then presented.

The modified projection method, can be expressed as:

Step 0: Initialization

Select Z0 ∈ K. Let τ := 0 and let γ be a scalar such that 0 < γ ≤ 1
L , where L

is the Lipschitz constant (see Nagurney and Siokos (1997)).

Step 1: Computation

Compute Z̄τ by solving the variational inequality subproblem:

〈(Z̄τ + γF (Zτ )T − Zτ )T , Z − Z̄τ 〉 ≥ 0, ∀Z ∈ K. (1.18)

Step 2: Adaptation

Compute Zτ+1 by solving the variational inequality subproblem:

〈(Zτ+1 + γF (Z̄τ )T − Zτ )T , Z − Zτ+1〉 ≥ 0, ∀Z ∈ K. (1.19)
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Step 3: Convergence Verification

If max |Zτ+1
b −Zτ

b | ≤ ε, for all b, with ε > 0, a prespecified tolerance, then stop;
else, set τ := τ + 1, and go to Step 1.

An interpretation of the modified projection method as an adjustment process
is now provided. The interpretation of the algorithm as an adjustment process
was given by (Nagurney 1999). In particular, at an iteration, the sectors in the
economy receive all the price information on every instrument from the previ-
ous iteration. They then allocate their capital according to their preferences.
The market reacts on the decisions of the sectors and derives new instrument
prices. The sectors then improve upon their positions through the adaptation
step, whereas the market also adjusts during the adaptation step. This process
continues until noone can improve upon his position, and the equilibrium is
reached, that is, the above variational inequality is satisfied with the computed
asset, liability, and price pattern.

The financial optimization problems in the computation step and in the
adaptation step are equivalent to separable quadratic programming problems,
of special network structure. Each of these network subproblems structure can
then be solved, at an iteration, simultaneously, and exactly in closed form.
The exact equilibration algorithm (see, e.g., Nagurney and Siokos 1997) can
be applied for the solution of the asset and liability subproblems, whereas the
prices can be obtained using explicit formulae.

A numerical example is now presented for illustrative purposes and solved
using the modified projection method, embedded with the exact equilibration
algorithm. For further background, see (Nagurney and Siokos 1997).

Example 1: A Numerical Example

Assume that there are two sectors in the economy and three financial instru-
ments. Assume that the “size” of each sector is given by S1 = 1 and S2 = 2.
The variance–covariance matrices of the two sectors are:

Q1 =




1 .25 .3 0 0 0
.25 1 .1 0 0 0
.3 1 1 0 0 0
0 0 0 1 .2 .3
0 0 0 .2 1 .5
0 0 0 .3 .5 1




and

Q2 =




1 0 .3 0 0 0
0 1 .2 0 0 0
.3 .2 1 0 0 0
0 0 0 1 .5 0
0 0 0 .5 1 .2
0 0 0 0 .2 1




.

The modified projection method was coded in FORTRAN. The variables
were initialized as follows: r0

i = 1, for all i, with the financial volume Sj equally
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distributed among all the assets and among all the liabilities for each sector j.
The γ parameter was set to 0.35. The convergence tolerance ε was set to 10−3.

The modified projection method converged in 16 iterations and yielded the
following equilibrium pattern:

Equilibrium Prices:

r∗1 = .34039, r∗2 = .23805, r∗3 = .42156,

Equilibrium Asset Holdings:

X1
1
∗

= .27899, X1
2
∗

= .31803, X1
3
∗

= .40298,

X2
1
∗

= .79662, X2
2
∗

= .60904, X2
3
∗

= .59434,

Equilibrium Liability Holdings:

Y 1
1
∗

= .37081, Y 1
2
∗

= .43993, Y 1
3
∗

= .18927,

Y 2
1
∗

= .70579, Y 2
2
∗

= .48693, Y 2
3
∗

= .80729.

The above results show that the algorithm yielded optimal portfolios that
were feasible. Moreover, the market cleared for each instrument, since the price
of each instrument was positive.

Other financial equilibrium models, including models with transaction costs,
with hedging instruments such as futures and options, as well as, international
financial equilibrium models, can be found in (Nagurney and Siokos 1997), and
the references therein.

Moreover, with projected dynamical systems theory (see the book by Nagur-
ney and Zhang 1996) one can trace the dynamic behavior prior to an equilibrium
state (formulated as a variational inequality). In contrast to classical dynami-
cal systems, projected dynamical systems are characterized by a discontinuous
right-hand side, with the discontinuity arising due to the constraint set under-
lying the application in question. Hence, this methodology allows one to model
systems dynamically which are subject to limited resources, with a principal
constraint in finance being budgetary restrictions.

(Dong, Zhang, and Nagurney 1996) were the first to apply the methodol-
ogy of projected dynamical systems to develop a dynamic multi-sector, multi-
instrument financial model, whose set of stationary points coincided with the set
of solutions to the variational inequality model developed in (Nagurney 1994);
and then to study it qualitatively, providing stability analysis results. In the
next section, the methodology of projected dynamical systems is illustrated
in the context of a dynamic financial network model with intermediation (cf.
Nagurney and Dong 2002).
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1.4 Dynamic Financial Networks with Interme-

diation

In this section, dynamic financial networks with intermediation are explored.
As noted earlier, the conceptualization of financial systems as networks dates
to (Quesnay 1758) who depicted the circular flow of funds in an economy as a
network. His basic idea was subsequently applied to the construction of flow
of funds accounts, which are a statistical description of the flows of money and
credit in an economy (cf. Board of Governors 1980, Cohen 1987, Nagurney
and Hughes 1992). However, since the flow of funds accounts are in matrix
form, and, hence, two-dimensional, they fail to capture the dynamic behavior
on a micro level of the various financial agents/sectors in an economy, such
as banks, households, insurance companies, etc. Furthermore, as noted by the
(Board of Governors 1980) on page 6 of that publication, “the generality of the
matrix tends to obscure certain structural aspects of the financial system that
are of continuing interest in analysis,” with the structural concepts of concern
including financial intermediation.

(Thore 1980) recognized some of the shortcomings of financial flow of funds
accounts and developed network models of linked portfolios with financial inter-
mediation, using decentralization/decomposition theory. Note that intermedia-
tion is typically associated with financial businesses, including banks, savings in-
stitutions, investment and insurance companies, etc., and the term implies bor-
rowing for the purpose of lending, rather than for nonfinancial purposes. Thore
also constructed some basic intertemporal models. However, the intertemporal
models were not fully developed and the computational techniques at that time
were not sufficiently advanced for computational purposes.

In this section, we address the dynamics of the financial economy which
explicitly includes financial intermediaries along with the “sources” and “uses”
of financial funds. Tools are provided for studying the disequilibrium dynamics
as well as the equilibrium state. Also, transaction costs are considered, since
they bring a greater degree of realism to the study of financial intermediation.
Transaction costs had been studied earlier in multi-sector, multi-instrument
financial equilibrium models by (Nagurney and Dong 1996 a,b) but without
considering the more general dynamic intermediation setting.

The dynamic financial network model is now described. The model con-
sists of agents with sources of funds, agents who are intermediaries, as well as
agents who are consumers located at the demand markets. Specifically, con-
sider m agents with sources of financial funds, such as households and busi-
nesses, involved in the allocation of their financial resources among a portfolio
of financial instruments which can be obtained by transacting with distinct n
financial intermediaries, such as banks, insurance and investment companies,
etc. The financial intermediaries, in turn, in addition to transacting with the
source agents, also determine how to allocate the incoming financial resources
among distinct uses, as represented by o demand markets with a demand mar-
ket corresponding to, for example, the market for real estate loans, household
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Figure 1.4: The Network Structure of the Financial Economy with Intermedia-
tion and with Non-Investment Allowed

loans, or business loans, etc. The financial network with intermediation is now
described and depicted graphically in Figure 1.4.

The top tier of nodes in Figure 1.4 consists of the agents with sources of
funds, with a typical source agent denoted by i and associated with node i. The
middle tier of nodes in Figure 1.4 consists of the intermediaries, with a typical
intermediary denoted by j and associated with node j in the network. The
bottom tier of nodes consists of the demand markets, with a typical demand
market denoted by k and corresponding to the node k.

For simplicity of notation, assume that there are L financial instruments
associated with each intermediary. Hence, from each source of funds node,
there are L links connecting such a node with an intermediary node with the
l-th such link corresponding to the l-th financial instrument available from the
intermediary. In addition, the option of non-investment in the available financial
instruments is allowed and to denote this option, construct an additional link
from each source node to the middle tier node n + 1, which represents non-
investment. Note that there are as many links connecting each top tier node with
each intermediary node as needed to reflect the number of financial instruments
available. Also, note that there is an additional abstract node n + 1 with a
link connecting each source node to it, which, as shall shortly be shown, will be
used to “collect” the financial funds which are not invested. In the model, it is
assumed that each source agent has a fixed amount of financial funds.

From each intermediary node, construct o links, one to each “use” node
or demand market in the bottom tier of nodes in the network to denote the
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transaction between the intermediary and the consumers at the demand market.
Let xijl denote the nonnegative amount of the funds that source i “invests”

in financial instrument l obtained from intermediary j. Group the financial flows
associated with source agent i, which are associated with the links emanating
from the top tier node i to the intermediary nodes in the logistical network,
into the column vector xi ∈ RnL

+ . Assume that each source has, at his disposal,
an amount of funds Si and denote the unallocated portion of this amount (and
flowing on the link joining node i with node n + 1) by si. Group then the xis
of all the source agents into the column vector x ∈ RmnL

+ .
Associate a distinct financial product k with each demand market, bottom-

tiered node k and let yjk denote the amount of the financial product obtained by
consumers at demand market k from intermediary j. Group these “consump-
tion” quantities into the column vector y ∈ Rno

+ . The intermediaries convert
the incoming financial flows x into the outgoing financial flows y.

The notation for the prices is now given. Note that there will be prices
associated with each of the tiers of nodes in the network. Let ρ1ijl denote the
price associated with instrument l as quoted by intermediary j to source agent
i and group the first tier prices into the column vector ρ1 ∈ RmnL

+ . Also, let
ρ2j denote the price charged by intermediary j and group all such prices into
the column vector ρ2 ∈ Rn

+. Finally, let ρ3k denote the price of the financial
product at the third or bottom-tiered node k in the network, and group all such
prices into the column vector ρ3 ∈ Ro

+.
We now turn to describing the dynamics by which the source agents adjust

the amounts they allocate to the various financial instruments over time, the
dynamics by which the intermediaries adjust their transactions, and those by
which the consumers obtain the financial products at the demand markets. In
addition, the dynamics by which the prices adjust over time are described.
The dynamics are derived from the bottom tier of nodes of the network on up
since it is assumed that it is the demand for the financial products (and the
corresponding prices) that actually drives the economic dynamics. The price
dynamics are presented first and then the dynamics underlying the financial
flows.

The Demand Market Price Dynamics
We begin by describing the dynamics underlying the prices of the financial
products associated with the demand markets (see the bottom-tiered nodes).
Assume, as given, a demand function dk, which can depend, in general, upon
the entire vector of prices ρ3, that is,

dk = dk(ρ3), ∀k. (1.20)

Moreover, assume that the rate of change of the price ρ3k, denoted by ρ̇3k,
is equal to the difference between the demand at the demand market k, as
a function of the demand market prices, and the amount available from the
intermediaries at the demand market. Hence, if the demand for the product at
the demand market (at an instant in time) exceeds the amount available, the
price of the financial product at that demand market will increase; if the amount
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available exceeds the demand at the price, then the price at the demand market
will decrease. Furthermore, it is guaranteed that the prices do not become
negative. Thus, the dynamics of the price ρ3k associated with the product at
demand market k can be expressed as:

ρ̇3k =
{

dk(ρ3) −
∑n

j=1 yjk, if ρ3k > 0
max{0, dk(ρ3) −

∑n
j=1 yjk}, if ρ3k = 0.

(1.21)

The Dynamics of the Prices at the Intermediaries

The prices charged for the financial funds at the intermediaries, in turn, must
reflect supply and demand conditions as well (and as shall be shown shortly also
reflect profit-maximizing behavior on the part of the intermediaries who seek to
determine how much of the financial flows they obtain from the different sources
of funds). In particular, assume that the price associated with intermediary j,
ρ2j , and computed at node j lying in the second tier of nodes, evolves over time
according to:

ρ̇2j =

{ ∑o
k=1 yjk −

∑m
i=1

∑L
l=1 xijl, if ρ2j > 0

max{0,
∑o

k=1 yjk −
∑m

i=1

∑L
l=1 xijl}, if ρ2j = 0,

(1.22)

where ρ̇2j denotes the rate of change of the j-th intermediary’s price. Hence, if
the amount of the financial funds desired to be transacted by the consumers (at
an instant in time) exceeds that available at the intermediary, then the price
charged at the intermediary will increase; if the amount available is greater than
that desired by the consumers, then the price charged at the intermediary will
decrease. As in the case of the demand market prices, it is guaranteed that the
prices charged by the intermediaries remain nonnegative.

Precursors to the Dynamics of the Financial Flows

First some preliminaries are needed that will allow the development of the dy-
namics of the financial flows. In particular, the utility-maximizing behavior of
the source agents and that of the intermediaries is now discussed.

Assume that each such source agent’s and each intermediary agent’s utility
can be defined as a function of the expected future portfolio value, where the
expected value of the future portfolio is described by two characteristics: the
expected mean value and the uncertainty surrounding the expected mean. Here,
the expected mean portfolio value is assumed to be equal to the market value of
the current portfolio. Each agent’s uncertainty, or assessment of risk, in turn,
is based on a variance-covariance matrix denoting the agent’s assessment of the
standard deviation of the prices for each instrument/product. The variance-
covariance matrix associated with source agent i’s assets is denoted by Qi and
is of dimension nL×nL, and is associated with vector xi, whereas intermediary
agent j’s variance-covariance matrix is denoted by Qj , is of dimension o × o,
and is associated with the vector yj .
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Optimizing Behavior of the Source Agents

Denote the total transaction cost associated with source agent i transacting
with intermediary j to obtain financial instrument l by cijl and assume that:

cijl = cijl(xijl), ∀i, j, l. (1.23)

The total transaction costs incurred by source agent i, thus, are equal to the
sum of all the agent’s transaction costs. His revenue, in turn, is equal to the sum
of the price (rate of return) that the the agent can obtain for the financial instru-
ment times the total quantity obtained/purchased of that instrument. Recall
that ρ1ijl denotes the price associated with agent i/intermediary j/instrument
l.

Assume that each such source agent seeks to maximize net return while, si-
multaneously, minimizing the risk, with source agent i’s utility function denoted
by U i. Moreover, assume that the variance-covariance matrix Qi is positive
semidefinite and that the transaction cost functions are continuously differen-
tiable and convex. Hence, one can express the optimization problem facing
source agent i as:

Maximize Ui(xi) =
n∑

j=1

L∑

l=1

ρ1ijlxijl −
n∑

j=1

L∑

l=1

cijl(xijl) − xi
T Qixi, (1.24)

subject to xijl ≥ 0, for all j, l, and to the constraint:

n∑

j=1

L∑

l=1

xijl ≤ Si, (1.25)

that is, the allocations of source agent i’s funds among the financial instruments
made available by the different intermediaries cannot exceed his holdings. Note
that the utility function above is concave for each source agent i. A source agent
may choose to not invest in any of the instruments. Indeed, as shall be illustrated
through subsequent numerical examples, this constraint has important financial
implications.

Clearly, in the case of unconstrained utility maximization, the gradient of
source agent i’s utility function with respect to the vector of variables xi and de-
noted by ∇xiUi, where ∇xiUi=( ∂Ui

∂xi11
, . . . , ∂Ui

∂xinL
), represents agent i’s idealized

direction, with the jl-component of ∇xiUi given by:

(ρ1ijl − 2Qi
zjl

· xi −
∂cijl(xijl)

∂xijl
), (1.26)

where Qi
zjl

denotes the zjl-th row of Qi, and zjl is the indicator defined as:
zjl = (l− 1)n+ j. We return later to describe how the constraints are explicitly
incorporated into the dynamics.
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Optimizing Behavior of the Intermediaries
The intermediaries, in turn, are involved in transactions both with the source
agents, as well as with the users of the funds, that is, with the ultimate con-
sumers associated with the markets for the distinct types of loans/products at
the bottom tier of the financial network. Thus, an intermediary conducts trans-
actions both with the “source” agents as well as with the consumers at the
demand markets.

An intermediary j is faced with what is termed a handling/conversion cost,
which may include, for example, the cost of converting the incoming financial
flows into the financial loans/products associated with the demand markets.
Denote this cost by cj and, in the simplest case, one would have that cj is a
function of

∑m
i=1

∑L
l=1 xijl, that is, the holding/conversion cost of an interme-

diary is a function of how much he has obtained from the various source agents.
For the sake of generality, however, allow the function to, in general, depend
also on the amounts held by other intermediaries and, therefore, one may write:

cj = cj(x), ∀j. (1.27)

The intermediaries also have associated transaction costs in regard to trans-
acting with the source agents, which are assumed to be dependent on the type of
instrument. Denote the transaction cost associated with intermediary j trans-
acting with source agent i associated with instrument l by ĉijl and assume that
it is of the form

ĉijl = ĉijl(xijl), ∀i, j, l. (1.28)

Recall that the intermediaries convert the incoming financial flows x into the
outgoing financial flows y. Assume that an intermediary j incurs a transaction
cost cjk associated with transacting with demand market k, where

cjk = cjk(yjk), ∀j, k. (1.29)

The intermediaries associate a price with the financial funds, which is de-
noted by ρ2j , for intermediary j. Assuming that the intermediaries are also
utility maximizers with the utility functions for each being comprised of net
revenue maximization as well as risk minimization, then the utility maximiza-
tion problem for intermediary agent j with his utility function denoted by U j ,
can be expressed as:

Maximize Uj(xj , yj) =
m∑

i=1

L∑

l=1

ρ2jxijl−cj(x)−
m∑

i=1

L∑

l=1

ĉijl(xijl)−
o∑

k=1

cjk(yjk)−
m∑

i=1

L∑

l=1

ρ1ijlxijl−yj
T Qjyj ,

(1.30)
subject to the nonnegativity constraints: xijl ≥ 0, and yjk ≥ 0, for all i, l,
and k. Here, for convenience, we have let xj = (x1j1, . . . , xmjL). The above
bijective function expresses that the difference between the revenues minus the
handling cost and the transaction costs and the payout to the source agents
should be maximized, whereas the risk should be minimized. Assume now
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that the variance-covariance matrix Qj is positive semidefinite and that the
transaction cost functions are continuously differentiable and convex. Hence,
the utility function above is concave for each intermediary j.

The gradient ∇xj Uj=( ∂Uj

∂x1j1
, . . . ,

∂Uj

∂xmjL
) represents agent j’s idealized direc-

tion in terms of xj , ignoring the constraints, for the time being, whereas the
gradient ∇yj Uj=( ∂Uj

∂yj1
, . . . ,

∂Uj

∂yjo
) represents his idealized direction in terms of

yj . Note that the il-th component of ∇xj Uj is given by:

(ρ2j − ρ1ijl −
∂cj(x)
∂xijl

− ∂ĉijl(xijl)
∂xijl

), (1.31)

whereas the jk-th component of ∇yj Uj is given by:

(−∂cjk(yjk)
∂yjk

− 2Qj
k · yj). (1.32)

However, since both source agent i and intermediary j must agree in terms
of the xijls, the direction (1.26) must coincide with that in (1.31), so adding
both gives us a “combined force,” which, after algebraic simplification, yields:

(ρ2j − 2Qi
zjl

· xi −
∂cijl(xijl)

∂xijl
− ∂cj(x)

∂xijl
− ∂ĉijl(xijl)

∂xijl
). (1.33)

The Dynamics of the Financial Flows between the Source Agents and
the Intermediaries
We are now ready to express the dynamics of the financial flows between the
source agents and the intermediaries. In particular, define the feasible set Ki ≡
{xi|xijl ≥ 0, ∀i, j, l, and (1.25) holds}. Let also K be the Cartesian product
given by K ≡ Πm

i=1Ki and define F 1
ijl as minus the term in (1.33) with F 1

i =
(F 1

i11, . . . , F
1
inL). Then the best realizable direction for the vector of financial

instruments xi can be mathematically expressed as:

ẋi = ΠKi(xi,−F 1
i ), (1.34)

where ΠK(Z, v) is defined as:

ΠK(Z, v) = lim
δ→0

PK(Z + δv) − Z

δ
, (1.35)

and PK is the norm projection defined by

PK(Z) = argminZ′∈K‖Z ′ − Z‖. (1.36)

The Dynamics of the Financial Flows between the Intermediaries and
the Demand Markets
In terms of the financial flows between the intermediaries and the demand mar-
kets, both the intermediaries and the consumers must be in agreement as to
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the financial flows y. The consumers take into account in making their con-
sumption decisions not only the price charged for the financial product by the
intermediaries but also their transaction costs associated with obtaining the
product.

Let ĉjk denote the transaction cost associated with obtaining the product at
demand market k from intermediary j. Assume that this unit transaction cost
is continuous and of the general form:

ĉjk = ĉjk(y), ∀j, k. (1.37)

The consumers take the price charged by the intermediaries, which was de-
noted by ρ2j for intermediary j, plus the unit transaction cost, in making their
consumption decisions. From the perspective of the consumers at the demand
markets, one can expect that an idealized direction in terms of the evolution of
the financial flow of a product between an intermediary/demand market pair
would be:

(ρ3k − ĉjk(y) − ρ2j). (1.38)

On the other hand, as already derived above, one can expect that the inter-
mediaries would adjust the volume of the product to a demand market according
to (1.32). Combining now (1.32) and (1.38), and guaranteeing that the financial
products do not assume negative quantities, yields the following dynamics:

ẏjk =

{
ρ3k − ĉjk(y) − ρ2j − ∂cjk(yjk)

∂yjk
− 2Qj

k · yj , if yjk > 0

max{0, ρ3k − ĉjk(y) − ρ2j − ∂cjk(yjk)
∂yjk

− 2Qj
k · yj}, if yjk = 0.

(1.39)

The Projected Dynamical System

Consider now the dynamic model in which the demand prices evolve according to
(1.21) for all demand markets k, the prices at the intermediaries evolve according
to (1.22) for all intermediaries j; the financial flows between the source agents
and the intermediaries evolve according to (1.34) for all source agents i, and the
financial products between the intermediaries and the demand markets evolve
according to (1.39) for all intermediary/demand market pairs j, k.

Let now Z denote the aggregate column vector (x, y, ρ2, ρ3) in the feasible set
K ≡ K × Rno+n+o

+ . Define the column vector F (Z) ≡ (F 1, F 2, F 3, F 4), where
F 1 is as has been defined previously; F 2 = (F 2

11, . . . , F
2
no), with component

F 2
jk ≡ (2Qj

k · yj + ∂cjk(yjk)
∂yjk

+ ĉjk(y) + ρ2j − ρ3k), ∀j, k; F 3 = (F 3
1 , . . . , F 3

n),

where F 3
j ≡ (

∑m
i=1

∑L
l=1 xijl −

∑o
k=1 yjk), and F 4 = (F 4

1 , . . . , F 4
o ), with F 4

k ≡
(
∑n

j=1 yjk − dk(ρ3)).
Then the dynamic model described by (1.21), (1.22), (1.34), and (1.39) for

all k, j, i, l can be rewritten as the projected dynamical system defined by the
following initial value problem:

Ż = ΠK(Z,−F (Z)), Z(0) = Z0, (1.40)
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where, ΠK is the projection operator of −F (Z) ontoK at Z and Z0=(x0, y0, ρ0
2, ρ

0
3)

is the initial point corresponding to the initial financial flows and the initial
prices. The trajectory of (1.40) describes the dynamic evolution of and the
dynamic interactions among the prices and the financial flows.

The dynamical system (1.40) is non-classical in that the right-hand side is
discontinuous in order to guarantee that the constraints in the context of the
above model are not only nonnegativity constraints on the variables, but also a
form of budget constraints. Here this methodology is applied to study financial
systems in the presence of intermediation. A variety of dynamic financial mod-
els, but without intermediation, formulated as projected dynamical systems can
be found in the book by Nagurney and Siokos (1997).

A Stationary/Equilibrium Point

The stationary point of the projected dynamical system (1.40) is now discussed.
Recall that a stationary point Z∗ is that point that satisfies

Ż = 0 = ΠK(Z∗,−F (Z∗)),

and, hence, in the context of the dynamic financial model with intermediation,
when there is no change in the financial flows and no change in the prices.
Moreover, as established in (Dupuis and Nagurney 1993), since the feasible set
K is a polyhedron and convex, the set of stationary points of the projected
dynamical system of the form given in (1.40) coincides with the set of solutions
to the variational inequality problem given by: determine Z∗ ∈ K, such that

〈F (Z∗)T , Z − Z∗〉 ≥ 0, ∀Z ∈ K, (1.41)

where in the model F (Z) and Z are as defined above and recall that 〈·, ·〉
denotes the inner product in N -dimensional Euclidean space where here N =
mnL + no + n + o.

Variational Inequality Formulation of Financial Equilibrium with In-
termediation

In particular, variational inequality (1.41) here takes the form:
determine (x∗, y∗, ρ∗2, ρ

∗
3) ∈ K, satisfying:

m∑

i=1

n∑

j=1

L∑

l=1

[
2Qi

zjl
· x∗

i +
∂cijl(x∗

ijl)
∂xijl

+
∂cj(x∗)
∂xijl

+
∂ĉijl(x∗

ijl)
∂xijl

− ρ∗2j

]

×
[
xijl − x∗

ijl

]

+
n∑

j=1

o∑

k=1

[
2Qj

k · y∗
j +

∂cjk(y∗
jk)

∂yjk
+ ĉjk(y∗) + ρ∗2j − ρ∗3k

]
×

[
yjk − y∗

jk

]

+
n∑

j=1

[
m∑

i=1

L∑

l=1

x∗
ijl −

o∑

k=1

y∗
jk

]
×

[
ρ2j − ρ∗2j

]
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+
o∑

k=1




n∑

j=1

y∗
jk − dk(ρ∗3)


 × [ρ3k − ρ∗3k] ≥ 0, ∀(x, y, ρ2, ρ3) ∈ K, (1.42)

where K ≡ {K × Rno+n+o
+ } and Qi

zjl
is as was defined following (1.26).

In (Nagurney and Ke 2001) a variational inequality of the form (1.42) was
derived in a manner distinct from that given above for a static financial network
model with intermediation, but with a slightly different feasible set where it was
assumed that the constraints (1.25) had to be tight, that is, to hold as an equal-
ity. (Nagurney and Ke 2003), in turn, demonstrated how electronic transactions
could be introduced into financial networks with intermediation by adding addi-
tional links to the network in Figure 1.4 and by including additional transaction
costs and prices and expanding the objective functions of the decision-makers
accordingly. We discuss electronic financial transactions subsequently, when we
describe the financial engineering of integrated social and financial networks
with intermediation.

1.4.1 The Discrete-Time Algorithm (Adjustment Process)

The projected dynamical system (1.40) is a continuous time adjustment process.
However, in order to further fix ideas and to provide a means of “tracking” the
trajectory of (1.40), we present a discrete-time adjustment process, in the form
of the Euler method, which is induced by the general iterative scheme of (Dupuis
and Nagurney 1993).

The statement of the Euler method is as follows:

Step 0: Initialization:

Start with a Z0∈ K. Set τ := 1.

Step 1: Computation

Compute Zτ by solving the variational inequality problem:

Zτ = PK(Zτ−1 − ατF (Zτ−1)), (1.43)

where {ατ ; τ = 1, 2, . . .} is a sequence of positive scalars such that
∑∞

τ=1 ατ=∞,
ατ → 0, as τ → ∞ (which is required for convergence).

Step 2: Convergence Verification

If |Zτ
b −Zτ−1

b | ≤ ε, for some ε > 0, a prespecific tolerance, then stop: otherwise,
set τ := τ + 1, and go to Step 1.

The statement of this method in the context of the dynamic financial model
takes the form:
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The Euler Method

Step 0: Initialization Step

Set (x0, y0, ρ0
2, ρ

0
3) ∈ K. Let τ = 1, where τ is the iteration counter, and set the

sequence {ατ} so that
∑∞

τ=1 ατ = ∞, ατ > 0, ατ → 0, as τ → ∞.

Step 1: Computation Step

Compute (xτ , yτ , ρτ
2 , ρτ

3) ∈ K by solving the variational inequality subproblem:

m∑

i=1

n∑

j=1

L∑

l=1

[
xτ

ijl + ατ (2Qi
zjl

· xτ−1
i +

∂cijl(xτ−1
ijl )

∂xijl
+

∂cj(xτ−1)
∂xijl

+
∂ĉijl(xτ−1

ijl )
∂xijl

− ρτ−1
2j ) − xτ−1

ijl

]
×

[
xijl − xτ

ijl

]

+
n∑

j=1

o∑

k=1

[
yτ

jk + ατ (2Qi
k · yτ−1

j + ĉjk(yτ−1) +
∂cjk(yτ−1

jk )
∂yjk

+ρτ−1
2j − ρτ−1

3k ) − yτ−1
jk

]
×

[
yjk − yτ

jk

]

+
n∑

j=1

[
ρτ
2j + ατ (

m∑

i=1

L∑

l=1

xτ−1
ijl −

o∑

k=1

yτ−1
jk ) − ρτ−1

2j

]
×

[
ρ2j − ρτ

2j

]

+
o∑

k=1


ρ̄τ

3k + ατ (
n∑

j=1

yτ−1
jk − dk(ρτ−1

3 )) − ρτ−1
3k


 × [ρ3k − ρτ

3k] ≥ 0,

∀(x, y, ρ2, ρ3) ∈ K.

Step 2: Convergence Verification

If |xτ
ijl − xτ−1

ijl | ≤ ε, |yτ
jk − yτ−1

jk | ≤ ε, |ρτ
2j − ρτ−1

2j | ≤ ε, |ρτ
3k − ρτ−1

3k | ≤ ε, for all
i = 1, · · · , m; j = 1, · · · , n; l = 1, . . . , L; k = 1, · · · , o, with ε > 0, a pre-specified
tolerance, then stop; otherwise, set τ := τ + 1, and go to Step 1.

The variational inequality subproblem encountered in the computation step
at each iteration of the Euler method can be solved explicitly and in closed form
since it is actually a quadratic programming problem and the feasible set is a
Cartesian product consisting of the product of K, which has a simple network
structure, and the nonnegative orthants, Rno

+ , Rn
+, and Ro

+, corresponding to
the variables x, y, ρ2, and ρ3, respectively.
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Figure 1.5: The Financial Network Structure of the Numerical Examples

1.5 Numerical Examples

In this section, the Euler method is applied to two numerical examples. The
algorithm was implemented in FORTRAN. For the solution of the induced net-
work subproblems in x, we utilized the exact equilibration algoritm, which fully
exploits the simplicity of the special network structure of the subproblems.

The convergence criterion used was that the absolute value of the flows
and prices between two successive iterations differed by no more than 10−4.
For the examples, the sequence {ατ} = .1{1, 1

2 , 1
2 , 1

3 , 1
3 , 1

3 , . . .}, which is of the
form given in the intialization step of the algorithm in the preceding section.
The numerical examples had the network structure depicted in Figure 1.5 and
consisted of two source agents, two intermediaries, and two demand markets,
with a single financial instrument handled by each intermediary.

The algorithm was initialized as follows: since there was a single financial
instrument associated with each of the intermediaries, we set xij1 = Si

n for each
source agent i. All the other variables, that is, the initial vectors y, ρ2, and ρ3

were set to zero. Additional details are given in (Nagurney and Dong 2002).

Example 2

The data for this example were constructed for easy interpretation purposes.
The supplies of the two source agents were: S1 = 10 and S2 = 10. The
variance-covariance matrices Qi and Qj were equal to the identity matrices for
all source agents i and all intermediaries j.

The transaction cost functions faced by the source agents associated with
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transacting with the intermediaries were given by:

c111(x111) = .5x2
111 + 3.5x111, c121(x121) = .5x2

121 + 3.5x121,

c211(x211) = .5x2
211 + 3.5x211, c221(x221) = .5x2

221 + 3.5x221.

The handling costs of the intermediaries, in turn, were given by:

c1(x) = .5(
2∑

i=1

.5xi11)2, c2(x) = .5(
2∑

i=1

xi21)2.

The transaction costs of the intermediaries associated with transacting with
the source agents were, respectively, given by:

ĉ111(x111) = 1.5x2
111 + 3x111, ĉ121(x121) = 1.5x2

121 + 3x121,

ĉ211(x211) = 1.5x2
211 + 3x211, ĉ221(x221) = 1.5x2

221 + 3x221.

The demand functions at the demand markets were:

d1(ρ3) = −2ρ31 − 1.5ρ32 + 1000, d2(ρ3) = −2ρ32 − 1.5ρ31 + 1000,

and the transaction costs between the intermediaries and the consumers at the
demand markets were given by:

ĉ11(y) = y11 + 5, ĉ12(y) = y12 + 5, ĉ21(y) = y21 + 5, ĉ22(y) = y22 + 5.

It was assumed for this and the subsequent example that the transaction
costs as perceived by the intermediaries and associated with transacting with
the demand markets were all zero, that is, cjk(yjk) = 0, for all j, k.

The Euler method converged and yielded the following equilibrium pattern:

x∗
111 = x∗

121 = x∗
211 = x∗

221 = 5.000,

y∗
11 = y∗

12 = y∗
21 = y∗

22 = 5.000.

The vector ρ∗2 had components: ρ∗21 = ρ∗22 = 262.6664, and the computed
demand prices at the demand markets were: ρ∗31 = ρ∗32 = 282.8106.

The optimality/equilibrium conditions were satisfied with good accuracy.
Note that in this example, the budget constraint was tight for both source
agents, that is, s∗1 = s∗2 = 0, where s∗i = Si −

∑n
j=1

∑L
l=1 x∗

ijl, and, hence, there
was zero flow on the links connecting node 3 with top tier nodes 1 and 2. Thus,
it was optimal for both source agents to invest their entire financial holdings in
each instrument made available by each of the two intermediaries.

Example 3

The following variant of Example 2 was then constructed to create Example 3.
The data were identical to that in Example 2 except that the supply for each
source sector was increased so that S1 = S2 = 50.
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The Euler method converged and yielded the following new equilibrium pat-
tern:

x∗
111 = x∗

121 = x∗
211 = x∗

221 = 23.6832,

y∗
11 = y∗

12 = y∗
21 = y∗

22 = 23.7247.

The vector ρ∗2 had components: ρ∗21 = ρ∗22 = 196.0174, and the demand prices
at the demand markets were: ρ∗31 = ρ∗32 = 272.1509.

It is easy to verify that the optimality/equilibrium conditions, again, were
satisfied with good accuracy. Note, however, that unlike the solution for Exam-
ple 2, both source agent 1 and source agent 2 did not invest their entire financial
holdings. Indeed, each opted to not invest the amount 23.7209 and this was the
volume of flow on each of the two links ending in node 3 in Figure 1.6.

Since the supply of financial funds increased, the price for the instruments
charged by the intermediaries decreased from 262.6664 to 196.1074. The demand
prices at the demand markets also decreased, from 282.8106 to 272.1509.

1.5.1 The Integration of Social Networks with Financial
Networks

As noted by (Nagurney, Cruz, and Wakolbinger 2004), globalization and techno-
logical advances have made major impacts on financial services in recent years
and have allowed for the emergence of electronic finance. The financial land-
scape has been transformed through increased financial integration, increased
cross border mergers, and lower barriers between markets. Moreover, as noted
by several authors, boundaries between different financial intermediaries have
become less clear (cf. Claessens and Jansen 2000, Claessens et al. 2003, G-10
2001).

For example, during the period 1980-1990, global capital transactions tripled
with telecommunication networks and financial instrument innovation being two
of the empirically identified major causes of globalization with regards to inter-
national financial markets (Kim 1999)). The growing importance of networks
in financial services and their effects on competition have been also addressed
by (Claessens et al. 2003). (Kim 1999) has argued for the necessity of integrat-
ing various theories, including portfolio theory with risk management, and flow
theory in order to capture the underlying complexity of the financial flows over
space and time.

At the same time that globalization and technological advances have trans-
formed financial services, researchers have identified the importance of social
networks in a plethora of financial transactions (cf. Nagurney, Cruz, and Wakol-
binger 2004 and the references therein), notably, in the context of personal re-
lationships. The relevance of social networks within an international financial
context needs to be examined both theoretically and empirically. It is clear
that the existence of appropriate social networks can affect not only the risk
associated with financial transactions but also transaction costs.

Given the prevalence of networks in the discussions of globalization and
international financial flows, it seems natural that any theory for the illumi-
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nation of the behavior of the decision-makers involved in this context as well
as the impacts of their decisions on the financial product flows, prices, appre-
ciation rates, etc., should be network-based. Recently, (Nagurney, Cruz, and
Wakolbinger 2004) took on a network perspective for the theoretical modeling,
analysis, and computation of solutions to international financial networks with
intermediation in which they explicitly integrated the social network compo-
nent. They also captured electronic transactions within the framework since
that aspect is critical in the modeling of international financial flows today.

Here, that model is highlighted. This model generalizes the model of (Nagur-
ney and Cruz 2003) to explicitly include social networks. For further background
on the integration of social networks and financial networks, see (Nagurney,
Wakolbinger, and Zhao 2006).

As in the model of (Nagurney and Cruz 2003), the model consists of L coun-
tries, with a typical country denoted by l or l̂; I “source” agents in each country
with sources of funds, with a typical source agent denoted by i, and J finan-
cial intermediaries with a typical financial intermediary denoted by j. As noted
earlier, examples of source agents are households and businesses, whereas exam-
ples of financial intermediaries include banks, insurance companies, investment
companies, and brokers, where now we include electronic brokers, etc. Inter-
mediaries in the framework need not be country-specific but, rather, may be
virtual.

Assume that each source agent can transact directly electronically with the
consumers through the Internet and can also conduct his financial transactions
with the intermediaries either physically or electronically in different currencies.
There are H currencies in the international economy, with a typical currency
being denoted by h. Also, assume that there are K financial products which
can be in distinct currencies and in different countries with a typical financial
product (and associated with a demand market) being denoted by k. Hence,
the financial intermediaries in the model, in addition to transacting with the
source agents, also determine how to allocate the incoming financial resources
among distinct uses, which are represented by the demand markets with a de-
mand market corresponding to, for example, the market for real estate loans,
household loans, or business loans, etc., which, as mentioned, can be associated
with a distinct country and a distinct currency combination. Let m refer to a
mode of transaction with m = 1 denoting a physical transaction and m = 2
denoting an electronic transaction via the Internet.

The depiction of the supernetwork (see also, e.g., Nagurney and Dong 2002)
is given in Figure 1.6. As this figure illustrates, the supernetwork is comprised
of the social network, which is the bottom level network, and the international
financial network, which is the top level network. Internet links to denote the
possibility of electronic financial transactions are denoted in the figure by dotted
arcs. In addition, dotted arcs/links are used to depict the integration of the two
networks into a supernetwork.
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Figure 1.6: The Multilevel Supernetwork Structure of the Integrated Interna-
tional Financial Network / Social Network System
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The supernetwork in Figure 1.6 consists of a social network and an inter-
national financial network with intermediation. Both networks consist of three
tiers of decision-makers. The top tier of nodes consists of the agents in the dif-
ferent countries with sources of funds, with agent i in country l being referred
to as agent il and associated with node il. There are IL top-tiered nodes in the
network. The middle tier of nodes in each of the two networks consists of the
intermediaries (which need not be country-specific), with a typical intermediary
j associated with node j in this (second) tier of nodes in the networks. The
bottom tier of nodes in both the social network and in the financial network
consists of the demand markets, with a typical demand market for product k
in currency h and country l̂ associated with node khl̂. There are, as depicted
in Figure 1.6, J middle (or second) tiered nodes corresponding to the interme-
diaries and KHL bottom (or third) tiered nodes in the international financial
network. In addition, we add a node J + 1 to the middle tier of nodes in the
financial network only in order to represent the possible non-investment (of a
portion or all of the funds) by one or more of the source agents, as also done in
the model in the previous section.

The network in Figure 1.6 includes classical physical links as well as Internet
links to allow for electronic financial transactions. Electronic transactions are
possible between the source agents and the intermediaries, the source agents
and the demand markets as well as the intermediaries and the demand markets.
Physical transactions can occur between the source agents and the intermedi-
aries and between the intermediaries and the demand markets.

(Nagurney, Cruz, and Wakolbinger 2004) describe the behavior of the deci-
sion-makers in the model, and allow for multicriteria decision-making, which
consists of profit maximization, risk minimization (with general risk functions),
as well as the maximization of the value of relationships. Each decision-maker
is allowed to weight the criteria individually. The dynamics of the interactions
are discussed and the projected dynamical system derived. The Euler method
is then used to track the dynamic trajectories of the financial flows (transacted
either physically or electronically), the prices, as well as the relationship levels
until the equilibrium state is reached.

Fascinatingly, it has recently been shown by (Liu and Nagurney 2005) that
financial network problems with intermediation can be reformulated as trans-
portation network equilibrium problems and that electric power networks can
be as well (cf. Nagurney, Liu, Cojocaru, and Daniele 2005). Hence, we now can
answer Copeland’s question in that money and electricity are alike in that they
both flow on networks, which are, in turn, transformable into transportation
networks.
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