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Abstract

In this paper, we develop a unified variational inequality framework in the context of spatial price network equi-
librium problems that handles multiple products with multiple demand and supply markets in multiple countries
as well as multiple transportation routes. The model incorporates a plethora of distinct trade measures, which is
particularly important in the pandemic, since PPEs and other essential products are in high demand, but short in
supply globally. In the model, product flows as well as prices at the supply markets and the demand markets in
different countries are variables which allows us to seamlessly introduce various trade measures, including tariffs,
quotas, as well as price floors and ceilings. Qualitative properties are analyzed. Numerical examples are provided to
illustrate the impacts of the trade measures on equilibrium product path and link flows, and on prices, and demand
and supply quantities. Given the relevance of the trade measures in the world today and discussions concerning the
impacts, the framework constructed in this paper is especially timely.
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1. Introduction

The World Health Organization (WHO) declared the Covid-19 pandemic on March 11, 2020 (WHO
(2020a)). The ensuing global healthcare disaster has endangered and disrupted the lives of billions
around the world, resulting in illnesses and deaths, and has also generated secondary crises. No-one
knows with certainty when the pandemic will end. According to Johns Hopkins Coronavirus Resource
Center (2021), as of March 8, 2021, more than 29,000,000 individuals in the United States have been
infected and at least 525,000 have died. Worldwide, more than 117 million cases have been reported and
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more than 2.6 million deaths. In addition, the pandemic has resulted in severe economic damage and a
wave of unemployment. The World Trade Organization forecasts that trade in 2020 will fall by 13% to
32%, a historically large plunge (WTO (2020a)). The International Monetary Fund (IMF), in the June
2020 World Economic Outlook, predicted that the global growth rate would be at -4.9 percent in 2020.
The negative impact of the pandemic on low-income households is severe and poses serious challenges
to the global fight against poverty that began in the 1990s (International Monetary Fund (2020)).

Since the coronavirus that causes Covid-19 can be transmitted from person to person through res-
piratory droplets, the Centers for Disease Control and Prevention (CDC) emphasizes that physical dis-
tance of at least 6 feet between persons is necessary to avoid infection in order to minimize contagion
and to prevent healthcare systems from becoming overwhelmed (CDC (2020b), Greenstone and Nigam
(2020)). Coupled with social distancing is the use of Personal Protective Equipment (PPE) (Ferguson
et al. (2020)) to prevent individuals, including essential workers, from contracting the disease. Medical
items, such as ventilators, have also been in great demand to treat some hospitalized Covid-19 patients
(CDC (2020a)). The spread of the virus and the efforts of governments and of the public to combat it
have led to a sharp increase in demand for medical supplies worldwide (Kamdar (2020)). WHO (2020b)
estimates that 89 million masks and 76 million examination gloves are needed monthly to respond to
the Covid-19 pandemic, noting that shortages of PPEs pose a serious threat to doctors, nurses, and other
frontline workers. They warn that the production of these goods must increase by 40% to meet growing
demand.

However, the impact of this pandemic on products is not limited to the surge in demand for medical
products. The pandemic has disrupted air transportation systems and bankrupted many companies. It
has also led to major changes in people’s lifestyles, altering patterns of supply and demand, and even
grocery shopping (Severson (2020)), and is threatening the economic stability and well-being of both
people and governments (Suau-Sanchez, Voltes-Dorta, and Cuguer-Escofet (2020), Sheth (2020)). The
pandemic has severely disrupted the supply chain networks of a plethora of essential products. For ex-
ample, we have seen the negative impact of the Covid-19 pandemic on US meat supply chains as several
processing plants were shut down due to infected workers (Nagurney (2021), Corkery and Yaffe-Bellany
(2020)). China, where the coronavirus, which causes the disease Covid-19 originated, is also expected
to face challenges in the agricultural sector. It is estimated that its agricultural sector’s growth rate will
decrease by 0.4% to 2% in 2020 (Zhang et al. (2020)). The Food and Agriculture Organization of the
United Nations projects that the total meat production around the world will fall by 1.7% in 2020. It also
points out that, although there is enough food globally, the dire economic situation, due to the Covid-19
pandemic, has made it difficult to access food, especially in countries already plagued by a hunger crisis
(Food and Agriculture Organization (2020)).

Such challenges have led many governments to institute different trade policies and measures during
the Covid-19 pandemic in order to reduce the risk of essential/vital product shortages. Countries, at dif-
ferent times, put specific products in the group of essential goods. In general, the commodities whose
shortage endangers people’s health and safety are in this category. India, for example, enacted the Essen-
tial Commodities Act in 1955 to protect the production and distribution of certain goods and to prevent
shortages and sudden price increases. This act covers items such as food grains, fertilizers, edible oil,
drugs, fuels, and petroleum, and, recently, masks and hand sanitizers have been added to it due to the
Covid-19 pandemic (Gupta (2020)). In another example, the state of Florida defines essential commodity
as a commodity that “its consumption or use is critical to the maintenance of the public health, safety or



welfare during the declared emergency” and puts commodities such as protective masks, sanitizing and
disinfecting supplies, and all PPE on the list while mentioning that they continue to monitor the situation
and revise the list as needed (Florida Attorney General (2020))

When the Covid-19 pandemic crisis hit one country after another, some countries, which were among
the few exporters of PPEs, faced a very high demand within their own national boundaries and, there-
fore, prioritized meeting their needs first. Hence, they banned the export of medical products (Boykoff,
Sebastian, and Di Donato (2020)). According to Global Trade Alert (GTA), as of 25 April 2020, 122 new
export bans in more than 75 countries including the US, China, and the European Union (EU) were is-
sued on medical supplies such as antibiotics, face masks, and ventilators. There is also a large number of
countries that has reduced the tariffs on essential goods to accelerate the import of such products (Evenett
(2020), Pelc (2020), Global Trade Alert (2020)). For example, Belarus has imposed temporary restric-
tions on exports of food products such as onions and garlic due to the pandemic crisis (WTO (2020b)).
China has temporarily decreased import tariffs on several types of products such as medical supplies,
raw materials, agricultural products, and meat (ITC MACMAP (2020)). The United States is temporar-
ily excluding certain products from the additional duty of 25% on a list of 19 products from China and
is putting restrictions on exports of five types of PPEs which are going to need explicit approval from
FEMA before export (WTO (2020b)).

Governments have also taken steps to address concerns about the prices of essential goods during
the pandemic crisis. China has warned that the price of essential goods should not increase, and has
also announced how to enforce the law against the increase in the price of face masks. The European
Competition Network issued a joint statement by the European Commission and the European Union’s
national competition agencies highlighting that it is very important that the prices of the goods that
are necessary for the health of the people, such as face masks and sanitizing gel, remain within the
competitive range (OECD (2020)). The United States Senate has expressed concern that the prices of
vaccines being developed with the help of the federal government be affordable (Owermohle (2020)).
Also, although there are no federal price gouging laws in the United States, an executive order was
signed by the President to prevent price gouging or the hoarding of essential goods with penalties of up
to one year in prison and fines of up to $10,000 (White House (2020)). The US Department of Justice,
on the other hand, warns that criminal prosecution awaits those that fix prices or rig bids for PPEs such
as sterile gloves and face masks (Department of Justice (2020), OECD (2020)). Although such measures
are necessary to manage critical situations, governments must be careful in formulating trade measures
and in implementing them to make sure that they are useful and that there are no adverse effects. For
example, Dr. Anthony Fauci, the Director of the National Institute of Allergy and Infectious Diseases,
points out that high medicine prices create problems in countries plagued by the Covid-19 pandemic.
But he also mentions that, if you put a lot of pressure on a company and restrict it, the company may
no longer work with you (Dearment (2020)). In India, the government tried to control the price of life-
saving oxygen gas, but this policy was accompanied by shortcomings that led to the emergence of the
oxygen black market (Biswas (2020)).

Trade measures, including tariffs, quotas, as well as associated price floors and ceilings, have advan-
tages and disadvantages and are used in trade policy by governments. They need not be limited to the
time horizon of the pandemic; they may be applied for various reasons and altered based on the reali-
ties of the associated supply chain networks and issues of governmental concern (Cassing and Hillman
(1985), Pelcovits (1976), Nagurney, Besik, and Li (2019)). Trade policy measures such as tariffs, quotas,



and two-tiered tariffs have been investigated in the context of different trade networks of various prod-
ucts ranging from food to consumer durables. The impacts on the product flows have also been examined
(cf. Nagurney, Besik, and Dong (2019) and the references therein).

In this paper, we construct a multiproduct, multicountry spatial price equilibrium model that integrates
a plethora of trade measures that different countries can impose (and have been imposing) on essential
products such as medical supplies, certain raw materials, and agricultural goods, as they continue to deal
with the pandemic and work for the interests of their nations. In the model there are multiple supply
markets and multiple demand markets in each country.

2. Literature Review and Our Contributions

Since the Covid-19 pandemic is unprecedented in terms of both scale and scope and quite different as
compared to other disasters, which are limited in both geography and time, researchers have turned to
investigating various aspects of the pandemic, including the impacts on product flows, and gradually
publishing the results. Queiroz et al. (2020) provided a research agenda by constructing a structured
literature review of recent studies on the Covid-19 pandemic and the impacts of previous epidemic
outbreaks on supply chains. Nagurney et al. (2021) constructed the first Generalized Nash Equilibrium
(GNE) model with stochastic demands to investigate the competition among healthcare organizations for
medical supplies in the pandemic. Ivanov (2020) documented a simulation study on the impacts of the
Covid-19 pandemic on global supply chains. That study also provides an analysis of predicting short-
term and long-term effects of epidemic outbreaks on the supply chains. Nagurney (2021) developed a
supply chain network optimization model for perishable food in the Covid-19 pandemic, which included
the critical labor resource. The model can be used to investigate the impacts of labor disruptions, due to
illnesses, death, etc., on prices and product flows.

2.1. Trade Measures

The coronavirus, which causes Covid-19, spread rapidly worldwide, and pushed governments and pol-
icymakers to adopt new trade policies to pave the way to provide essential supplies including medical
ones for their nations. Researchers and experts have varying views on the methods and effects of these
trade policies and are publishing research results while we are still in the midst of the pandemic. Bald-
win and Evenett (2020) suggest that the governments should not turn inward in response to the Covid-19
pandemic because national trade obstacles would make the production of medical supplies harder for
countries. But the protectionist trade policies that we are observing during the Covid-19 pandemic are
mostly anti-export. Smith and Glauber (2020) report that although protectionist policies in food inter-
national trade have not worked well in past experiences such as the 2007-08 crisis, policymakers are
still keen to use these strategies. Indeed, in the current pandemic, certain governments have imposed
restrictions such as export bans and export quotas on the trade in food, including on wheat and rice.
Stellinger, Berglund, and Isakson (2020) mention that we are dealing with a dual crisis, a healthcare cri-
sis, and an economic one. They argue that some trade measures, such as import bans and buy-national,
are unnecessary and, while they may be useful in protecting the domestic manufacturing, they do not



have a role in protecting patients. Bown (2020), pointing out that the European Union imports 90% of its
PPEs, suggests that even temporary export bans might cause mistrust and retaliations that would harm
such countries. Also, the European Union export restrictions put Eastern Europe, northern Africa, and
sub-Saharan Africa countries at risk. The above cited papers, however,do not add to the literature of
mathematical modeling, as our paper here does.

Shingal (2020) says that, although the pandemic is a health crisis, with proper trade measures, sec-
ondary financial crises can be prevented, and that the new trade barriers can replace traditional trade
instruments and even new jobs and skills may be created. Pauwelyn (2020) and Lawrence (2020) argue
that establishing trade measures that restrict the export of essential medical supplies and food is not legal
under normal circumstances under WTO and EU law, but is not subject to the law in critical situations
such as the current pandemic in which people’s lives are in danger. Leibovici and Santacreu (2020) in-
vestigated the role of international trade of essential supplies in reducing or exacerbating the effects of
a pandemic. They observed that a country’s imbalance in the trade of essential goods has a significant
role in the effects on the country, so that net importers would be worse off than net exporters. By simu-
lating the effects of trade barriers under different scenarios, Grassia et al. (2020) showed that, although a
country would benefit from implementing the trade restrictions in isolation, the generalized use of these
measures makes most countries’ situations worse than theirs in a no-ban scenario. They also estimate
that there would be price increases in many countries that impose trade restrictions.

Fiorini, Hoekman, and Yildirim (2020), examining recent examples, argue that, instead of restrict-
ing international trade, governments should work with industry actors to find and to improve essential
products’ supply chain bottlenecks. Nagurney, Besik, and Li (2019) constructed an oligopolistic supply
chain network equilibrium with trade policy where firms compete over product quantities and product
quality and they are subjected to lower bounds and upper bounds on quality standards. They found that
the governments might threaten the consumer welfare of their own nation by imposing trade restric-
tions. Evenett (2020) argues that, if governments restrict the export of goods, producers will no longer
have an incentive to increase the production level to meet the foreign demand. He also points out that
manufacturers consider tariffs and non-tariff barriers when deciding whether to sell to foreign buyers.

2.2. Relevant Spatial Price Equilibrium Models

Spatial price equilibrium (SPE) models are very useful in research on the role and impacts of commod-
ity trade instruments, such as tariffs and quotas, in markets where there are multiple supply markets and
multiple demand markets. SPE models originated in the works of Samuelson (1952) and Takayama and
Judge (1964, 1971). Since then, such models have been expanded and widely applied in practice, with
variational inequality theory, in particular, utilized to formulate increasingly more general SPE models
(cf. Nagurney (1999, 2006), Daniele (2004), Li, Nagurney, and Yu (2018), Nagurney, Besik, and Dong
(2019), and the references therein). Nagurney, Besik, and Dong (2019) constructed a spatial price equi-
librium model with multiple countries and supply and demand markets in each country. In that model, a
tariff-rate quota, which is a two-tiered tariff, was applied. They provided a unified variational inequality
framework for qualitative analysis and algorithmic solution. They also solved and discussed numerical
examples inspired by the dairy industry where a tariff-rate quota was imposed by the US on cheese from
France. Nagurney, Besik, and Nagurney (2019), inspired by the ongoing trade wars, provided a modeling



and computational framework for competitive global supply chain networks, operating as an oligopoly,
where trade instruments are imposed in the form of tariff-rate quotas.

A related research stream that focuses on the movement of people, rather than products, in which
regulations have also been incorporated into a network modeling equilibrium framework, is that on
human migration (see Nagurney, Daniele, and Nagurney (2020) and Nagurney, Daniele, and Cappello
(2021)). In such human migration models, there are utility functions associated with different classes
of migrants and origin and destination nodes, rather than supply and demand price functions. The types
of regulations typically restrict migration flows, whereas trade measures associated with products often
entail pricing measures in the form of tariffs and/or price floors and ceilings. Furthermore, Nagurney,
Daniele, and Nagurney (2021) have shown that, with subsidies, a system-optimized solution for human
migration can be achieved, even though migrants act independently and unilaterally. It is worthwhile
to note that in the Covid-19 pandemic migratory policies continue to be implemented (see Cappello,
Daniele, and Nagurney (2021)).

2.3. 2.3 Our Contributions

In this paper, we construct a multiproduct, multicountry spatial price equilibrium model with trade mea-
sures that captures the nuances of essential commodity production, trade, and consumption in the Covid-
19 pandemic. This paper builds on the work of Nagurney, Besik, and Dong (2019) but with the following
significant extensions/modifications:

1. Multiple essential products: Unlike the earlier model, this model can handle multiple products and
that is especially important in the Covid-19 pandemic due to the importance of such products as medical
supplies, a variety of foods, as well as certain raw materials.
2. Prices and product flows as variables: In the new model, not only are product flows variables but
prices at the supply markets and the demand markets in different countries are variables as well. This
feature allows us to more seamlessly introduce trade measures in the form of price floors and ceilings,
which have been incorporated in this pandemic, and which we elaborate upon in the next contribution
below.
3. Multiplicity of trade measures including price floors and ceilings: The model in this paper inte-
grates a plethora of trade measures for multiple products, including tariffs, quotas, as well as price floors
and ceilings. We allow for price ceilings on both supply market prices and on demand market prices in
the countries. We also allow for positive price floors on supply market prices in the countries with price
floors on the demand market prices being set to zero.
4. Special Relevance to the Covid-19 Pandemic: By incorporating multiple distinct trade measures in
a unifying framework, the multiproduct, multicountry model is of specific relevance in the pandemic,
since governments are using multiple trade measures.

This paper is organized as follows. The multiproduct, multicountry spatial price equilibrium model in
price and quantity variables and a multiplicity of trade measures is constructed in Section 3. The gov-
erning equilibrium conditions are stated and the variational inequality formulation presented therein. In
Section 4, the algorithm and qualitative properties are presented. In Section 5, we apply the modified pro-
jection method to compute the equilibrium product flow, the price and the Lagrange multiplier patterns
in a series of numerical examples that demonstrate the generality and applicability of our multiproduct,



multicountry SPE model with trade measures. The final section, Section 6, summarizes the results and
presents our conclusions.

3. The Multiproduct, Multicountry Spatial Price Equilibrium Model with Trade Measures

We now construct the multiproduct, multicountry spatial price equilibrium model with trade measures
for essential products. Each country has multiple possible supply markets as well as multiple possible
demand markets. We denote an essential product by h, with h = 1, . . . ,H . As noted in the Introduction,
an essential product can be a medical product, food item, etc. There are n countries in the network
economy, with country i; i = 1, . . . , n, having ki supply markets where the essential products can be
produced and lj ; j = 1, . . . , n demand markets where these product supplies can be delivered to. The
total number of supply markets is nk =

∑n
i=1 ki and the total number of demand markets is nl =∑n

j=1 lj . Underlying the supply markets and demand markets is a network consisting of a graph G =
[N,L], where N is the set of nodes (supply market origin nodes, demand market destination nodes,
intermediate nodes for transshipment, etc.) and L is the set of directed links. An illustrative network
figure is given in Figure 1. The network topology in Figure 1 can be adapted according to the specific
application.

We denote the set of supply markets of country i by Oi and the set of demand markets of country
j by Dj . Here, P

(i,k)
(j,l) denotes the set of paths joining a country supply market origin node (i, k) with

a country demand market node (j, l). P (i,k) denotes the set of paths, such that each path originates at
origin node (i, k) and terminates at one of the demand market nodes. P(j,l), in turn, denotes the set of
paths, such that each path terminates at the destination node (j, l) and originates at one of the supply
market nodes. The set P then denotes the set of all paths joining the country supply market origin nodes
with the country demand market destination nodes. There are nP paths in the network and nL links.

The basic notation for the model is given in Table 1. All vectors are column vectors. The product
link unit transportation cost functions, supply functions, and demand functions are all assumed to be
continuous.

We first proceed with the conservation of flow equations. We then identify the relationship between
essential product path costs and costs on the links, and provide an amplified discussion of the trade mea-
sures, followed by the governing equilibrium conditions. The product unit transportation costs, supply
and demand market prices, plus the price floors and ceilings, and the unit tariffs are all in a common
currency.

The essential product path flows must be nonnegative, that is:

xh
p ≥ 0, ∀p ∈ P,∀h. (1)

The product link flows, in turn, are related to the product path flows thus:

fh
a =

∑
p∈P

xh
pδap, ∀a ∈ L,∀h. (2)

According to (2), the product flow on a link is equal to the sum of flows of that product on paths that
contain that link.
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Fig. 1. An Example of a Multicountry, Multiple Supply Market and Multiple Demand Market Spatial Price Network

In addition, we have that the unit transportation cost on a path associated with the transportation of an
essential product is equal to the sum of the unit transportation costs on the links that make up the path;
in other words:

Ch
p (x) =

∑
a∈L

ch
a(f)δap, ∀p ∈ P, (3)

where δap = 1, if link a is contained in path p, and 0, otherwise.
Our goal is to construct an integrated model in which the impacts of a multiplicity of different trade

measures that have been imposed on such essential products as medical supplies and food in the Covid-
19 pandemic can be assessed. Specifically, here we consider the following trade measures. First, we
allow for a unit tariff τh

ij imposed by a country j on country i’s essential product h. If there is no such
tariff τh

ij between a pair of countries i and j and product h then we can set the associated value to 0. Also,
a country i may wish to support producers of a specific essential product h through a price support in the
form of a lower bound on the supply market prices in the form πh

(i,k), for supply market k in its country.
On the other hand, a country j may wish to impose an upper bound on the demand market prices of an



Table 1
Notation for the Multiproduct, Multicountry Spatial Price Equilibrium Model with Trade Measures

Notation Definition

xh
p the flow of essential product h on path p. We group the path flows into the vector x ∈ RHnP

+ .

fh
a the flow of essential product h on link a. We group the product link flows into the vector f ∈ RHnL

+ .

πh
(i,k) the supply price of product h at supply market k in country i. We group all the supply market prices

into the vector π ∈ RHnk .

ρh
(j,l) the demand price of product h at demand market l in country j. We group all the demand market prices

into the vector ρ ∈ RHnl .

ch
a(f) the unit cost of transportation of product h on link a.

Ch
p (x) the unit cost of transportation of product h on path p. We group all the path costs into the vector

C ∈ RHnP .

sh
(i,k)(π) the supply of product h at supply market k of country i. We group all the supply functions into the

vector s(π) ∈ RHnk .

dh
(j,l)(ρ) the demand for product h at demand market l of country j. We group all the demand functions into the

vector d(ρ) ∈ RHnl .

τh
ij the unit tariff imposed by country j on product h from country i.

πh
(i,k) the supply price lower bound on product h imposed on supply market k of country i by country i.

π̄h
(i,k) the supply price upper bound on product h imposed on supply market k of country i by country i.

ρ̄h
(j,l) the demand price upper bound on product h imposed on demand market l of country j by country j.

Gh
g the group consisting of all the countries i and j comprising the group and the supply markets of i and

demand markets of j for which a strict quota of Q̄h
g on product h is imposed. There is a total of nG

quotas imposed, with nGh denoting the number of quotas imposed on product h.

essential product h in its country of ρ̄h
(j,l), for its demand market l. We also allow for an upper bound

on the supply market price of each product h at each supply market k in each country i of π̄h
(i,k). Of

course, when such trade measures are not instituted, then we can just set the lower supply market price
bound to 0 and the demand market and supply market price ceilings to a high number. In addition, and,
as noted in Table 1, a country may wish to impose a quota and it is important to emphasize that this can
be either an export quota of an essential product or an import quota of such a product. We handle such
trade measures through the use of groups Gh

g , for relevant gs and hs, and associated quotas Q̄h
g (please

refer to Table 1). Associated with each quota there is a corresponding nonnegative Lagrange multiplier
λh

g . We group these Lagrange multipliers into the vector λ ∈ RnG

+ . Also, we define PGh
g

as the set of
paths corresponding to group Gh

g .



We define the feasible set

K ≡ {(x, λ, π, ρ) ∈ R
H(nP +nG+nk+nl)
+ , and πh

(i,k) ≤ πh
(i,k) ≤ π̄h

(i,k),∀h, i, k, and 0 ≤ ρh
(j,l) ≤ ρ̄h

(j,l),∀h, j, l}.

Definition 1. Multiproduct, Multicountry Spatial Price Equilibrium Conditions Under Trade Measures
A multiproduct, multicountry product flow, quota Lagrange multiplier, supply price, and demand price
pattern (x∗, λ∗, π∗, ρ∗) ∈ K is an essential product spatial price equilibrium under trade measures of
tariffs, quotas, supply price floors and ceilings, and demand price ceilings, if the following conditions
hold: For all essential products h and for all groups Gh

g for all g, h, and for all pairs of supply and demand

markets in the countries: (i, j), (k, l) ∈ Gh
g , and all paths p ∈ P

(i,k)
(j,l) , for all i, j, k, l:

πh∗
(i,k) + Ch

p (x∗) + τh
ij + λ∗Gh

g

{
= ρh∗

(j,l), if xh∗
p > 0,

≥ ρh∗
(j,l), if xh∗

p = 0,
(4)

λ∗Gh
g

≥ 0, if
∑

p∈PGh
g

xh∗
p = Q̄Gh

g
,

= 0, if
∑

p∈PGh
g

xh∗
p < Q̄Gh

g
;

(5)

for all products h and all supply markets k in the countries i:

sh
(i,k)(π

∗)


≤

∑
p∈P (i,k) xh∗

p , if πh∗
(i,k) = π̄h

(i,k),

=
∑

p∈P (i,k) xh∗
p , if πh

(i,k) < πh∗
(i,k) < π̄h

(i,k),

≥
∑

p∈P (i,k) xh∗
p , if πh∗

(i,k) = πh
(i,k),

(6)

plus, for all products h and all demand markets l in the countries j:

dh
(j,l)(ρ

∗)


≥

∑
p∈P(j,l)

xh∗
p , if ρh∗

(j,l) = ρ̄h
(j,l),

=
∑

p∈P(j,l)
xh∗

p , if 0 < ρh∗
(j,l) < ρ̄h

(j,l),

≤
∑

p∈P(j,l)
xh∗

p , if ρh∗
(j,l) = 0.

(7)

For paths not belonging to any group associated with a quota, we have that (4) holds with the quota
Lagrange multiplier removed and (5) also excised.

In the case of the complete prohibition of exports of an essential product h from a country i, as in
the case of, for example, certain medical products such as PPEs, ventilators, etc., one could excise the
associated paths from the country to other countries for such products. Alternatively, one could define
the appropriate group and set the quota for the group equal to 0. On the other hand, and, interestingly,
there have also been import bans instituted by several countries due to Covid-19 to reduce the spread of
the disease. For example, in that case, if a country j institutes an import ban on a product in its country
then all paths from other countries for that product to demand markets in country j would not be used;
in effect, they would be eliminated from the network topology for that product. One could also set the
quota equal to 0 for the defined group.

According to equilibrium conditions (4), there will be a positive flow of an essential product on a path,
in equilibrium, if the supply price at the supply market in a country at which the path originates at plus



the unit path cost of transporting the essential product on the path plus the tariff levied plus the quota
Lagrange multiplier associated with the group on which the quota is imposed (and the path connects a
pair of origin and destination nodes in it) is equal to the price the consumers are willing to pay at the
demand market in the destination country. If, on the other hand, the above supply price plus the unit
path transportation cost plus tariff plus quota Lagrange multiplier exceeds the price the consumers are
willing to pay, then the product flow on that path will be equal to zero. Conditions (5), in turn, reveal
that, in equilibrium, if the quota is reached by the path flows associated with the group and product that
the quota is imposed on, then the equilibrium Lagrange multiplier for that group and product is positive;
otherwise, the Lagrange multiplier is equal to zero.

Equilibrium conditions (6) state that if the equilibrium supply price for an essential product at a supply
market in a country is greater than the imposed supply price lower bound, and less than the imposed
upper bound, then the supply of the product at the supply market in the country is equal to the product
flows out. If the supply price is equal to the imposed supply market lower bound in the country, then there
could be excess supply. On the other hand, if the supply price for a product is equal to the imposed supply
price upper bound, then the supply at equilibrium could be lower than the shipments out. Equilibrium
conditions (7) state that, if the demand price at a demand market in a country for an essential product is
equal to the imposed demand market price upper bound, then the demand can exceed the product inflows
to that demand market in that country of the medial product. If the equilibrium demand market price is
greater than zero and less than the imposed demand price upper bound for the product at the demand
market in the country, then the demand for the product at the demand market in the country is equal to
the product inflows of that essential product. Finally, if the equilibrium demand price is equal to zero for
the product at a demand market in a country, then the demand can be lower.

The above spatial price equilibrium conditions provide a unified framework for a multiplicity of trade
measures for essential product supplies in the Covid-19 pandemic. They are extensions of classical spa-
tial price equilibrium conditions due to Samuelson (1952) and Takayama and Judge (1971); see Nagur-
ney (1999, 2006) for many references to spatial price equilibrium models and the more recent work of
Nagurney, Besik, and Dong (2019). For example, the above model includes multiple products (of great
importance in the case of medical supplies), and concomitant handling of multiproduct tariffs and group
quotas, along with the inclusion of supply price floors and ceilings plus demand price ceilings, all on
a general network. Furthermore, we identify how to handle complete prohibition of essential product
exports or even imports, including those of food products.

The above spatial price equilibrium framework enables decision-makers and policy-makers to eval-
uate the impacts of different trade measures on product prices and product flows. The impacts of the
tightening of trade restrictions can be ascertained, once the model is solved, as well as the impacts of
trade liberalizations, such as the reduction in tariffs and the lifting of import or export bans.

We now provide the variational inequality formulation of the above equilibrium conditions in a Theo-
rem.

Theorem 1. Variational Inequality Formulation of the Multiproduct, Multicountry Essential Product
Spatial Equilibrium Conditions Under Trade Measures
A multiproduct, multicountry product flow, quota Lagrange multiplier, supply price, and demand price
pattern (x∗, λ∗, π∗, ρ∗) ∈ K is an essential product spatial price equilibrium under trade measures of
tariffs, quotas, supply price floors and ceilings, and demand price ceilings, according to Definition 1, if



and only if it satisfies the variational inequality problem:
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≥ 0, ∀(x, λ, π, ρ) ∈ K. (8)

Proof: See the Appendix.
We now put variational inequality (8) into standard variational inequality form (cf. Nagurney (1999)):

determine X∗ ∈ K, such that:

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (9)

where 〈·, ·〉 denotes the inner product in N -dimensional Euclidean space, F is a given continuous func-
tion fromK toRN , andK is a given closed, convex set.N = H(nP +nG+nk+nl) for our model. We de-
fine X ≡ (x, λ, π, ρ) and K ≡ K. Also, we define F (X) ≡ (F 1(X), F 2(X), F 3(X), F 4(X), F 5(X)),
where the components of F 1(X) correspond to the nP elements with a typical p element as preceding
the first multiplication sign in (8); the components of F 2(X) correspond to the nP elements with a typ-
ical such element as immediately preceding the second multiplication sign; the components of F 3(X)
correspond to the nG elements with a typical gh element as preceding the third multiplication sign, and
so on.

3.1. Illustrative Examples

In order to fix ideas, we now provide several illustrative examples, the solutions to which can be deter-
mined analytically.

Baseline Illustrative Example
We first consider a single country with a single supply market and a single demand market with the
network topology depicted in Figure 2.
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Fig. 2. Network Topology for the Baseline Illustrative Example

For simplicity, there is a single path consisting of a single link joining supply market node (1, 1)
with demand market node (1, 1). There is a single essential product and, hence, for simplicity sake, we
suppress the superscript h = 1 in the functional notation. The supply function is given by:

s(1,1)(π) = 5π(1,1) + 5,

and the demand function is given by

d(1,1)(ρ) = −ρ(1,1) + 22.

The path joining the supply market node with the demand market node is denoted by p1 and it consists
of link a, with a unit cost of ca = fa + 1 and, therefore, the path cost Cp1 = xp1 + 1.

Making use of the spatial price equilibrium conditions in Definition 1, and noting that this example
has no imposed trade measures, it is clear that the spatial price equilibrium product path flow and supply
price and demand price pattern is:

x∗p1
= 10, π∗(1,1) = 1, ρ∗(1,1) = 12,

since Cp1(x∗) = 11 and, hence, we have that: π∗(1,1) + Cp1(x∗) = ρ∗(1,1). Furthermore, s(1,1)(π∗) =
x∗p1

= d(1,1)(ρ∗).

Baseline Illustrative Example with Supply Price Floor Added
In the above example we now impose a supply price floor of π(1,1) = 2. A government may do that
to support, for example, farmers in terms of the minimum price for their product. Again, referring to
the spatial price equilibrium conditions in Definition 1, it is straightforward to determine the spatial
equilibrium pattern. Specifically, we now have that:

x∗p1
= 9.5, π∗(1,1) = 2, ρ∗(1,1) = 12.5.

Furthermore, Cp1(x∗) = 10.5, and, therefore, π∗(1,1) +Cp1(x∗) = ρ∗(1,1) = 12.5. Also, s(1,1)(π∗) = 15 >

x∗p1
= 9.5 and d(1,1)(ρ∗) = 9.5 = x∗p1

.



Baseline Illustrative Example with Supply Price Floor Plus Demand Price Ceiling Added
Now to the previous example, with the supply price floor, we impose a demand price ceiling of ρ̄(1,1) =
10. The new spatial price product flow, supply price and demand price equilibrium pattern is:

x∗p1
= 7, π∗(1,1) = 2, ρ∗(1,1) = 10,

and we have that: Cp1(x∗) = 8, so that π∗(1,1) + Cp1(x∗) = ρ∗(1,1); s1(π∗) = 15 > x∗p1
= 7 and

d(1,1)(ρ∗) = 12 > x∗p1
= 7.

Baseline Illustrative Example with Supply Price Floor Plus Demand Price Ceiling Plus New Supply
Market in Another Country
We now consider the impact of the addition of a new supply market in another country. The network
topology is as in Figure 3. The data are as in the immediately preceding example but with the following
additions. The supply price function at the supply market in the second country is: s(2,1)(π) = π(1,2) +1.
The cost on link b and, hence, on path p2 = (b) is cb(f) = fb + 1 and Cp2(x) = xp2 + 1, respectively.
Making use of the equilibrium conditions in Definition1 yields the following equilibrium pattern:

x∗p1
= 7, x∗p2

= 5, π∗(1,1) = 2, π∗(2,1) = 4, ρ∗(1,1) = 10.

We also have that: s(1,1)(π∗) = 15 > x∗p1
= 7; s(2,1)(π∗) = 5 = x∗p2

and d(1,1)(ρ∗) = 12 = x∗p1
+ x∗p2

.
Moreover, we have that: π∗(1,1) + Cp1(x∗) = ρ∗(1,1) and π∗(2,1) + Cp2(x∗) = ρ∗(1,1).

����
Country Demand Market (1, 1)

@
@

@
@@

�
�

�
��R	

(1, 1) ���� ����
(2, 1)

Country Supply Markets

a b

Fig. 3. Network Topology for the Illustrative Example with Two Supply Markets, Each in a Different Country

Baseline Illustrative Example with Supply Price Floor Plus Demand Price Ceiling Plus Supply
Market in Another Country Plus Added Tariff
The final illustrative example has the same data as the immediately preceding example but ow we con-
sider the impact of an addition of a tariff τ21 = 2. The new equilibrium pattern is:

x∗p1
= 7, x∗p2

= 4, π∗(1,1) = 2, π∗(2,1) = 3, ρ∗(1,1) = 10.

In addition, we have that: We also have that: s(1,1)(π∗) = 15 > x∗p1
= 7; s(2,1)(π∗) = 5 = x∗p2

and d(1,1)(ρ∗) = 12 > x∗p1
+ x∗p2

= 11. Moreover, we have that: π∗(1,1) + Cp1(x∗) = ρ∗(1,1) and



π∗(2,1) + Cp2(x∗) + τ12 = ρ∗(1,1). In this example, a sin the preceding ones, the spatial price equilibrium
conditions according to Definition 1 hold precisely.

4. The Algorithm and Qualitative Properties

The algorithm that we utilize to to solve the variational inequality (9), equivalently (8), governing the
multiproduct, multicountry spatial price equilibrium model with trade measures and its variants that is
presented in Section 3 is the modified projection method (see Korpelevich (1977) and Nagurney (1999)).
This algorithm is guaranteed to converge if the function F (X) that enters the standard variational in-
equality form is monotone and Lipschitz continuous (see Nagurney (1999)) and a solution exists. The
qualitative properties are discussed in the next subsection.

The Modified Projection Method
Step 0: Initialization
Initialize with X0 ∈ K. Set τ := 1 and select η, such that 0 < η ≤ 1

L , where L is the Lipschitz continuity
constant for F (X).
Step 1: Construction and Computation
Compute X̂τ by solving the variational inequality subproblem:

〈X̂τ + (ηF (Xτ−1)−Xτ−1), X − X̂τ 〉 ≥ 0, ∀X ∈ K. (10)

Step 2: Adaptation
Compute Xτ by solving the variational inequality subproblem:

〈Xτ + (ηF (X̂τ )−Xτ−1), X −Xτ 〉 ≥ 0, ∀X ∈ K. (11)

Step 3: Convergence Verification
If | Xτ − Xτ−1 |≤ ε, with ε > 0, a specified tolerance, then stop; otherwise, set τ := τ + 1, and go to
Step 1.

We now provide the explicit formulae for the variables induced by the modified projection method for
our model at a given iteration for Step 1 above. Similar explicit formulae can be determined accordingly
for Step 2.

Explicit Formulae for Step 1 for the Essential Product Flows on Paths with Quotas
For all h, g, for all (i, j) ∈ Gh

g , and for all (k, l), for each path p ∈ P
(i,k)
(j,l) , compute:

x̂τ
p = max{0, xτ−1

p − η(πh(τ−1)
(i,k) + Ch

p (xτ−1) + τh
ij + λτ−1

Gh
g
− ρ

h(τ−1)
(j,l) )}; (12)

Explicit Formulae for Step 1 for the Essential Product Flows on Paths without Quotas
For all h, g, for all (i, j) /∈ ∪gG

h
g , and for all (k, l), for each path p ∈ P

(i,k)
(j,l) , compute:

x̂hτ
p = max{0, xhτ−1

p − η(πh(τ−1)
(i,k) + Ch

p (xτ−1) + τh
ij − ρ

h(τ−1)
(j,l) )}; (13)



Explicit Formulae for Step 1 for the Quota Lagrange Multipliers
For all h and for all g, for each group Gh

g , compute:

λ̂τ
Gh

g
= max{0, λτ−1

Gh
g
− η(Q̄Gh

g
−

∑
p∈PGh

g

xh(τ−1)
p )}; (14)

Explicit Formulae for Step 1 for the Supply Prices
For all h, for all i, and for all ∀k, for each h, i, k, compute:

π̂hτ
(i,k) = max{πh

(i,k),min{πh(τ−1)
(i,k) − η(sh

(i,k)(π
τ−1)−

∑
p∈PGh

g

xh(τ−1)
p ), π̄h

(i,k)}}; (15)

Explicit Formulae for Step 1 for the Demand Price
For all h, for all j, and for all l, for each h, j, l, compute:

ρ̂hτ
(j,l) = max{0,min{ρh(τ−1)

(j,l) − η(
∑

p∈PGh
g

xh(τ−1)
p − dh

(j,l)(ρ
τ−1)), ρ̄h

(j,l)}}. (16)

4.1. Qualitative Properties

In this subsection, we discuss qualitative properties of the function F (X) in (9) for our model required
for convergence of the modified projection method. We also provide an existence result.

In the following proposition we show that if the product supply functions, minus the product de-
mand functions, and the product link unit transportation cost functions are monotone in their respective
vectors of variables, then the function F (X) in (9) is monotone in (x, λ, π, ρ). In the following proof
we make use of an alternative variational inequality to the one (8), which is in link flows. Let K11 ≡
{π|π ∈ R

H(nk)
+ ;πh

(i,k) ≤ πh
(i,k) ≤ π̄h

(i,k),∀h, i, k}; K12 ≡ {ρ|ρ ∈ R
H(nl)
+ ; 0 ≤ ρh

(j,l) ≤ ρ̄h
(j,l),∀h, j, l};

K13 ≡ {(x, f)|(x, f), {(2) holds}. Hence, we define the feasible set K1 ≡ {(x, f, λ, π, ρ)|x ∈
R

H(nP )
+ , λ ∈ R

H(nG)
+ , π ∈ R

H(nk)
+ , ρ ∈ R

H(nl)
+ ; πh

(i,k) ≤ πh
(i,k) ≤ π̄h

(i,k),∀h, i, k; 0 ≤ ρh
(j,l) ≤

ρ̄h
(j,l),∀h, j, l, and (2) holds} ≡ K11 ×K12 ×K13.

Proposition 1: Monotonicity of F (X) in (9)
We assume that the vector of product supply functions s(π), minus the vector of product demand func-
tions d(ρ), and the vector of link product unit transportation cost functions c(f) are all monotone as
follows:

〈s(π1)− s(π2), π1 − π2〉 ≥ 0, ∀π1, π2 ∈ K11, (17a)

−〈d(ρ1)− d(ρ2), ρ1 − ρ2〉 ≥ 0, ∀ρ1, ρ2 ∈ K12, (17b)

〈c(f1)− c(f2), f1 − f2〉 ≥ 0, ∀f1, f2 ∈ K13. (17c)

Then, the function that enters variational inequality (8), as in standard form F (X) (9), is monotone, with
respect to the product flow vector x, the quota Lagrange multiplier vector λ, the vector of product supply
prices π, and the vector of -minus product demand prices ρ, that is, X .



Proof. Using (2) and (3) we have the following:
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Now, using (18), we can rewrite variational inequality (8) as follows:
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≥ 0, ∀(x, f, π, λ, ρ) ∈ K1. (19)

We can now establish that F (X) is monotone. For any X1 = (x1, λ1, π1, ρ1) ∈ K, X2 =
(x2, λ2, π2, ρ2) ∈ K,

〈F (X1)− F (X2), X1 −X2〉 = 〈F (x1, λ1, π1, ρ1)− F (x2, λ2, π2, ρ2),
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[
ρh1
(j,l) − ρh2

(j,l)

]

=
H∑

h=1

∑
a∈L

[
ch
a(f1)− ch

a(f2)
]
×

[
fh1

a − fh2
a

]
+

H∑
h=1

n∑
i=1

ki∑
k=1

[
sh
(i,k)(π

1)− sh
(i,k)(π

2)
]
×

[
πh1

(i,k) − πh2
(i,k)

]

−
H∑

h=1

n∑
j=1

lj∑
l=1

[
dh

(j,l)(ρ
1)− dh

(j,l)(ρ
2)

]
×

[
ρh1
(j,l) − ρh2

(j,l)

]
. (20)

With the assumptions (17a, b, c) on the product supply functions, minus the product demand functions,
and the link product unit transportation cost functions, we can conclude that expression (20) is greater
than or equal to zero. Therefore, F (X) is monotone.

Definition 2. Lipschitz Continuity
A function F (X) is Lipschitz continuous if the following condition holds:

‖F (X1)− F (X2)‖ ≤ L‖X1 −X2‖, ∀X1, X2 ∈ K. (21)

where L > 0 is known as the Lipschitz constant.

Remark 1. F (X) is Lipschitz continuous for our model provided that the link product unit transporta-
tion cost functions, the product supply functions, and the product demand functions have bounded first
order derivatives (see also Dong, Zhang, and Nagurney (2004) and Li and Nagurney (2015)).

Only monotonicity and Lipschitz continuity of F (X) are required for the convergence of the modified
projection method, provided a solution exists.

Remark 2. Observe that equilibrium conditions (4) and (5) may be re-expressed without the use of
the Lagrange multiplier vector λ∗, leading to a variational inequality in path flows, supply prices, and
demand prices and over a feasible set that includes the quota constraints. Since the link unit cost functions
and the supply and the demand functions are all assumed to be continuous, and since the supply prices
and the demand prices are bounded and the product flows are as well under the assumption that there
are quotas imposed on all product flows (and these may actually be very large), existence of a solution
is guaranteed under the classical theory of variational inequalities (see Kinderlehrer and Stampacchia
(1980)).

5. Numerical Examples

In this section, we present algorithmically computed solutions to spatial price numerical examples in
order to show the types of insights that can be obtained, when trade measures are imposed. Furthermore,



the examples yield not only qualitative information, but also quantitative results. The spatial price net-
work topology is as in Figure 4. Specifically, we consider a network with two countries, with a single
supply market in each country and with two demand markets in each country. The product being pro-
duced, shipped, and demanded is that of N95 masks. The prices, the price floors, and the price ceilings
are all in a common currency. The modified projection method was implemented in FORTRAN and a
Linux system at the University of Massachusetts Amherst used for the implementation of the algorithm
and the solution of these numerical examples. The algorithm was initialized as follows. We divided a
demand of 100 equally among the paths to each demand market and we set the initial demand market
prices at 1 and the initial supply market prices at 0 (except for Examples 4 and 5 where the supply price at
the supply market of Country 1 is initialized to the supply price floor of 20). The algorithm was deemed
to have converged if the absolute value of the successive variable iterates differed by no more than 10−4.
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Fig. 4. Network for the Spatial Price Equilibrium Examples Solved Algorithmically

These numerical examples are stylized but, nevertheless, are grounded in realistic data. Country 1, for
example, is inspired by China and Country 2 by the United States. The unit of flow is a kilogram of N95
masks with a kilogram corresponding to 100-150 masks.

The cost of air, sea, and land transportation depends on various factors, but according to Freightos
(2020) and WTO (2020c), air cargo shipping cost ranges from $2 to $4 per kilogram. In our network, we
assume links 1, 2, 7, 8, 11, and 12 are air freight links. Links 11 and 12 are international long distance



air shipping links between the two countries, so they have the highest unit shipping costs. Other links
also have different rates depending on the distance between the origin and the destination.

The computed equilibrium path flows for Examples 1 through 5 are given in Table 2 and the computed
equilibrium link flows in Table 3. We report the computed equilibrium prices, and the supplies and
demands at the markets according to their functional formulae in the numerical examples, as well as the
associated flows out of the supply markets and associated flows into the demand markets. Please refer to
equilibrium conditions (5), (6), and (7).

Example 1 - No Trade Measures
In order to be able to ascertain the impact of a specific trade measure, or combination thereof, we first
consider a numerical example in a pure form, that is, one in which no trade measures are imposed.

The data for this example are as follows. The paths are:

p1 = (1, 3), p2 = (2, 5), p3 = (7, 12, 5), p4 = (1, 4), p5 = (2, 6), p6 = (7, 12, 6),

p7 = (2, 11, 9), p8 = (7, 9), p9 = (2, 11, 10), p10 = (7, 10), p11 = (8).

The supply functions at the supply markets are:

s1
(1,1)(π) = 25π1

(1,1) + 3000, s1
(2,1)(π) = 22π1

(2,1) + 1000.

The demand functions at the demand markets are:

d1
(1,1)(ρ) = −0.5ρ1

(1,1) + 1800, d1
(1,2)(ρ) = −0.5ρ1

(1,2) + 1500,

d1
(2,1)(ρ) = −1.5ρ1

(2,1) + 1000, d1
(2,2)(ρ) = −1.0ρ1

(2,2) + 2500.

The link unit transportation cost functions are:

c1
1(f) = .01f1

1 +3, c1
2(f) = .02f1

2 +2, c1
3(f) = .03f1

3 +2, c1
4(f) = .06f1

4 +1, c1
5(f) = .5f1

5 +1,

c1
6(f) = .02f1

6 +2, c1
7(f) = .4f1

7 +4, c1
8(f) = .1f1

8 +3, c1
9(f) = .5f1

9 +1, c1
10(f) = .05f1

10+1,

c1
11(f) = .2f1

11 + .1f1
12 + 4, c1

12(f) = .3f1
12 + .20f1

11 + 5.

The computed equilibrium path flows and equilibrium link flows are reported in Tables 2 and 3,
respectively. We now report the computed equilibrium prices. Observe that Country 2 exports no N95
masks to Country 1, since the equilibrium link flow on link 12 is equal to 0.00.

The computed equilibrium supply market prices are:

π1∗
(1,1) = 32.55, π1∗

(2,1) = 48.57,

and the computed equilibrium demand market prices are:

ρ1∗
(1,1) = 109.16, ρ1∗

(1,2) = 88.50, ρ1∗
(2,1) = 397.14, ρ1∗

(2,2) = 223.08.

The spatial price equilibrium conditions (5), (6), and (7) hold with excellent accuracy. Observe that the
supply market price in Country 1 is lower than that at the supply market in Country 2; the same for the
demand market prices in Country 1 as opposed to those in Country 2. Recall that the prices, which are



in a common currency, are for a kilogram of N95 masks, which corresponds to 100-150 masks. Hence,
the above prices are quite reasonable; see also Nagurney et al. (2020). Also, it is worth noting that all the
supply market prices and all the demand markets prices are positive and none are at a value of 0. In fact,
the flow of N95 masks out of supply market 1 is equal to 3813.82, and the flow out of supply market
in Country 2 is equal to 2068.57; furthermore, the flows of N95 masks into the demand markets are,
respectively: 1745.42, 1455.75, 404.30, and 2276.92. These values are precisely equal to their respective
values according to the supply function and demand function formulae above (note equations (6) and (7)
of the equilibrium conditions).

Example 2 - Data as in Example 1 but with a Tariff Imposed by Country 2 on Imports of N95
Masks from Country 1
We now evaluate the impact of the imposition of a unit tariff by Country 2 on the imports of N95 masks
from Country 1. This, of course, allows us to also compare the removal of such a tariff, which would
correspond to Example 1. The data are as in Example 1 but with the following unit tariff: τ1

12 = 2. Please
refer to the computed equilibrium path flows and the equilibrium link flows, respectively, in Tables 2 and
3.

The computed equilibrium supply market prices are now:

π1∗
(1,1) = 32.35, π1∗

(2,1) = 48.76,

and the equilibrium demand market prices are:

ρ1∗
(1,1) = 108.95, ρ1∗

(1,2) = 88.24, ρ1∗
(2,1) = 397.52, ρ1∗

(2,2) = 223.57.

Clearly, under the imposed tariff, consumers at the two demand markets in Country 2 experience a
higher price for the N95 masks than they did in Example 1, whereas consumers at demand markets in
Country 1 experience reduced prices, as compared to the values in Example 1.

The supply of N95 masks at the supply market in Country 1 according to the functional formula is:
3808.80 and the supply at the supply market in Country 2 is: 2072.76. The demands at the demand
markets for N95 masks are now, according to their functional formulae, respectively: 1745.24, 1455.89,
403.73, and 2276.43. Both the supply flows and the demand flows correspond precisely to the values of
the respective function evaluated at the equilibrium prices (see equilibrium conditions (6) and (7)).

We then proceeded to conduct sensitivity analysis to determine at what value of the tariff there would
be zero flows of the N95 masks from Country 1 to Country 2. We observed that when the tariff τ1

12 was
234 or higher the flow on link 11 was zero (and if it were 233 or lower there would be a positive volume
of flow on link 11. Furthermore, under a unit tariff of 234, the computed equilibrium supply market
prices were

π1∗
(1,1) = 9.15, π1∗

(2,1) = 70.79,

and the computed equilibrium demand market prices were:

ρ1∗
(1,1) = 84.56, ρ1∗

(1,2) = 57.89, ρ1∗
(2,1) = 441.50, ρ1∗

(2,2) = 280.34.

One can see that consumers in Country 2 suffer, in that, the higher the tariff that is levied by their
country’s government, the higher the demand market prices for the N95 masks.



The supply at supply market 1 in Country 1, as represented by the flow, at the unit tariff of 234, is
equal to 3808.80 and that at the supply market in Country 2 equal to 2072.76; the demands at the demand
markets, as represented by the flow, are, respectively: 1745.52, 1455.89, 403.73, and 2276.43. Again, as
expected, since the equilibrium prices are not equal to 0, which would correspond, to price floors at
that value, the above flow values coincide precisely with the corresponding functions evaluated at the
computed equilibrium prices.

Example 3 - Data as in Example 2 but with Demand Price Bounds on Demand Markets in Country
2
In Example 3, the data remain as in Example 2, except that now we impose demand price ceilings on the
N95 masks at the demand markets in Country 2. The government in Country 2 is concerned about the
prices of the N95 at its demand markets and sets the following demand market price ceilings:

ρ̄1
(2,1) = 200.00, ρ̄1

(2,2) = 100.00.

The computed equilibrium flow patterns for Example 3 are reported in Tables 2 and 3. In addition, for
completeness, and for comparison with the preceding example, we now report the computed equilibrium
supply and demand market prices:

π1∗
(1,1) = 16.61, π1∗

(2,1) = 5.37,

and the computed equilibrium demand market prices:

ρ1∗
(1,1) = 92.40, ρ1∗

(1,2) = 67.65, ρ1∗
(2,1) = 200.00, ρ1∗

(2,2) = 100.00.

The supply market price decreases at the supply market in Country 1, as compared to the supply
market price in Example 2, and also decreases at the supply market in Country 2. The demand market
prices decrease at the demand markets in Country 1, and also at the demand markets in Country 2, where
they attain values at the imposed price ceilings.

The supply at supply market 1 in Country 1, as represented by the flow, is now equal to 3415.23, and
that at the supply market in Country 2 is equal to 1118.04. The demands at the demand markets are,
respectively: 1753.80, 1466.18, 217.90, and 1095.37. The flow values for the supply markets coincide
with the respective functional values evaluated at the computed equilibrium prices. The flow values into
the demand markets in Country 1 coincide with the corresponding demand functions evaluated at the
computed equilibrium prices. However, since the equilibrium demand prices at both demand markets in
Country 2 are at the imposed price ceiling (see also equilibrium condition (7)), the demand functions
evaluated at the computed equilibrium prices, which are for the two demand markets in Country 2 equal
to 700.00 and 2400, respectively, exceed the flow into the respective demand market.

As compared to Example 2, the flows of the N95 masks to demand markets in Country 2 decrease
precipitously, and are at about 50%, which is detrimental to the health of those who require them as well
as to the containment of contagion. Clearly, price ceilings at demand markets may reduce the purchase
price at the demand market, but at the expense of volume of essential product. Interestingly, consumers
at demand markets in Country 1 gain in terms of an increased volume of flow into their demand markets
of the N95 masks, but at higher prices, as compared to the demand market prices in Example 2.



Example 4 - Data as in Example 3 but with a Supply Price Floor at the Supply Market of Country
2
Country 1 is concerned that the supply price of the N95 masks at its supply market is low, and, in order
to protect producers, it has instituted a price floor of: π1

(1,1) = 20. The rest of the data for Example 4 is
as in Example 3.

The computed equilibrium path flows and equilibrium link flows are reported in Tables 2 and 3,
respectively.

The computed equilibrium supply market prices are now:

π1∗
(1,1) = 20.00, π1∗

(2,1) = 5.40,

and the equilibrium demand market prices are:

ρ1∗
(1,1) = 95.69, ρ1∗

(1,2) = 70.82, ρ1∗
(2,1) = 200.00, ρ1∗

(2,2) = 100.00.

Also, the supply at supply market 1 in Country 1, according to the supply function formula, is now
equal to 3500.00, whereas the flow out is equal to 3398.90. The supply at the supply market in Country 2,
according to the supply function formula, is equal to 1118.90, and this is exactly the value of the sum of
flows out of this supply market. The demands at the demand markets according to the demand functions
are, respectively: 1752.16, 1464.60, 700.00, and 2400.00, with the first two corresponding, respectively
to the flow in to each demand market. The flow at Country 2’s demand markets, in turn, are, respectively:
216.83 and 1084.22.

One can see that, at the supply market in Country 1, the supply price is at the supply price floor of
20 and that the supply market price at the supply market in Country 2 has risen, albeit slightly. The
prices that the consumers pay at the two demand markets in Country 1 have also risen (as compared to
their values in Example 3). Hence, although producers in Country 1 enjoy a higher price, consumers in
Country 1 pay more for the N95 masks. As for the demand markets in Country 2, the demand market
prices remain at the imposed price ceilings (as was the case in Example 3). Interestingly, although the
supply price floor is enacted in Country at its supply market, consumers at both demand markets in
Country 2 experience a lower volume of N95 masks at their demand markets.

Example 5 - Data as in Example 4 but with an Export Quota of 100 Imposed by Country 1 on
Country 2
In Example 5, the government of Country 1 is getting concerned about rising cases of Covid-19 and
institutes an export quota for the N95 masks of 100. Please refer to Tables 2 and 3 for the computed
equilibrium path flows and equilibrium link flows in Tables 2 and 3, respectively.

First, observe that, in Example 5, the quota of 100 is met, since the sum of the path flows on paths
p7 and p9 is equal to 100; equivalently, one can see that, given the network topology for this set of
problems, the equilibrium link flow on link 11 is 100.00. The associated computed Lagrange multiplier
is λ1∗ = 21.11, when we suppress the group notation.

The computed equilibrium supply market prices are now:

π1∗
(1,1) = 20.00, π1∗

(2,1) = 5.65,



and the equilibrium demand market prices are:

ρ1∗
(1,1) = 95.47, ρ1∗

(1,2) = 69.80, ρ1∗
(2,1) = 200.00, ρ1∗

(2,2) = 100.00.

Also, the flow of N95 masks out of supply market 1 in Country 1, according to the supply function, is
now equal to 3500.00, whereas the flow out is equal to 3317.37.

The supply at the supply market in Country 2, according to the supply function formula, is equal to
1124.27, and this is exactly the value of the sum of flows out of this supply market.

The demands at the demand markets according to the demand functions are, respectively: 1752.27,
1465.20, 700.00, and 2400.00, and correspond, respectively, for the first two demand markets to the flow
to each demand market. In the case of the demand markets in Country 2, the flow into its demand markets
is: 210.07 and 1014.20, respectively. The supply flows of the N95 masks in both countries now decrease,
which is detrimental to the health of those who require them as well as to the containment of contagion.
The demand markets in Country 2 receive fewer of the N95 masks than in Example 4. The prices of N95
masks in the demand markets in Country 2 are bounded by the price ceilings but the price in the supply
market of Country 2 has increased.

Path Equilibrium Path Flows

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5

p1 1664.01 1663.97 1661.00 1659.09 1657.04

p2 81.41 81.55 92.80 93.06 95.23

p3 0.00 0.00 0.00 0.00 0.00

p4 504.46 503.58 434.68 431.94 417.77

p5 951.29 952.30 1031.50 1032.65 1047.33

p6 0.00 0.00 0.00 0.00 0.00

p7 266.93 256.04 130.97 125.58 91.30

p8 137.36 138.69 86.93 91.24 118.77

p9 345.71 342.35 64.27 56.56 8.70

p10 216.17 216.04 114.77 111.71 92.02

p11 1715.03 1718.04 916.33 915.94 913.48

Table 2
Equilibrium Path Flows for Examples 1-5

These numerical examples illustrate the impacts of trade measures not only on the country imposing
the trade measure(s) but also on other countries. Interestingly, it may so happen that a trade measure
imposed by a country, hoping to help its citizens, may actually adversely affect its consumers, but may
positively affect those in another country.



Link Equilibrium Link Flows

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5

1 2168.47 2167.56 2095.68 2091.03 2074.81

2 1645.34 1641.24 1319.55 1307.86 1242.56

3 1664.01 1663.97 1661.00 1659.09 1657.04

4 504.46 503.58 434.68 431.94 417.77

5 81.41 81.55 92.80 93.06 95.23

6 951.29 952.30 1031.50 1032.65 1047.33

7 353.54 354.72 201.71 202.95 210.79

8 1715.03 1718.04 916.33 915.94 913.48

9 404.30 403.73 217.90 216.83 210.07

10 561.88 558.39 179.04 168.28 100.72

11 612.64 607.39 195.24 182.15 100.00

12 0.00 0.00 0.00 0.00 0.00

Table 3
Equilibrium Link Flows for Examples 1-5

6. Summary and Conclusions

The Covid-19 pandemic has disrupted lives and economies around the globe and has resulted in both a
healthcare and an economic disaster. The novel coronavirus that causes Covid-19 is very contagious and
knowledge about how it is spread, and how to mitigate the spread is emerging. Many governments of
different countries, seeking to protect their citizens, along with essential workers, has instituted a variety
of trade measures on essential products in the pandemic. Examples of such trade measures include:
tariffs, quotas, as well as price supports in the form of price floors and ceilings.

In this paper, we provide a unified variational inequality framework for quantifying the impacts of a
plethora of trade measures on the flows of essential products from supply markets to demand markets
within a country and across countries. We introduce a multiproduct, multicountry spatial price equilib-
rium model, which has both product flows, as well as supply market prices and demand market prices
as variables. It can also handle multiple paths, consisting of multiple numbers of links between sup-
ply markets and demand markets. We state the governing equilibrium conditions, in the presence of the
trade measures, and derive a variational inequality formulation, which is then used to obtain qualitative
results as well as solutions to illustrative examples and numerical examples, with the latter solved via an
implemented algorithm.

The modeling and algorithmic framework enables policy makers and decision-makers to quantify the
impacts of different trade measures, both individually or jointly, and to ascertain who may benefit and
who may lose. For example, our computed solutions to numerical examples reveal that unexpected results



may occur. We find, for example, that, with a price ceiling at the demand markets imposed by a country,
consumers benefit in terms of a reduction of prices at the demand markets in the country, but experience a
loss in terms of volumes of flow of the essential products. Interestingly, under this scenario, a competing
country may experience an increase in the flow of the essential product to its demand markets. Hence, a
country may think that it is benefiting its own consumers, but actually helps those in another country and
not its own. Also, imposing a price floor at a supply market in a country may help producers in securing
a higher price for the essential product, consumers in the country bear a higher price for the essential
product. Clearly, this is also not a positive outcome in a pandemic.

In constructing a general, computable spatial price equilibrium model in both quantity and price vari-
ables and with a spectrum of trade instruments, we have enriched the portfolio of spatial price equi-
librium models which incorporate relevant policies in the form of trade measures, and which are being
actively imposed now by governments around the world in the pandemic.
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Appendix A

A.1. Appendix

Proof. Proof of Theorem 1:



We first establish necessity, that is, we prove that if the vector (x∗, λ∗, π∗, ρ∗) ∈ K satisfies the spatial
price equilibrium conditions according to Definition 1, then it also satisfies variational inequality (8).
Note that, for a fixed path p ∈ P

(i,k)
(j,l) with (i, j), (k, l) ∈ Gh

g , essential product h ∈ H , and group Gh
g ,

(4) implies that: [
πh∗

(i,k) + Ch
p (x∗) + τh

ij + λ∗Gh
g
− ρh∗

(j,l)

]
×

[
xp − x∗p

]
≥ 0, ∀xp ≥ 0. (A1)

Indeed, according to (4), if x∗p > 0, then
[
πh∗

(i,k) + Ch
p (x∗) + τh

ij + λ∗Gh
g
− ρh∗

(j,l)

]
= 0, so (A1) holds.

Also, if x∗p = 0, then
[
πh∗

(i,k) + Ch
p (x∗) + τh

ij + λ∗Gh
g
− ρh∗

(j,l)

]
≥ 0, and, since, due to the nonnegativity

assumption on the path flows,
[
xp − x∗p

]
≥ 0, the product of these two terms is also nonnegative and (A1)

holds. Inequality (A1) is independent of path p, essential product h, and group Gh
g ; therefore, summation

over all essential products, groups, and paths, yields:

H∑
h=1

nGh∑
g=1

∑
(i,j)∈Gh

g

∑
k∈Oi

∑
l∈Dj

∑
p∈P

(i,k)
(j,l)

[
πh∗

(i,k) + Ch
p (x∗) + τh

ij + λ∗Gh
g
− ρh∗

(j,l)

]
×

[
xp − x∗p

]
≥ 0 ∀x ∈ K.

(A2)
Using similar arguments, we can conclude that

H∑
h=1

nGh∑
g=1

∑
(i,j)/∈Gh

g

∑
k∈Oi

∑
l∈Dj

∑
p∈P

(i,k)
(j,l)

[
πh∗

(i,k) + Ch
p (x∗) + τh

ij − ρh∗
(j,l)

]
×

[
xp − x∗p

]
≥ 0, ∀x ∈ K. (A3)

Now, (5) implies that, for fixed g and h, if λ∗Gh
g

satisfies (5), then:

Q̄Gh
g
−

∑
p∈PGh

g

xh∗
p

×
[
λGh

g
− λ∗Gh

g

]
≥ 0, ∀λGh

g
≥ 0. (A4)

Summation of (A4) over all h and g yields:

H∑
h=1

nGh∑
g=1

Q̄Gh
g
−

∑
p∈PGh

g

xh∗
p

×
[
λGh

g
− λ∗Gh

g

]
≥ 0, ∀λ ∈ K. (A5)

Also, (6) implies that, if πh∗
(i,k) satisfies (6), then:sh

(i,k)(π
∗)−

∑
p∈P (i,k)

xh∗
p

×
[
πh

(i,k) − πh∗
(i,k)

]
≥ 0, ∀πh

(i,k) ≤ πh
(i,k) ≤ π̄h

(i,k). (A6)



But inequality (A6) holds for any h, i, and k, so summation over all h, i, and k yields:

H∑
h=1

n∑
i=1

ki∑
k=1

sh
(i,k)(π

∗)−
∑

p∈P (i,k)

xh∗
p

×
[
πh

(i,k) − πh∗
(i,k)

]
≥ 0, ∀π ∈ K. (A7)

Analogously, (7) implies that if ρh∗
(j,l) satisfies (7), then: ∑

p∈P(j,l)

xh∗
p − dh

(j,l)(ρ
∗)

×
[
ρh
(j,l) − ρh∗

(j,l)

]
≥ 0, 0 ≤ ρh

(j,l) ≤ ρ̄h
(j,l). (A8)

Since inequality (A8) holds for any h, j, and l, we can conclude that summation over all h, j, and l
yields:

H∑
h=1

n∑
j=1

lj∑
l=1

 ∑
p∈P(j,l)

xh∗
p − dh

(j,l)(ρ
∗)

×
[
ρh
(j,l) − ρh∗

(j,l)

]
≥ 0, ∀ρ ∈ K. (A9)

Now, summing up (A2), (A3), (A5), (A7), and (A9) gives us variational inequality (8) and necessity
has been established.

We now establish sufficiency, that is, we show that, if (x∗, λ∗, π∗, ρ∗) ∈ K satisfies variational in-
equality (8) then it also satisfies the spatial price equilibrium conditions (4) - (7).

Let πh
(i,k) = πh∗

(i,k),∀(h, i, k), ρh
(j,l) = ρh∗

(j,l),∀(h, j, l), λGh
g

= λ∗Gh
g
,∀(h, g), and xp = x∗p,∀p 6= q.

Substitution of these values into (8), yields:[
πh∗

(i,k) + Ch
q (x∗) + τh

ij + λ∗Gh
g
− ρh∗

(j,l)

]
×

[
xq − x∗q

]
≥ 0, ∀xq ≥ 0. (A10)

Inequality (A10) implies that, if x∗q = 0, then
[
πh∗

(i,k) + Ch
q (x∗) + τh

ij + λ∗Gh
g
− ρh∗

(j,l)

]
≥ 0, and if x∗q > 0,

then
[
πh∗

(i,k) + Ch
q (x∗) + τh

ij + λ∗Gh
g
− ρh∗

(j,l)

]
= 0. Since this condition holds for any q in a group, we

conclude that (A10) implies that equilibrium conditions (4) must hold for any path in a group.
Similarly, let πh

(i,k) = πh∗
(i,k),∀(h, i, k), ρh

(j,l) = ρh∗
(j,l),∀(h, j, l), xp = x∗p,∀p 6= q, and (i, j), (k, l) /∈

∪gG
h
g . Substituting these values into (8), we obtain:[

πh∗
(i,k) + Ch

q (x∗) + τh
ij − ρh∗

(j,l)

]
×

[
xq − x∗q

]
≥ 0, ∀xq ≥ 0. (A11)

And (A11) implies that equilibrium conditions (4) must hold for any path q not in a group.
By setting now πh

(i,k) = πh∗
(i,k),∀(h, i, k), ρh

(j,l) = ρh∗
(j,l),∀(h, j, l), xp = x∗p,∀p, and λGh

g
=

λ∗Gh
g
,∀(h, g) 6= (s, t) in variational inequality (8), we get:Q̄Gt

s
−

∑
p∈PGt

s

xt∗
p

×
[
λGt

s
− λ∗Gt

s

]
≥ 0, ∀λGt

s
≥ 0. (A12)



(A12), in turn, implies that equilibrium conditions (5) must hold for any s and t.
Analogously, we now let ρh

(j,l) = ρh∗
(j,l),∀(h, j, l), xp = x∗p,∀p, λGh

g
= λ∗Gh

g
,∀(h, g), and πh

(i,k) =

πh∗
(i,k),∀(h, i, k) 6= (r, u, w). Substitution into (8) yields:sw

ru(π∗)−
∑

p∈P (r,u)

xw∗
p

× [πw
ru − πw∗

ru ] ≥ 0, ∀πw
ru ≤ πw

ru ≤ π̄w
ru. (A13)

(A13) implies that equilibrium conditions (6) must hold for any r, u, and w.
Finally, we set xp = x∗p,∀p, λGh

g
= λ∗Gh

g
,∀(h, g), πh

(i,k) = πh∗
(i,k),∀(h, i, k), and ρh

(j,l) =

ρh∗
(j,l),∀(h, j, l) 6= (e, o, v). Substitution of these values into variational inequality (8) yields: ∑

p∈P(e,o)

xv∗
p − dv

eo(ρ
∗)

× [ρv
eo − ρv∗

eo ] ≥ 0, 0 ≤ ρv
eo ≤ ρ̄v

eo. (A14)

And (A14) implies that equilibrium conditions (7) must hold for any e, o, and v.




