
Cybersecurity Investments with Nonlinear Budget Constraints:
Analysis of the Marginal Expected Utilities

Patrizia Daniele
Department of Mathematics and Computer Science

University of Catania, Italy
Antonino Maugeri

Department of Mathematics and Computer Science
University of Catania, Italy

and
Anna Nagurney

Isenberg School of Management
University of Massachusetts, Amherst, Massachusetts 01003

In Operations Research, Engineering, and Cyber Security: Trends in Ap-
plied Mathematics and Technology, N.J. Daras and T.M. Rassias, Editors,
Springer International Publishing Switzerland, 2017, pp. 117-134.

Abstract: In this paper, we consider a recently introduced cybersecurity
investment supply chain game theory model consisting of retailers and con-
sumers at demand markets with the retailers being faced with nonlinear
budget constraints on their cybersecurity investments. We construct a novel
reformulation of the derived variational inequality formulation of the gov-
erning Nash equilibrium conditions. The reformulation then allows us to
exploit and analyze the Lagrange multipliers associated with the bounds on
the product transactions and the cybersecurity levels associated with the
retailers to gain insights into the economic market forces. We provide an
analysis of the marginal expected transaction utilities and of the marginal
expected cybersecurity investment utilities. We then establish some stability
results for the financial damages associated with a cyberattack faced by the
retailers. The theoretical framework is subsequently applied to numerical
examples to illustrate its applicability.
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1 Introduction

Cybercrime is a major global issue with cyberattacks adversely affecting
firms, governments, other organizations, and consumers ([15]). For example,
it has been estimated that cyberattacks cost firms $400 billion annually
([22]). In a recent study ([19]) that surveyed 959 top executives in such
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industries as banking, insurance, energy, retail, pharmaceuticals, healthcare,
and automotive, it was found that 63% reported that their companies ex-
perienced significant attacks daily or weekly. Cyberattacks can result not
only in direct financial losses and/or the loss of data, but also in an organiza-
tion’s highly valued asset - its reputation. It is quite understandable, hence,
that world-wide spending on cybersecurity was approximately $75 billion in
2015, with the expectation that, by 2020, companies around the globe will
be spending around $170 billion annually (see [12]).

Organizations, as noted by ([19]), are part of ecosystems and the deci-
sions that they make individually, including those in terms of cyberinvest-
ments, may affect other organizations. Indeed, as discussed in [16], who
developed a supply chain game theory model for cybersecurity investments,
the level of a cybersecurity investment of a retailer may affect not only his
vulnerability to cyberattacks but also that of the network of the supply chain
consisting of retailers and consumers who engage in electronic transactions.
Effective modeling of the complexity of cyberattacks and cybersecurity in-
vestments using operations research techniques, including game theory, can
assist in the analysis of complex behaviors and provide, ultimately, tools
and insights for policymakers.

For example, [13] developed a multiproduct network economic model of
cybercrime with a focus on financial services, since that industrial sector is
a major target of cyberattacks. The model captured the perishability of the
value of financial products to cybercriminals in terms of the depreciation in
prices that the hacked products command over time in the black market.
[15], subsequently, constructed a supply chain game theory model in which
sellers maximize their expected profits while determining both their prod-
uct transactions with consumers as well as their cybersecurity investments.
However, network vulnerability was not captured. [16] then showed how the
model in [15] could be extended to quantify and compute network vulnerabi-
lity. The studies [15] and [16] were inspired, in part, by the contributions
in [20]. The supply chain game theory network framework of [15] and [16]
is, nevertheless, more general than that of [20] since the firms, which are
retailers, are not assumed to be identical, and the demand side for products
of the supply chain network is also captured. In addition, the firms can have
distinct cybersecurity investment cost functions and are faced with distinct
damages, if attacked. Such features provide greater modeling flexibility as
well as realism.

More recently, [14], building on the prior supply chain network cybersecu-
rity investment modeling and analysis work noted above, introduced a novel
game theory model in which the budget constraints for cybersecurity invest-
ments of retailers, which are nonlinear, are explicitly included, and con-
ducted a spectrum of sensitivity analysis exercises. Consumers reflect their
preferences for the product through the demand price functions, which de-
pend on the product demands and on the average security of the network.
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The methodology utilized for the formulation, analysis, and solution of the
game theory models in [13], [15], [16], and [14] was that of the theory of vari-
ational inequalities. We refer the reader to [11] for a survey of game theory,
as applied to network security and privacy, and to [9] for some background
on optimization models for cybersecurity investments. For a collection of
papers on cryptography and network security, see the edited volume [6].

In this paper, we return to the cybersecurity investment supply chain
game theory model with nonlinear budget constraints of [14]. We provide
an alternative formulation of the variational inequality derived therein in
order to provide a deeper qualitative and economic analysis with a focus on
the Lagrange multipliers associated with the constraints. The constraints
in the model in [14] include not only the nonlinear budget constraints but
also lower and upper bounds on the cybersecurity levels as well as on the
product transactions.

It is worth mentioning that a wide spectrum of papers has been devoted
to the analysis of the behavior of the solutions to a variational inequality
which models equilibrium problems by means of the Lagrange multipliers.
For instance, we cite the papers [1], [3], [5] for the financial equilibrium prob-
lem, the paper [2] for the random traffic equilibrium problem, the papers [7],
[8] for the elastic-plastic torsion problem, and the paper [4] for the unilateral
problems. This paper is the first to analyze a cybersecurity investment sup-
ply chain game theory model with nonlinear budget constraints by means
of Lagrange multipliers.

This paper is organized as follows. In Section 2, we briefly recall, for com-
pleteness and easy reference, the supply chain network game theory model
for cybersecurity investments with nonlinear budget constraints developed
in [14] and provide the variational inequality formulation of the Nash equilib-
rium conditions. The model consists of retailers and consumers at demand
markets with the former competing on their product transactions as well
as their cybersecurity levels. In Section 3, we construct an alternative for-
mulation of that variational inequality. We then provide an analysis of the
marginal expected transaction utilities and of the marginal expected cyber-
security investment utilities. In addition, we present some stability results
for the marginal expected cybersecurity investment utilities with respect to
changes in the financial damages sustained in a cyberattack. Section 4 il-
lustrates how the framework developed in Section 3 can be applied in the
context of numerical examples. We summarize our results and present our
conclusions in Section 5.

2 The Model

We now recall the supply chain game theory model of cybersecurity invest-
ments with nonlinear budget constraints introduced in [14] (see also [21] for
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other equilibrium models with nonlinear constraints). The supply chain net-
work, consisting of retailers and consumers at demand markets, is depicted
in Figure 1. Each retailer i; i = 1, . . . ,m, can transact with demand market
j; j = 1, . . . , n, with Qij denoting the product transaction from i to j. Also,
each retailer i; i = 1, . . . ,m, determines his cybersecurity or, simply, secu-
rity, level si; i = 1, . . . ,m. We group the product transactions for retailer i;
i = 1, . . . ,m, into the n-dimensional vector Qi and then we group all such
retailer transaction vectors into the mn-dimensional vector Q. The security
levels of the retailers are grouped into the m-dimensional vector s.

The cybersecurity level in the supply chain network is the average secu-

rity and is denoted by s̄, where s̄ =
m∑

i=1

si
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Figure 1: The Bipartite Structure of the Supply Chain Network Game The-
ory Model

The retailers seek to maximize their individual expected utilities, con-
sisting of expected profits, and compete in a noncooperative game in terms
of strategies consisting of their respective product transactions and security
levels. The governing equilibrium concept is that of Nash equilibrium ([17],
[18]).

The demand at each demand market j, dj , must satisfy:

dj =
m∑

i=1

Qij , j = 1, . . . , n. (1)

We group the demands at the demand markets into the n-dimensional vector
d.

The product transactions are subject to upper bounds and must be non-
negative so that we have the following constraints:

0 ≤ Qij ≤ Q̄ij , i = 1, . . . ,m; j = 1, . . . , n. (2)
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The cybersecurity level of each retailer i must satisfy the following con-
straint:

0 ≤ si ≤ usi , i = 1, . . . ,m, (3)

where usi < 1 for all i; i = 1, . . . ,m. The larger the value of si, the higher
the security level, with perfect security reflected in a value of 1. However,
since, as noted in [14], we do not expect perfect security to be attainable,
we have usi < 1; i = 1, . . . ,m. If si = 0 this means that retailer i has no
security.

The demand price of the product at demand market j, ρj(d, s̄); j =
1, . . . , n, is a function of the vector of demands and the network security.
We can expect consumers to be willing to pay more for higher network
security. In view of the conservation of flow equations above, we can define
ρ̂j(Q, s̄) ≡ ρj(d, s̄); j = 1, . . . , n. We assume that the demand price functions
are continuously differentiable.

There is an investment cost function hi; i = 1, . . . ,m, associated with
achieving a security level si with the function assumed to be increasing,
continuously differentiable and convex. For a given retailer i, hi(0) = 0
denotes an entirely insecure retailer and hi(1) = ∞ is the investment cost
associated with complete security for the retailer. An example of an hi(si)
function that satisfies these properties and that is utilized here (see also [14])
is

hi(si) = αi

(
1√

(1− si)
− 1

)
with αi > 0.

The term αi enables distinct retailers to have different investment cost func-
tions based on their size and needs. Such functions have been introduced by
[20] and also utilized by [16]. However, in those models, there are no cyber-
security budget constraints and the cybersecurity investment cost functions
only appear in the objective functions of the decision-makers.

In the model with nonlinear budget constraints as in [14] each retailer
is faced with a limited budget for cybersecurity investment. Hence, the
following nonlinear budget constraints must be satisfied:

αi

(
1√

(1− si)
− 1

)
≤ Bi; i = 1, . . . ,m, (4)

that is, each retailer can’t exceed his allocated cybersecurity budget.
The profit fi of retailer i; i = 1, . . . ,m (in the absence of a cyberat-

tack and cybersecurity investment), is the difference between his revenue
n∑

j=1

ρ̂j(Q, s)Qij and his costs associated, respectively, with production and
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transportation: ci

n∑
j=1

Qij −
n∑

j=1

cij(Qij), that is,

fi(Q, s) =
n∑

j=1

ρ̂j(Q, s)Qij − ci

n∑
j=1

Qij −
n∑

j=1

cij(Qij). (5)

If there is a successful cyberattack on a retailer i; i = 1, . . . ,m, retailer i
incurs an expected financial damage given by

Dipi,

where Di, the damage incurred by retailer i, takes on a positive value, and
pi is the probability of a successful cyberattack on retailer i, where:

pi = (1− si)(1− s̄), i = 1, . . . ,m, (6)

with the term (1− s̄) denoting the probability of a cyberattack on the supply
chain network and the term (1 − si) denoting the probability of success of
such an attack on retailer i.

Each retailer i; i = 1, . . . ,m, hence, seeks to maximize his expected
utility, E(Ui), corresponding to his expected profit given by:

E(Ui) = (1−pi)fi(Q, s)+pi(fi(Q, s)−Di)−hi(si) = fi(Q, s)−piDi−hi(si).
(7)

Let Ki denote the feasible set corresponding to retailer i, where Ki ≡
{(Qi, si)|0 ≤ Qij ≤ Q̄ij ,∀j, 0 ≤ si ≤ usi and the budget constraint holds for i}

and define K ≡
m∏

i=1

Ki.

We now recall the following definition from [14]:

Definition 2.1 (A Supply Chain Nash Equilibrium in Product Trans-
actions and Security Levels) A product transaction and security level
pattern (Q∗, s∗) ∈ K is said to constitute a supply chain Nash equilibrium if
for each retailer i; i = 1, . . . ,m,

E(Ui(Q∗
i , s

∗
i , Q̂

∗
i , ŝ

∗
i )) ≥ E(Ui(Qi, si, Q̂∗

i , ŝ
∗
i )), ∀(Qi, si) ∈ Ki, (8)

where

Q̂∗
i ≡ (Q∗

1, . . . , Q
∗
i−1, Q

∗
i+1, . . . , Q

∗
m); and ŝ∗i ≡ (s∗1, . . . , s

∗
i−1, s

∗
i+1, . . . , s

∗
m).

Hence, according to (8), a supply chain Nash equilibrium is established
if no retailer can unilaterally improve upon his expected utility (expected
profit) by choosing an alternative vector of product transactions and security
level.

The following theorem was established in [14]:
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Theorem 2.1 (Variational Inequality Formulation) Assume that, for
each retailer i; i = 1, . . . ,m, the expected profit function E(Ui(Q, s)) is
concave with respect to the variables {Qi1, . . . , Qin}, and si, and is continu-
ously differentiable. Then (Q∗, s∗) ∈ K is a supply chain Nash equilibrium
according to Definition 1 if and only if it satisfies the variational inequality

−
m∑

i=1

n∑
j=1

∂E(Ui(Q∗, s∗))
∂Qij

×
(
Qij −Q∗

ij

)
−

m∑
i=1

∂E(Ui(Q∗, s∗))
∂si

× (si − s∗i ) ≥ 0,

∀(Q, s) ∈ K (9)

or, equivalently, (Q∗, s∗) ∈ K is a supply chain Nash equilibrium product
transaction and security level pattern if and only if it satisfies the variational
inequality

m∑
i=1

n∑
j=1

[
ci +

∂cij(Q∗
ij)

∂Qij
− ρ̂j(Q∗, s∗)−

n∑
k=1

∂ρ̂k(Q∗, s∗)
∂Qij

×Q∗
ik

]
× (Qij −Q∗

ij)

+
m∑

i=1

[
∂hi(s∗i )

∂si
−

(
1−

m∑
k=1

s∗k
m

+
1− s∗i

m

)
Di −

n∑
k=1

∂ρ̂k(Q∗, s∗)
∂si

×Q∗
ik

]
×(si − s∗i ) ≥ 0, ∀(Q, s) ∈ K. (10)

3 Equivalent Formulation of the Variational In-
equality

The aim of this section is to find an alternative formulation of the variational
inequality (9) governing the Nash equilibrium for the cybersecurity supply
chain game theory model with nonlinear budget constraints by means of the
Lagrange multipliers associated with the constraints defining the feasible set
K. To this end, we remark that K can be rewritten in the following way:

K =
{

(Q, s) ∈ Rmn+n : −Qij ≤ 0, Qij −Qij ≤ 0, −si ≤ 0, si − usi ≤ 0,

hi(si)−Bi ≤ 0, i = 1, . . . ,m, j = 1, . . . , n

}
, (11)

and that variational inequality (9) can be equivalently rewritten as a minimi-
zation problem. Indeed, by setting:

V (Q, s) = −
m∑

i=1

n∑
j=1

∂E(Ui(Q∗, s∗))
∂Qij

(
Qij −Q∗

ij

)
−

m∑
i=1

∂E(Ui(Q∗, s∗))
∂si

(si − s∗i ) ,

we have:

V (Q, s) ≥ 0 in K and min
K

V (Q, s) = V (Q∗, s∗) = 0. (12)
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Then, we can consider the following Lagrange function:

L(Q, s, λ1, λ2, µ1, µ2, λ) = −
m∑

i=1

n∑
j=1

∂E(Ui(Q∗, s∗))
∂Qij

(
Qij −Q∗

ij

)
−

m∑
i=1

∂E(Ui(Q∗, s∗))
∂si

(si − s∗i )

+
m∑

i=1

n∑
j=1

λ1
ij(−Qij)

+
m∑

i=1

n∑
j=1

λ2
ij(Qij −Qij) +

m∑
i=1

µ1
i (−si)

+
m∑

i=1

µ2
i (si − usi) +

m∑
i=1

λi(hi(si)−Bi), (13)

where (Q, s) ∈ Rmn+n, λ1, λ2 ∈ Rmn
+ , µ1, µ2 ∈ Rm

+ , λ ∈ Rm
+ . Since for the

convex set K the Slater condition is verified and (Q∗, s∗) is a minimal solution
to problem (12), by virtue of well-known theorems (see [10]), there exist λ

1
,

λ
2 ∈ Rmn

+ , µ1, µ2, λ ∈ Rm
+ such that the vector (Q∗, s∗, λ

1
, λ

2
, µ1, µ2, λ) is a

saddle point of the Lagrange function (13); namely,

L(Q∗, s∗, λ1, λ2, µ1, µ2, λ) ≤ L(Q∗, s∗, λ
1
, λ

2
, µ1, µ2, λ)

≤ L(Q, s, λ
1
, λ

2
, µ1, µ2, λ) (14)

∀(Q, s) ∈ K, ∀λ1, λ2 ∈ Rmn
+ , ∀µ1, µ2, λ ∈ Rm

+ and

λ
1
ij(−Q∗

ij) = 0, λ
2
ij(Q

∗
ij −Qij) = 0, i = 1, . . . ,m, j = 1, . . . , n,

(15)
µ1

i (−s∗i ) = 0, µ2
i (s

∗
i − usi) = 0, λi(hi(s∗i )−Bi) = 0, i = 1, . . . ,m.

From the right-hand side of (14) it follows that (Q∗, s∗) ∈ Rmn+n
+ is a mini-

mal point of L(Q, s, λ
1
, λ

2
, µ1, µ2, λ) in the whole space Rmn+n and, hence,

for all i = 1, . . . ,m, and j = 1, . . . , n, we get:

∂L(Q∗, s∗, λ
1
, λ

2
, µ1, µ2, λ)

∂Qij
= −∂E(Ui(Q∗, s∗))

∂Qij
− λ

1
ij + λ

2
ij = 0 (16)

∂L(Q∗, s∗, λ
1
, λ

2
, µ1, µ2, λ)

∂si
= −∂E(Ui(Q∗, s∗))

∂si

−µ1
i + µ2

i + λi
∂hi(s∗i )

∂si
= 0 (17)

together with conditions (15).
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Conditions (15)–(17) represent an equivalent formulation of variational in-
equality (9).
It is easy to see that from (16) and (17) the variational inequality (9) follows.
Indeed, multiplying (16) by (Qij −Q∗

ij) we obtain:

−∂E(Ui(Q∗, s∗))
∂Qij

(Qij −Q∗
ij)− λ

1
ij(Qij −Q∗

ij) + λ
2
ij(Qij −Q∗

ij) = 0

and, taking into account (15), we have:

−∂E(Ui(Q∗, s∗))
∂Qij

(Qij −Q∗
ij) = λ

1
ijQij − λ

2
ij(Qij −Qij) ≥ 0.

Analogously, multiplying (17) by (si − s∗i ), we get:

−∂E(Ui(Q∗, s∗))
∂si

(si−s∗i )−µ1
i (si−s∗i )+µ2

i (si−s∗i )+λi
∂hi(s∗i )

∂si
(si−s∗i ) = 0.

From (15), we have:

µ1
i (−s∗i ) = 0, µ2

i s
∗
i = µ2

i usi .

Moreover, if λi > 0, then hi(s∗i ) = Bi = maxhi(si), but hi(si) is a nonde-
creasing function; hence, it attains its maximum value at s∗i = usi . Therefore,
we get:

−∂E(Ui(Q∗, s∗))
∂si

(si − s∗i ) = µ1
i si − µ2

i (si − usi)− λi
∂hi(s∗i )

∂si
(si − usi) ≥ 0

because hi(si) is a nonnegative convex function such that hi(0) = 0. Then

hi(si) attains the minimum value at 0. Hence,
∂hi(0)

∂si
≥ 0 and, since

∂hi(si)
∂si

is increasing, it results in:

0 ≤ ∂hi(0)
∂si

≤ ∂hi(si)
∂si

, ∀0 ≤ si ≤ usi .

The term
∂E(Ui(Q∗, s∗))

∂Qij
is called the marginal expected transaction util-

ity, i = 1, . . . ,m, j = 1, . . . , n, and the term
∂E(Ui(Q∗, s∗))

∂si
is called the

marginal expected cybersecurity investment utility, i = 1, . . . ,m. Our aim is
to study such marginal expected utilities by means of (15)–(17).
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3.1 Analysis of Marginal Expected Transaction Utilities

From (16) we get

−∂E(Ui(Q∗, s∗))
∂Qij

− λ
1
ij + λ

2
ij = 0, i = 1, . . . ,m, j = 1, . . . , n.

So, if 0 < Q∗
ij < Qij , then we get (see also (10))

−∂E(Ui(Q∗, s∗))
∂Qij

= ci +
∂cij(Q∗

ij)
∂Qij

− ρ̂j(Q∗, s∗)−
m∑

k=1

∂ρ̂k

∂Qij
×Q∗

ik = 0, (18)

i = 1, . . . ,m, j = 1, . . . , n,

whereas if λ
1
ij > 0, and, hence, Q∗

ij = 0, and λ
2
ij = 0, we get

−∂E(Ui(Q∗, s∗))
∂Qij

= ci+
∂cij(Q∗

ij)
∂Qij

− ρ̂j(Q∗, s∗)−
m∑

k=1
k 6=i

∂ρ̂k

∂Qij
×Q∗

ik = λ
1
ij , (19)

i = 1, . . . ,m, j = 1, . . . , n,

and if λ
2
ij > 0, and, hence, Q∗

ij = Qij , and λ
1
ij = 0, we have

−∂E(Ui(Q∗, s∗))
∂Qij

= ci +
∂cij(Q∗

ij)
∂Qij

− ρ̂j(Q∗, s∗)−
m∑

k=1
k 6=i

∂ρ̂k

∂Qij
×Q∗

ik = −λ
2
ij ,

(20)
i = 1, . . . ,m, j = 1, . . . , n.

Now let us analyze the meaning of equalities (18)–(20). From equality (18),
which holds when 0 < Q∗

ij < Qij , we see that for retailer i, who transfers
the product Q∗

ij to the demand market j, the marginal expected transaction

utility is zero; namely, the marginal expected transaction cost ci +
∂cij(Q∗

ij)
∂Qij

is equal to the marginal expected transaction revenue ρ̂j(Q∗, s∗)+
m∑

k=1
k 6=i

∂ρ̂k

∂Qij
×

Q∗
ik.

In equality (19), minus the marginal expected transaction utility is equal
to λ

1
ij ; namely, the marginal expected transaction cost is greater than the

marginal expected transaction revenue. Retailer j has a marginal loss given
by λ

1
ij .

In contrast, in case (20), in which Qij = Qij and λ
2
ij > 0, minus the marginal

expected transaction utility is equal to −λ
2
ij ; namely, the marginal expected

revenue is greater than the expected transaction cost. Retailer j has a
marginal gain given by λ

2
ij .
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In conclusion, we remark that the Lagrange variables λ
1
ij , λ

2
ij give a precise

evaluation of the behavior of the market with respect to the supply chain
product transactions.

3.2 Analysis of Marginal Expected Cybersecurity Investment
Utilities

From (17) we have:

−∂E(Ui(Q∗, s∗))
∂si

− µ1
i + µ2

i + λi
∂hi(s∗)

∂si
= 0, i = 1, . . . ,m. (21)

If 0 < s∗i < usi , then µ1
i = µ2

i = 0 and we have (see also (10))

∂hi(s∗i )
∂si

+ λi
∂hi(s∗i )

∂si

=

(
1−

m∑
k=1

s∗k
m

+
1− s∗i

m

)
Di +

m∑
k=1

∂ρ̂k(Q∗, s∗)
∂si

×Q∗
ik. (22)

Since 0 < s∗i < usi , h(s∗i ) cannot be the upper bound Bi; hence, λi is zero
and (22) becomes:

∂hi(s∗i )
∂si

=

(
1−

m∑
k=1

s∗k
m

+
1− s∗i

m

)
Di +

m∑
k=1

∂ρ̂k(Q∗, s∗)
∂si

×Q∗
ik. (23)

Equality (23) shows that the marginal expected cybersecurity cost is equal
to the marginal expected cybersecurity investment revenue plus the term(

1−
m∑

k=1

s∗k
m

+
1− s∗i

m

)
Di; namely, the marginal expected cybersecurity in-

vestment revenue is equal to
∂hi(s∗i )

∂si
−

(
1−

m∑
k=1

s∗k
m

+
1− s∗i

m

)
Di. This

is reasonable because

(
1−

m∑
k=1

s∗k
m

+
1− s∗i

m

)
Di is the marginal expected

damage expense.
If µ1

i > 0 and, hence, s∗i = 0, and µ2
i = 0, we get:

−∂E(Ui(Q∗, s∗))
∂si

=
∂hi(0)

∂si
−

1−
m∑

k=1
k 6=i

s∗k
m

+
1− s∗i

m

Di −
m∑

k=1

∂ρ̂k(Q∗, s∗)
∂si

Q∗
ik = µ1

i . (24)

In (24) minus the marginal expected cybersecurity investment utility is equal
to µ1

i ; hence, the marginal expected cybersecurity cost is greater than the
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marginal expected cybersecurity investment revenue plus the marginal dam-
age expense. Then the marginal expected cybersecurity investment revenue
is less than the marginal expected cybersecurity cost minus the marginal

damage expense. We note that case (24) can occur if
∂hi(0)

∂si
is strictly

positive.
In contrast, if µ2

i > 0 and, hence, s∗i = usi , retailer j has a marginal gain
given by µ2

i , because

−∂E(Ui(Q∗, usi))
∂si

= −

1−
m∑

k=1
k 6=i

usk

m
+

1− usi

m

Di

−
m∑

k=1

∂ρ̂k(Q∗, s∗)
∂si

×Q∗
ik

+
∂hi(usi)

∂si
+ λi

∂hi(usi)
∂si

= −µ2
i . (25)

We note that λi could also be positive, since, with s∗i = usi , hi(si) could
reach the upper bound Bi. In (25) minus the marginal expected cybersecu-
rity investment utility is equal to −µ2

i . Hence, the marginal expected cy-
bersecurity cost is less than the marginal expected cybersecurity investment
revenue plus the marginal damage expense. Then the marginal expected
cybersecurity investment revenue is greater than the marginal expected cy-
bersecurity cost minus the marginal damage expense.
From (25) we see the importance of the Lagrange variables µ1

i , µ2
i which

describe the effects of the marginal expected cybersecurity investment uti-
lities.

3.3 Remarks on the Stability of the Marginal Expected Cy-
bersecurity Investment Utilities

Let us consider the three cases related to the marginal expected cybersecu-
rity investment utilities studied in Subsection 3.2. Each of these cases holds
for certain values of the damage Di. Let us consider the value Di for which
the first case (23) occurs. We see that in this case there is a unique value
of Di for which (23) holds and if we vary such a value, also the value s∗i in
(23) varies. Now let us consider the value Di for which (24) holds and let
us call D∗

i the value of Di for which we have

−∂E(Ui(Q∗, s∗))
∂si

=
∂hi(0)

∂si
−

1−
m∑

k=1
k 6=i

s∗k
m

+
1− s∗i

m

D∗
i −

m∑
k=1

∂ρ̂k(Q∗, s∗)
∂si

Q∗
ik = 0.

12



Then for 0 < Di < D∗
i the solution (Q∗, s∗) to variational inequality (9)

remains unchanged because (24) still holds for these new values of Di and
the marginal expected cybersecurity investment utility remains negative,
but it is increasing with respect to Di. Analogously, if we consider the value
Di for which (25) holds and call D∗

i the value such that

−∂E(Ui(Q∗, usi))
∂si

= −

1−
m∑

k=1
k 6=i

usk

m
+

1− usi

m

D∗
i

−
m∑

k=1

∂ρ̂k(Q∗, s∗)
∂si

×Q∗
ik

+
∂hi(usi)

∂si
+ λi

∂hi(usi)
∂si

= 0,

we see that for Di > D∗
i the solution (Q∗, s∗) to (9) remains unchanged

because (25) still holds and the marginal expected cybersecurity investment
utility remains positive and is increasing with respect to Di.

4 A Numerical Example

The first example consists of two retailers and two demand markets as de-
picted in Fig. 2.
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Figure 2: Network Topology for Example 1

It is inspired by related examples as in [14]. So, the cost function data are:

c1 = 5, c2 = 10,
c11(Q11) = .5Q2

11 + Q11, c12(Q12) = .25Q2
12 + Q12,

c21(Q21) = .5Q2
21 + Q21, c22(Q22) = .25Q2

22 + Q22.

The demand price functions are:

ρ1(d, s) = −d1 + .1
s1 + s2

2
+ 100, ρ2(d, s) = −.5d2 + .2

s1 + s2

2
+ 200.

13



The damage parameters are: D1 = 200 and D2 = 210 with the investment
functions taking the form:

h1(s1) =
1√

1− s1
− 1, h2(s2) =

1√
1− s2

− 1.

The damage parameters are in millions of $US, the expected profits (and
revenues) and the costs are also in millions of $US. The prices are in thou-
sands of dollars and the product transactions are in thousands. The budgets
for the two retailers are identical with B1 = B2 = 2.5 (in millions of $US).
In this case the bounds on the security levels are us1 = us2 = .91 and the
capacities Qij are set to 100 for all i, j.
For i = 1, 2 we obtain:

−∂E(Ui(Q, s))
∂Qi1

= 2Qi1 + Q11 + Q21 − .1
s1 + s2

2
+ ci − 99,

−∂E(Ui(Q, s))
∂Qi2

= Qi2 + .5Q12 + .5Q22 − .2
s1 + s2

2
+ ci − 199,

−∂E(Ui(Q, s))
∂si

= − 1
20

Qi1 −
1
10

Qi2 −
(

1− s1 + s2

2
+

1− si

2

)
Di

+
1

2
√

(1− si)3
.

Now, we want to find the equilibrium solution, taking into account the
different values assumed by λ1, λ2, µ1, µ2 and λ, and searching, among
them, the feasible ones. After some algebraic calculations, we realize that
for i = 1, 2 and j = 1, 2 we get the solution when λ

1
ij = λ

2
ij = µ1

i = λi = 0,
and µ2

i > 0. Hence, s∗1 = s∗2 = 0.91 (which is the maximum value). In
this case, the marginal expected transaction utilities are zero, whereas the
marginal expected cybersecurity investment utilities are positive; namely,
there is a marginal gain, given by µ2

i , i = 1, 2. Solving the system:

∂L(Q∗, s∗, λ
1
, λ

2
, µ1, µ2, λ)

∂Qi1
= 0

∂L(Q∗, s∗, λ
1
, λ

2
, µ1, µ2, λ)

∂Qi2
= 0

∂L(Q∗, s∗, λ
1
, λ

2
, µ1, µ2, λ)

∂si
= 0

i = 1, 2,

14



namely:

3Q∗
11 + Q∗

21 − 0.1
s∗1 + s∗2

2
+ c1 − 99− λ

1
11 + λ

2
11 = 0

Q∗
11 + 3Q∗

21 − 0.1
s∗1 + s∗2

2
+ c2 − 99− λ

1
21 + λ

2
21 = 0

1.5Q∗
12 + .5Q∗

22 − 0.2
s∗1 + s∗2

2
+ c1 − 199− λ

1
12 + λ

2
12 = 0

.5Q∗
12 + 1.5Q∗

22 − 0.2
s∗1 + s∗2

2
+ c2 − 199− λ

1
22 + λ

2
22 = 0

− 1
20

Q∗
11 −

1
10

Q∗
12 −

3− 2s∗1 − s∗2
2

D1 +
1 + λ1

2
√

(1− s∗1)3
− µ1

1 + µ2
1 = 0

− 1
20

Q∗
21 −

1
10

Q∗
22 −

3− s∗1 − 2s∗2
2

D2 +
1 + λ2

2
√

(1− s∗2)3
− µ1

2 + µ2
2 = 0,

and therefore, assuming for i = 1, 2, j = 1, 2, λ
1
ij = λ

2
ij = µ1

i = λi = 0, and
µ2

i > 0, hence s∗1 = s∗2 = 0.91, and D1 = 200 and D2 = 210, we have:

3Q∗
11 + Q∗

21 = 94.091

Q∗
11 + 3Q∗

21 = 89.091

1.5Q∗
12 + .5Q∗

22 = 195.82

.5Q∗
12 + 1.5Q∗

22 = 190.82

µ2
1 =

1
20

Q∗
11 +

1
10

Q∗
12 −

3− 3× .91
2

200− 1
2
√

(1− .91)3

µ2
2 =

1
20

Q∗
21 +

1
10

Q∗
12 −

3− 3× .91
2

210− 1
2
√

(1− .91)3
.

The solution to the previous system is:

Q∗
11 = 24.148, Q∗

21 = 21.586, Q∗
12 = 99.16, Q∗

22 = 94.16,

µ2
1 = 19.6055, µ2

2 = 20.3273,

where µ2
1 and µ2

2 are the positive marginal expected gains.
For this example the stability results of Subsection 3.3 hold. We are in the
third case and if we double the value of the damage for the first retailer
and assume now D1 = 400, then the new value of the Lagrange multiplier
is µ2

1 = 46.6055.
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5 Conclusions

Cyberattacks are negatively globally impacting numerous sectors of eco-
nomies as well as governments and even citizens, and resulting in financial
damages, disruptions, loss of services, etc. Hence, organizations, including
companies from financial service firms to retailers, as well as utilities, are
investing in cybersecurity. In this paper, we revisit a recently introduced
cybersecurity investment supply chain game theory model described in [14]
consisting of retailers and consumers at demand markets in which nonlinear
budget constraints of the retailers associated with cybersecurity investments
are explicitly included. The retailers compete in both product transactions
and cybersecurity levels seeking to maximize their expected utilities, that
is, expected profits, which capture both the expected revenues and the ex-
pected damages in the case of a cyberattack, which can differ from retailer
to retailer. The consumers display their preferences through the demand
price functions which are functions of the market demands for the product
as well as the average security level of the network, which depends on all
the retailers’ investment levels. The governing equilibrium concept in this
model of noncooperative behavior is that of Nash equilibrium.

In this paper, we provide a novel alternative formulation of the varia-
tional inequality formulation derived in [14]. The alternative formulation
enables a deep analysis of the Lagrange multipliers associated with both the
bounds on the product transactions between retailers and demand markets
and the security levels of the retailers, with accompanying insights into the
economic market forces. Specifically, we provide an analysis of both the
marginal expected transaction utilities and the marginal expected cyberse-
curity investment utilities of the retailers. We also obtain stability results
for the marginal expected cybersecurity investment utilities with respect to
changes in the values of the retailers’ financial damages.

The novel theoretical framework is then further illustrated through a
numerical example for which the equilibrium product transaction and cyber-
security investment patterns are computed, along with the Lagrange multi-
pliers. In addition, stability results are also given for the case where the first
retailer’s damage due to a cyberattack doubles.

The results in this paper add to the growing literature of operations re-
search and game theory techniques for cybersecurity modeling and analysis.
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