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Abstract: In this paper, we present a supply chain network model with multiple tiers of

decision-makers, consisting, respectively, of manufacturers, distributors, and retailers, who

can compete within a tier but may cooperate between tiers. We consider multicriteria

decision-making for both the manufacturers and the distributors whereas the retailers are

subject to decision-making under uncertainty since the demands associated with the product

are random. We derive the optimality conditions for the decision-makers, establish the

equilibrium conditions, and derive the variational inequality formulation. We then utilize the

variational inequality formulation to provide both qualitative properties of the equilibrium

product shipment, service level, and price pattern and to propose a computational procedure,

along with convergence results. This is the first supply chain network model to capture

both multicriteria decision-making and decision-making under uncertainty in an integrated

equilibrium framework.

Key Words: supply chains, multicriteria decision-making, decision-making under uncer-

tainty, network equilibrium, variational inequalities
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1. Introduction

The topic of supply chain modeling, analysis, computation, as well as management has

been the subject of a great deal of interest due to its theoretical challenges as well as practical

importance. Indeed, there is now a vast body of literature on the topic (cf. Stadtler and Kil-

ger (2002) and the references therein) with the associated research being both conceptual in

nature (see, e.g., Poirier (1996, 1999), Mentzer (2000), Bovet (2000)), due to the complexity

of such problems and the distinct decision-makers involved in the transactions, as well as

analytical (cf. Federgruen and Zipkin (1986), Federgruen (1993), Slats et al. (1995), Bramel

and Simchi-Levi (1997), Ganeshan et al. (1998), Daganzo (1999), Miller (2001), Hensher,

Button, and Brewer (2001) and the references therein).

Recently, there has been a notable effort expended on the development of decentralized

supply chain network models in order to formalize the study of the interactions among the

various decision-makers. For example, Lee and Billington (1993) emphasized the need for

the development of decentralized models that allow for a generalized network structure and

simplicity in computation. Anupindi and Bassok (1996), in turn, focused on the challenges

of systems consisting of decentralized retailers with information sharing. Lederer and Li

(1997), on the other hand, modeled the competition among firms that produce goods or

services for customers who are sensitive to delay time.

In addition, case-based analyses of supply chain management with consideration of the

special geographical and business environments have been conducted. For example, Yan and

Chang (1999) viewed the current supply chain management practices in the PC industry,

notably, in the greater China area. Yan, Yu, and Cheng (2001), in turn, proposed a strategic

model for supply chain design with logical constraints. Yu, Yan, and Cheng (2001a,b)

modeled and analyzed information sharing-based supply chain partnerships and identified

conditions for obtaining benefits from such partnerships. Yan and Hao (2001) proposed a

decision-making model for production loading planning for a textile company under a quick

response requirement.

In this paper, we present a model for multicriteria decision-making in a multitiered supply

chain network within an equilibrium context, in which we also accommodate, within a single

framework, random demands at the multiple consumer markets. The first approach to model,

analyze, and solve multitiered supply chain network equilibrium problems was proposed by

Nagurney, Dong, and Zhang (2002). However, in that model all of the decision-makers were
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faced with a single criterion each (e.g., profit maximization in the case of manufacturers and

retailers) and the demands were assumed known with certainty. Dong, Zhang, and Nagurney

(2002), in turn, did consider multicriteria decision-making within a supply chain context but

only considered two tiers of decision-makers and also assumed that the demands were known

with certainty. Dong, Zhang, and Nagurney (2003) recently introduced random demands

into a model of supply chain network competition. However, that model only considered two

tiers of single criterion decision-makers. Recent research, from a supernetwork perspective,

for supply chain network modeling, analysis, and computation in which electronic commerce

is also incorporated, can be found in Nagurney, et al. (2002). For further background on

supply chain networks and associated networks, see the book by Nagurney and Dong (2002),

and the references therein.

For definiteness, we now clearly spell out the novelty of our new model. Specifically,

in this paper, we assume that the manufacturers are involved in the production of a ho-

mogeneous product which is then shipped to the distributors. The manufacturers seek to

determine their optimal production and shipment quantities, given the production costs and

the transaction costs associated with conducting business with the different distributors as

well as the prices that the distributors are willing to pay for the product and shipment al-

ternative combinations. The manufacturers are assumed to have two objectives and these

are profit maximization and market share maximization with the weight associated with the

latter criterion being distinct for each manufacturer.

The distributors, in turn, seek to determine the “optimal” quantity of the product to

obtain from each of the manufacturers, the “most-economic” shipment pattern, as well as

the “optimal” service level. In particular, the distributors have three criteria and these are:

the maximization of profit, the minimization of transportation time, and the maximization

of service level. Each of the distributors can weight these criteria in a different manner. The

shipment alternatives are represented by links characterized by specific transportation cost

and transportation time functions. Hence, a specific shipment option or link may have a low

associated transportation time but a high transportation cost, whereas another may have a

high associated transportation time and a low cost. A higher price may be charged to have

the products shipped faster to the distributors or, in contrast, manufacturers may accept

a lower price if they select a slower and, presumably, cheaper, shipping mode. The service

level indicates the percentage of time that the product is not out of stock. Usually, a higher

service level implies a greater stock size on average, and thus, larger order quantities and less

3



frequent order times. In other words, with a higher service level, the stock (inventory) holding

cost goes up, and the transportation time and cost go down. Therefore, the service level set

by each distributor significantly impacts the holding cost as well as the transportation time

and cost.

As already mentioned, we do not require that the retailers know their demand functions

with certainty, but, rather, assume that they possess some knowledge such as the density

function of the random demand functions, based on historical data and/or forecasted data.

This relaxation of assumptions to-date, hence, makes for a more realistic model. Importantly,

even with this extension, we are able to not only derive the optimality conditions for the

manufacturers, the distributors, and the retailers, but also to establish that the governing

equilibrium conditions in the random demand case satisfy a finite-dimensional variational

inequality. Furthermore, we provide reasonable conditions on the underlying functions in

order to establish qualitative properties of the equilibrium price, service level, and product

shipment pattern. In addition, we give conditions that, if satisfied, guarantee convergence

of the proposed algorithmic scheme.

We note that Mahajan and Ryzin (2001) considered retailers under uncertain demand and

focused on inventory competition. However, they assumed that the price of the product is

exogenous. In this paper, in contrast, we assume competition, uncertain demand, and provide

a means to determine the equilibrium prices both at the retailers and at the manufacturers.

Lippman and McCardle (1997), in turn, developed a model of inventory competition for

firms but assumed an aggregated random demand. In this paper, we allow each retailer to

handle his own uncertain demand and to engage in competition, which seems closer to actual

practice. More recently, Iida (2002) presented a production-inventory model with uncertain

production capacity and uncertain demand.

The paper is organized as follows. In Section 2, we present the supply chain network

model with random demands, derive the optimality conditions for the distinct tiers of multi-

criteria decision-makers, and provide the equilibrium conditions, which are then shown to be

equivalent to a finite-dimensional variational inequality problem. In Section 3, we establish

certain qualitative properties of the chain network model, in particular, the existence and

uniqueness of an equilibrium, under reasonable assumptions. In Section 4, we describe the

computational procedure, along with convergence results. In Section 5, we summarize our

results and present the conclusions.
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Figure 1: The Multitiered Network Structure of the Supply Chain with Multicriteria
Decision-Makers

2. The Multitiered, Multicriteria Supply Chain Network Model with Uncertain

Demands

In this Section, we develop the supply chain network model with manufacturers, distribu-

tors, and retailers. The behavior of the various decision-makers is first described, along with

the optimality conditions. The integrated model is then constructed along with the varia-

tional inequality formulation of the governing equilibrium conditions. The network depiction

of the supply chain in equilibrium is given in Figure 1.

The Manufacturers

We assume that a homogeneous product is produced by m manufacturers, is shipped to

n distributors, and is distributed to o retailers at the demand markets. We denote a typical

manufacturer by i, a typical distributor by j, and a typical retailer by k. Each manufac-

turer can ship the product to each distributor using one (or more) of r possible shipment

alternatives, which can represent mode/route alternatives. We denote a typical shipment

alternative by l. Let qijl denote the quantity of the product produced by manufacturer i and

shipped to distributor j via shipment alternative l. For simplicity of presentation, we now
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define certain vectors. Let qi =
∑n

j=1

∑r
l=1 qijl be the total production of manufacturer i and

let q be the m-dimensional vector with components: {q1, . . . , qm}. Let qj =
∑m

i=1

∑r
l=1 qijl

denote the product shipments to distributor j from all the manufacturers. Finally, let Q1

denote the mnr-dimensional vector of all the product shipments from all the manufacturers

to all the distributors, with components: {q111, . . . , qmnr}. We assume that all the vectors

are column vectors.

Each manufacturer i is assumed to be faced with a production cost function fi, which

may depend, in general, on the entire vector of production outputs. We associate with

manufacturer i, who is transacting with distributor j and using shipment alternative l, a

transaction cost c1ijl.

The total costs incurred by a manufacturer i, thus, are equal to the sum of the manu-

facturer’s production cost plus the transaction costs. The revenue, in turn, is equal to the

sum over all the distributors and shipment alternatives of the price of the product charged

to each distributor and associated with a particular shipment alternative times the quantity.

If we let ρ∗
1ijl denote the (endogenous) price charged for the product by manufacturer i to

distributor j and associated with shipment alternative l, we can express the criterion of profit

maximization for manufacturer i as:

Maximize
n∑

j=1

r∑

l=1

ρ∗
1ijlqijl − fi(q) −

n∑

j=1

r∑

l=1

c1ijl(qijl) (1)

subject to qijl ≥ 0, for all j, l. We discuss how the supply price ρ∗
1ijl is determined later in

this Section. In addition to the criterion of profit maximization, we also assume that each

manufacturer seeks to maximize his production output in an endeavor to gain market share.

Therefore, the second criterion of each manufacturer i can be expressed mathematically as:

Maximize
n∑

j=1

r∑

l=1

qijl (2)

subject to qijl ≥ 0, for all j, l.

Each manufacturer i associates a nonnegative weight αi with the output maximization cri-

terion, the weight associated with the profit maximization criterion serving as the numeraire

and being set equal to 1. Hence, we can construct a value function for each manufacturer (cf.

Fishburn (1970), Chankong and Haimes (1983), Yu (1985), Keeney and Raiffa (1993)) using

a constant additive weight value function. Consequently, the multicriteria decision-making
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problem for manufacturer i is transformed into:

Maximize
n∑

j=1

r∑

l=1

ρ∗
1ijlqijl − fi(q) −

n∑

j=1

r∑

l=1

c1ijl(qijl) + αi

n∑

j=1

r∑

l=1

qijl (3)

subject to:

qijl ≥ 0, ∀j, l.

The Optimality Conditions of the Manufacturers

The manufacturers are assumed to compete in a noncooperative manner in the sense of

Cournot (1838) and Nash (1950, 1951), seeking to determine their own optimal production

and shipment quantities. If the production cost functions for each manufacturer is contin-

uously differentiable and convex, as is each manufacturer’s transaction cost function, then

the optimality conditions (see Dafermos and Nagurney (1987), Nagurney (1999) and Gabay

and Moulin (1980)) take the form of a variational inequality problem given by: determine

Q1∗ ∈ Rmnr
+ , such that

m∑

i=1

n∑

j=1

r∑

l=1

[
∂fi(q

∗)

∂qijl
+

∂c1ijl(q
∗
ijl)

∂qijl
− αi − ρ∗

1ijl

]
×
[
qijl − q∗ijl

]
≥ 0, ∀Q1 ∈ Rmnr

+ . (4)

The optimality conditions (4) have a nice economic interpretation as follows. A manufac-

turer will ship a positive amount of the product to a distributor via a particular shipment

alternative (and the flow on the corresponding link will be positive) if the price that the

distributor is willing to pay for the product, ρ∗
1ijl, is precisely equal to the manufacturer’s

marginal production and transaction costs associated with that distributor and with that

shipment alternative, discounted by the market share weight. If the manufacturer’s marginal

production and transaction costs discounted by the market share weight exceed the price

that the distributor is willing to pay for the product and shipment alternative, then the flow

on the transaction link will be zero.

The Distributors

The distributors are positioned in the supply chain to have transactions with both their

suppliers, who are the m manufacturers, and with their customers, who are the o retailers.

Let qjk denote the amount of the product purchased from distributor j by the retailer

k. Let the vector Q2 consist of all the quantities of the product shipped to the consumers
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and be the no-dimensional vector with components: {q11, . . . , qno}. Let ρ∗
2j denote the price

charged by distributor j. This price, as we will show, will be endogenously determined in

the integrated model. Then, the total revenue of distributor j is ρ∗
2j

∑o
k=1 qjk.

The costs that a typical distributor j is faced with include the price of obtaining the

product from the manufacturers, the transaction cost, which includes the transportation

cost, and which is denoted by c2ijl, and the holding cost, hj, for carrying, displaying, and

maintaining the product stock. Since a distributor must decide upon an ordering system in

terms of the order quantity and the order time (order point), the service level, denoted by

sj, is one of the main factors, financially, in addition to the ordering cost and carrying cost.

Here we define the service level to be the percentage of time that the product is in stock when

consumers come to buy it (cf. Arnold (2000)). Usually, a higher service level implies a greater

stock size, on the average, and, thus, larger order quantities and less frequent order times

(Beamon (1998)). We assume that the holding cost depends, in general, on j’s shipment

pattern qj, and his service level sj, that is, hj = hj(sj, qj). Distributor j’s transaction cost

associated with obtaining the product from manufacturer i via transportation alternative l,

in turn, is c2ijl = c2ijl(sj, qj). We denote the transportation time of shipping the product from

manufacturer i to distributor j via alternative l by tijl, which, in general, may depend upon qj

as well as on the service level sj as discussed above. Therefore, we have that tijl = tijl(sj, qj).

In a multicriteria decision-making setting, we assume that distributor j has three criteria.

They are: to maximize the profit, to minimize the total transportation time in getting the

product from the manufacturers, and to maximize the service level. As mentioned earlier,

by increasing his service level sj, distributor j is, indeed, in a sense, improving his service

reputation, since the customers shopping at retail outlet j have a lower chance of experiencing

a stockout of the product when distributor j adopts a higher service level. The model assumes

that distributor j associates with his value function a weight of 1 to his profit attribute in

dollar value, a weight of β1j to his transportation time attribute, as the conversion rate of

time to dollar value, and a weight of β2j to his service level attribute, as the conversion rate

of service reputation to dollar value.

Therefore, the multicriteria decision-making problem for distributor j; j = 1, ..., n, can

be transformed directly into the following optimization problem:

Maximize ρ∗
2j

o∑

k=1

qjk − β1j

m∑

i=1

r∑

l=1

tijl(sj, qj) + β2jsj
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−
m∑

i=1

r∑

l=1

ρ∗
1ijlqijl −

m∑

i=1

r∑

l=1

c2ijl(sj, qj) − hj(sj, qj) (5)

subject to
o∑

k=1

qjk ≤
m∑

i=1

r∑

l=1

qijl, (6)

sj ≤ 1, (7)

and

qijl ≥ 0, qjk ≥ 0, sj ≥ 0, ∀i, l, k,

where γj is the Lagrange multiplier associated with inequality (6) and ηj is the Lagrange

multiplier associated with inequality (7).

The objective function (5) represents a value function for distributor j, with β1j having

the interpretation as the conversion rate of time into dollar value and β2j having the inter-

pretation as the conversion rate of service level into dollar value. Constraint (6) expresses

that retailers cannot purchase more from a distributor than is held in stock. Constraint (7)

and the nonnegativity constraint on the level of service specify that the service level is set

between 0 to 100 percent.

Subsequently, we derive the optimality conditions for this problem.

The Optimality Conditions of the Distributors

Suppose that the distributors compete in a noncooperative manner so that each maxi-

mizes his profit given the actions of the other distributors. We now consider the optimality

conditions of the distributors assuming that each distributor is faced with the optimization

problem (5), (6) and (7).

Assuming that all the holding costs hj, the distributor transaction costs c2ijl, and the

transportation times for shipping the product from the manufacturers to the distributors

tijl are all continuous and convex, then the optimality conditions for the optimization prob-

lem (5), (6) and (7) for all the distributors satisfy the variational inequality: determine

nonnegative (Q1∗, Q2∗, γ∗, η∗, s∗) satisfying (7) such that:

n∑

j=1

o∑

k=1

[
γ∗

j − ρ∗
2j

]
×
[
qjk − q∗jk

]

+
m∑

i=1

n∑

j=1

r∑

l=1

[
∂hj(s

∗
j , q

∗
j )

∂qijl
+ ρ∗

1ijl +
∂c2ijl(s

∗
j , q

∗
j )

∂qijl
+ β1j

∂tijl(s
∗
j , q

∗
j )

∂qijl
− γ∗

j

]
×
[
qijl − q∗ijl

]

9



+
n∑

j=1

[
m∑

i=1

r∑

l=1

q∗ijl −
o∑

k=1

q∗jk

]
×
[
γj − γ∗

j

]
+

n∑

j=1

[
1 − s∗j

]
×
[
ηj − η∗

j

]

+
n∑

j=1

[
∂hj(s

∗
j , q

∗
j )

∂sj
+

m∑

i=1

r∑

l=1

∂c2ijl(s
∗
j , q

∗
j )

∂sj
+

m∑

i=1

r∑

l=1

β1j

∂tijl(s
∗
j , q

∗
j )

∂sj
+ η∗

j − β2j

]
×
[
sj − s∗j

]
≥ 0,

(8)

for all nonnegative Q1, Q2, s, γ, η satisfying (7), where recall that γj is the Lagrange multiplier

for (6) and ηj is the Lagrange multiplier for (7). For further background on such a derivation,

see Bertsekas and Tsitsiklis (1992). In this derivation, as in the derivation of inequality (4),

we have not had the prices charged be variables. They become endogenous variables in the

integrated model.

We now highlight the economic interpretation of the distributors’ optimality conditions.

The third term in inequality (8) reveals that the Lagrange multiplier γ∗
j can be interpreted

as the market clearing price at distributor j’s outlet, that is, if γ∗
j is positive, then, at

equilibrium, the total inflow of the product should equal the total outflow at distributor j. We

now turn to the first term in inequality (8). The first term implies that, if retailer k purchase

the product at distributor j, that is, q∗jk > 0, then the price charged by distributor j, ρ∗
2j,

should be equal to γ∗
j , which is the price to clear the market at distributor j. From the second

term in (8), in turn, we see that if distributor j adopts transportation alternative l to ship

the product from manufacturer i, that is, q∗ijl > 0, then the total marginal cost for obtaining

the product from manufacturer i via alternative l should be equal to γ∗
j , the price to clear

market at distributor j. On the other hand, if this marginal cost for obtaining the product

from manufacturer i via alternative l is greater than the market clearing price at distributor

j, then distributor j will not use alternative l to ship the product from manufacturer i. The

fourth term in (8) suggests that η∗
j is the equilibrium shadow price for the deviation of the

service level, s∗j , from one hundred percent, since ηj is defined to be the Lagrange multiplier

for constraint (7). Finally, the fifth term in (8) argues that in order to have a positive service

level s∗j at distributor j, the sum of the generalized marginal handling cost, which includes

the marginal holding cost, the marginal transaction cost, the weighted transportation time

(converted to its dollar value), and the shadow price for the deviation of service level from

being one hundred percent, should be equal to the weight β2j assigned to the service level.

This is because this term should economically measure the importance of increasing service

level against other marginal costs.

10



The Retailers

The retailers, in turn, must decide how much to order from the distributors in order to

cope with the random demand while still seeking to maximize their profits. A retailer k is

also faced with what we term a generalized cost, which may include, for example, the display

and storage cost associated with the product as well as the trasaction cost to obtain the

product from various distributors. We denote this cost by ck and, in the simplest case, we

would have that ck is a function of vk =
∑n

j=1 qjk, that is, the generalozed cost of a retailer

is a function of how much of the product he has obtained from the various distributors.

However, for the sake of generality, and to enhance the modeling of competition, we allow

the function to, in general, depend also on the amounts of the product held by other retailers

and, therefore, we may write:

ck = ck(Q
2), ∀k. (9)

Let ρ3k denote the demand price of the product associated with retailer k. We assume

that d̂k(ρ3k) is the demand for the product at the demand price of ρ3k at retail outlet k,

where d̂k(ρ3k) is a random variable with a density function of Fk(x, ρ3k), with ρ3k serving as

a parameter. Hence, we assume that the density function may vary with the demand price.

Let Pk be the probability distribution function of d̂k(ρ3k), that is, Pk(x, ρ3k) = Pk(d̂k ≤ x) =
∫ x
0 Fk(x, ρ3k)dx.

Retailer k can sell to the consumers no more than the minimum of his supply or his

demand, that is, the actual sale of k cannot exceed min{vk, d̂k}. Let

∆+
k ≡ max{0, vk − d̂k} (10)

and

∆−
k ≡ max{0, d̂k − vk}, (11)

where ∆+
k is a random variable representing the excess supply (inventory), whereas ∆−

k is a

random variable representing the excess demand (shortage).

Note that the expected values of excess supply and excess demand of retailer k are scalar

functions of vk and ρ3k. In particular, let e+
k and e−k denote, respectively, the expected values:

E(∆+
k ) and E(∆−

k ), that is,

e+
k (vk, ρ3k) ≡ E(∆+

k ) =
∫ vk

0
(vk − x)Fk(x, ρ3k)dx, (12)
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e−k (vk, ρ3k) ≡ E(∆−
k ) =

∫ ∞

vk

(x − vk)Fk(x, ρ3k)dx. (13)

Assume that the unit penalty of having excess supply at retail outlet k is λ+
k and that

the unit penalty of having excess demand is λ−
k , where the λ+

k and the λ−
k are assumed to

be nonnegative. Then, the expected total penalty of retailer k is given by

E(λ+
k ∆+

k + λ−
k ∆−

k ) = λ+
k e+

k (vk, ρ3k) + λ−
k e−k (vk, ρ3k). (14)

Assuming, as already mentioned, that the retailers are also profit-maximizers, the expected

revenue of retailer k is E(ρ3k min{vk, d̂k}). Hence, the optimization problem of a retailer k

can be expressed as:

Maximize E(ρ3k min{vk, d̂k}) − E(λ+
k ∆+

k + λ−
k ∆−

k ) − ck(Q
2) −

n∑

j=1

ρ∗
2jqjk (15)

subject to:

qik ≥ 0, qjk ≥ 0, for all i and j. (16)

Objective function (15) expresses that the expected profit of retailer k, which is the

difference between the expected revenues and the sum of the expected penalty, the generalized

cost, and the payouts to the manufacturers and to the distributors, should be maximized.

Applying now the definitions of ∆+
k , and ∆−

k , we know that min{vk, d̂k} = d̂k − ∆−
k .

Therefore, the objective function (14) can be expressed as

Maximize ρ3kdk(ρ3k) − (ρ3k + λ−
k )e−k (vk, ρ3k) − λ+

k e+
k (vk, ρ3k) − ck(Q

2) −
n∑

j=1

ρ∗
2jqjk (17)

where dj(ρ3k) ≡ E(d̂k) is a scalar function of ρ3k.

The Optimality Conditions of the Retailers

We now consider the optimality conditions of the retailers assuming that each retailer

is faced with the optimization problem (15), subject to (16), which represents the nonneg-

ativity assumption on the variables. Here, we also assume that the retailers compete in a

noncooperative manner so that each maximizes his profits, given the actions of the other re-

tailers. Note that, at this point, we consider that retailers seek to determine the amount that
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they wish to obtain from the distributors. First, however, we make the following derivation

and introduce the necessary notation:

∂e−k (vk, ρ3k)

∂qjk

=
∂e−k (vk, ρ3k)

∂qjk

= Pk(vk, ρ3k) − 1 = Pk(
n∑

j=1

qjk, ρ3k) − 1. (18)

Assuming that the generalized cost for each retailer is continuous and convex, then the

optimality conditions for all the retailers satisfy the variational inequality: determine (Q2∗) ∈
Rno

+ , satisfying:

+
n∑

j=1

o∑

k=1

[
λ+

k Pk(v
∗
k, ρ3k) − (λ−

k + ρ3k)(1 − Pk(v
∗
k, ρ3k)) +

∂ck(Q
2∗)

∂qjk
+ ρ∗

2j

]
×
[
qjk − q∗jk

]
≥ 0,

∀Q2 ∈ Rno
+ . (19)

We now highlight the economic interpretation of the retailers’ optimality conditions. In

inequality (19), we can infer that, if a distributor j transacts with a retailer k resulting in a

positive flow of the product between the two, then the selling price at retail outlet k, ρ3k, with

the probability of (1−Pk(
∑n

j=1 q∗jk, ρ3k)), that is, when the demand is not less then the total

order quantity, is precisely equal to the retailer k’s payment to the distributor, ρ∗
2j, plus his

marginal cost of trasacting/handling the product and the penalty of having excess demand

with probability of Pk(
∑o

j=1 q∗jk, ρ3k), (which is the probability when actual demand is less

than the order quantity), subtracted by the penalty of having shortage with probability of

(1 − Pk(
∑o

j=1 q∗jk, ρ3k)) (when the actual demand is greater than the order quantity).

The Market Equilibrium Conditions

We now turn to a discussion of the market equilibrium conditions. Subsequently, we

construct the equilibrium conditions for the entire supply chain.

The equilibrium conditions associated with the transactions that take place between the

retailers and the consumers are the stochastic economic equilibrium conditions, which, math-

ematically, take on the following form: For any retailer k; k = 1, . . . , o:

d̂k(ρ
∗
3k)

{
≤ ∑o

j=1 q∗jk a.e., if ρ∗
3k = 0

=
∑o

j=1 q∗jk a.e., if ρ∗
3k > 0,

(20)

where a.e. means that the corresponding equality or inequality holds almost everywhere.

Conditions (20) state that, if the demand price at outlet k is positive, then the quantities

13



purchased by the retailer from the manufacturers and from the distributors in the aggregate

is equal to the demand, with exceptions of zero probability. These conditions correspond

to the well-known economic equilibrium conditions (cf. Nagurney (1999) and the references

therein). Related equilibrium conditions, were proposed in Nagurney, Dong, and Zhang

(2002) and Dong, Zhang, and Nagurney (2003).

Equilibrium conditions (20) are equivalent to the following variational inequality prob-

lem, after taking the expected value and summing over all retailers k: determine ρ∗
3 ∈ Ro

+

satisfying
o∑

k=1

(
n∑

j=1

q∗jk − dj(ρ
∗
3k)) × [ρ3k − ρ∗

3k] ≥ 0, ∀ρ3 ∈ Ro
+, (21)

where ρ3 is the o-dimensional column vector with components: {ρ31, . . . , ρ3o}.

The Equilibrium Conditions of the Supply Chain Network

In equilibrium, we must have that the sum of the optimality conditions for all manufactur-

ers, as expressed by inequality (4), the optimality conditions for the distributors, as expressed

by condition (8), the optimality conditions for all retailers, as expressed by inequality (19),

and the market equilibrium conditions, as expressed by inequality (21) must be satisfied.

Hence, the shipments shipped from the manufacturers to the distributors, must be equal to

those accepted by the distributors, and, finally, the shipments from the distributors to the

retailers must coincide with those accepted by the retailers. We state this explicitly in the

following definition:

Definition 1: Supply Chain Equilibrium

A product shipment, price, and service level pattern (Q1∗, Q2∗, γ∗, ρ∗
3, s

∗, η∗) ∈ K,

where K ≡ Rmnr
+ × Rno

+ ×Rn
+ × Ro

+ × [0, 1]n × Rn
+ is said to be a supply chain equilibrium

if it satisfies the optimality conditions for all manufacturers, for all retailers, and for all

consumers, given, respectively, by (4), (8), (19),and (21), simultaneously.

Theorem 1: Variational Inequality Formulation

A supply chain network is in equilibrium, according to Definition 1 if and only if it satisfies

the variational inequality problem: Determine (Q1∗, Q2∗, γ∗, ρ∗
3, s

∗, η∗) ∈ K, such that:

m∑

i=1

n∑

j=1

r∑

l=1

[
∂fi(q

∗)

∂qijl
+

∂c1ijl(q
∗
ijl)

∂qijl
− αi +

∂hj(s
∗
j , q

∗
j )

∂qijl
+

∂c2ijl(s
∗
j , q

∗
j )

∂qijl

14



+β1j

∂tijl(s
∗
j , q

∗
j )

∂qijl

− γ∗
j

]
×
[
qijl − q∗ijl

]

+
n∑

j=1

o∑

k=1


γ∗

j + λ+
k Pk(

n∑

j=1

q∗jk, ρ3k) − (λ−
k + ρ3k)(1 − Pk(

n∑

j=1

q∗jk, ρ3k))

+
∂ck(Q

2∗)

∂qjk

]
×
[
qjk − q∗jk

]

+
n∑

j=1

[
m∑

i=1

r∑

l=1

q∗ijl −
o∑

k=1

q∗jk

]
×
[
γj − γ∗

j

]

+
o∑

k=1




n∑

j=1

q∗jk − dk(ρ
∗
3k)


× [ρ3k − ρ∗

3k]

+
n∑

j=1

[
∂hj(s

∗
j , q

∗
j )

∂sj
+

m∑

i=1

r∑

l=1

∂c2ijl(s
∗
j , q

∗
j )

∂sj

+
m∑

i=1

r∑

l=1

β1j

∂tijl(s
∗
j , q

∗
j )

∂sj

+ η∗
j − β2j

]
×
[
sj − s∗j

]

+
n∑

j=1

[
1 − s∗j

]
×
[
ηj − η∗

j

]
≥ 0, ∀(Q1, Q2, γ, ρ3, s, η) ∈ K, (22)

where γ is the n-dimensional column vector with component j given by γj.

For easy reference in the subsequent sections, variational inequality problem (22) can be

rewritten in standard variational inequality form (cf. Nagurney (1999)) as follows:

〈F (X∗)T , X − X∗〉 ≥ 0, ∀X = (Q1, Q2, γ, ρ3, s, η) ∈ K, (23)

and F (X) ≡ (F 1
ijl, F

2
jk, F

3
j , F 4

k , F 5
j , F 6

j )i=1,...,m,j=1,...,n,k=1,...,o,l=1,...,r, where the terms of F cor-

respond to the terms preceding the multiplication signs in inequality (22), and 〈·, ·〉 denotes

the inner product in Euclidean space.

15



3. Qualitative Properties

In this Section, we provide some qualitative properties of the solution to variational

inequality (22). In particular, we derive existence and uniqueness results. We also investigate

properties of the function F (cf. (23)) that enters the variational inequality of interest here.

Since the feasible set is not compact, we cannot derive existence simply from the assump-

tion of the continuity of the functions. Nevertheless, we can impose a rather weak condition

to guarantee the existence of a solution pattern. Let

Kb ≡ {(Q1, Q2, γ, ρ3, s, η)|0 ≤ (Q1, Q2, γ, ρ3, s, η) ≤ b}, (24)

where b = (b1, b2, b3, b4, 1, b6) ≥ 0 and Q1 ≤ b1; Q
2 ≤ b2; γ ≤ b3; ρ3 ≤ b4; s ≤ 1; η ≤ b6, mean

that each of the right-hand sides is a uniform upper bound for all the components of the

corresponding vectors. Then Kb is a bounded closed convex subset of K. Thus, the following

variational inequality

〈F (Xb)T , X − Xb〉 ≥ 0, ∀Xb ∈ Kb, (25)

admits at least one solution Xb ∈ Kb, from the standard theory of variational inequalities,

since Kb is compact and F is continuous. Following Kinderlehrer and Stampacchia (1980)

(see also Theorem 1.5 in Nagurney (1999)), we then have:

Theorem 2

Variational inequality (22) admits a solution if and only if there exists a b > 0, such that

variational inequality (22) admits a solution in Kb with

Q1 < b1; Q
2 < b2; γ < b3; ρ3 < b4; s ≤ 1; η < b6. (26)

Theorem 3

Suppose that there exist positive constants M , N , R with R > 0, such that:

∂fi(q)

∂qijl
+

∂c1ijl(qijl)

∂qijl
+

∂hj(sj, qj)

∂qijl
+

∂c2ijl(sj, qj)

∂qijl
+ β1j

∂tijl(sj, qj)

∂qijl
≥ M,

∀qijl with qijl ≥ N, ∀i, j, l, (27)

γj + λ+
k Pk(

n∑

j=1

qjk, ρ3k) − (λ−
k + ρ3k)(1 − Pk(

n∑

j=1

qjk, ρ3k)) +
∂ck(Q

2)

∂qjk
≥ M,
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∀Q2 with qjk ≥ N, ∀j, k, (28)

dk(ρ3) ≤ N, ∀ρ3 with ρ3k > R, ∀k. (29)

Then, variational inequality (22) admits at least one solution.

Assumptions (27), (28), and (29) are reasonable from an economics perspective. In partic-

ular, according to (27), when the product shipment between a manufacturer and a distributor

via a certain shipment alternative is large, we can expect the corresponding sum of the mar-

ginal costs associated with the production, the shipment, and the holding of the product and

the marginal time to exceed a positive lower bound. The rationale of assumption (28), in

turn, can be seen through the following. If the amount of the product purchased by retailer

k at distributor j is large, the transportation cost and the transportation time associated

with obtaining the product at the distributor can also be expected to exceed a lower bound.

Moreover, according to assumption (29), if the price of the product at the retailer is high,

we can expect that the demand for the product will be bounded from above at that market.

We now recall the concept of additive production cost, which was introduced by Zhang

and Nagurney (1996) in the stability analysis of dynamic spatial oligopolies, and has also

been employed in qualitative analysis by Nagurney, Dong, and Zhang (2002) for the study of

supply chain networks in which the decision-makers are faced with single criteria to optimize.

Additive production costs will be assumed in Theorems 4, 5, and 6.

Definition 2: Additive Production Cost

Suppose that for each manufacturer i, the production cost fi is additive, that is

fi(q) = f 1
i (qi) + f 2

i (q̄i), (30)

where f 1
i (qi) is the internal production cost that depends solely on the manufacturer’s own

output level qi, which may include the production operation and the facility maintenance,

etc., and f 2
i (q̄i) is the interdependent part of the production cost that is a function of all

the other manufacturer’ output levels q̄i = (q1, · · · , qi−1, qi+1, · · · , qm) and reflects the impact

of the other manufacturers’ production patterns on manufacturer i’s production cost. This

interdependent part of the production cost may describe the competition for the resources,

the cost of the raw materials, etc.

We now establish additional qualitative properties of the function F that enters the varia-

tional inequality problem, as well as uniqueness of the equilibrium pattern. Monotonicity and

17



Lipschitz continuity of F will be utilized in the subsequent section for proving convergence

of the algorithmic scheme.

Lemma 1

Let gk(vk, ρ3k)
T = (Pk(vk, ρ3k) − ρ3k(1 − Pk(vk, ρ3k)), vk − ρ3k)), where Pk is a probability

distribution with the density function of Fk(x, ρ3k). Then gk(vk, ρ3k) is monotone, that is,

[−ρ′
3k(1 − Pk(v

′
k, ρ

′
3k)) + ρ′′

3k(1 − Pk(v
′′
k , ρ

′′
3k))] × [q′jk − q′′jk]

+[v′
k − dk(ρ

′
3k) − v′′

k + dk(ρ
′′
3k)] × [ρ′

3k − ρ′′
3k] ≥ 0, ∀(v′

k, ρ
′
3k), (v

′′
k , ρ

′′
3k) ∈ R2

+ (31)

if and only if d′
k(ρ3k) ≤ −(4ρ3kFk)

−1(Pk + ρ3k
∂Pk

∂ρ3k
)2.

Proof: In order to prove that gk(sk, ρ3k) is monotone with respect to vk and ρ3k, we only

need to show that its Jacobian matrix is positive semidefinite, which will be the case if all

eigenvalues of the symmetric part of the Jacobian matrix are nonnegative real numbers.

The Jacobian matrix of gk is

∇gk(vk, ρ3k) =

[
ρ3kFk(vk, ρ3k) −1 + Pk(vk, ρ3k) + ρ3k

∂Pk(vk,ρ3k)
∂ρ3k

1 −d′
k(ρ3k)

]
, (32)

and its symmetric part is

1

2
[∇gk(vk, ρ3k) + ∇T gk(vk, ρ3k)] =


 ρ3kFk(vk, ρ3k),

1
2

(
ρ3k

∂Pk

∂ρ3k
+ Pk(vk, ρ3k)

)

1
2

(
ρ3k

∂Pk

∂ρ3k
+ Pk(vk, ρ3k)

)
, −d′

k(ρ3k)


 .

(33)

The two eigenvalues of (33) are

γmin(vk, ρ3k) =
1

2

[
(ρ3kFk − d′

k) −
√

(αkFk − d′
k)

2 + (ρ3k
∂Pk

∂ρ3k
+ Pk)2 + 4ρ3kFkd

′
k

]
, (34)

γmax(sk, ρ3k) =
1

2

[
(ρ3kFk − d′

k) +

√
(ρ3kFk − d′

k)
2 + (ρ3k

∂Pk

∂ρ3k
+ Pk)2 + 4ρ3kFkd′

k

]
. (35)

Moreover, since what is inside the square root in both (34) and (35) can be rewritten as

(ρ3kFk + d′
k)

2
+

(
ρ3k

∂Pk

∂ρ3k
+ Pk

)2
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and can be seen as being nonnegative, both eigenvalues are real. Furthermore, under the

condition of the lemma, d′
k is non-positive, so the first item in (34) and in (35) is nonnegative.

The condition further implies that the second item in (34) and in (35), the square root part,

is not greater than the first item, which guarantees that both eigenvalues are nonnegative

real numbers. 2

The condition of Lemma 1 states that the expected demand function of a retailer is a

nonincreasing function with respect to the demand price and its first order derivative has an

upper bound.

Theorem 4: Monotonicity

Suppose that the production cost functions fi; i = 1, ..., m, are additive, as defined in Defini-

tion 2, and that the f 1
i ; i = 1, ..., m, are convex functions. In addition, suppose that

(i). the c1ijl, hj, c2ijl and tijl are all convex functions in the shipment qijl, ∀i, j, l;

(ii). the ck(Q
2) are monotone increasing functions with respect to qjk, ∀j, k;

(iii). the dk are monotone decreasing functions of the prices ρ3k, for all k; and d′(ρ3k) ≤
−(4ρ3k)Fk)

−1(Pk + ρ3k
∂P

∂ρ3k
)2 and, finally,

(iv). the hj, is a family of increasing convex function of the service levels sj, ∀j, while the

distributor transaction costs c2ijl and the transportation times tijl are a family of decreasing

and concave functions of the service levels sj, ∀i, j, l. Then the vector function F that enters

the variational inequality (23) is monotone, that is,

〈(F (X ′) − F (X ′′))T , X ′ − X ′′〉 ≥ 0, ∀X ′, X ′′ ∈ K. (36)

Proof: Analogous to the proof of Theorem 4 of Dong, Zhang, and Nagurney (2003).

Moreover, we have the following theorem.

Theorem 5: Strict Monotonicity

Assume all the conditions of Theorem 4. In addition, suppose that

(i). one of the families of the vector functions c1ijl, hj, c2ijl, or tijl is strictly convex in ship-

ment qijl;

(ii). the dk are strictly monotone decreasing functions of the prices ρ3k, for all k; and

d′(ρ3k) < −(4ρ3k)Fk)
−1(Pk + ρ3k

∂P
∂ρ3k

)2 ;
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(iii). either the holding costs, hj, ∀j, are increasing and strictly convex functions of the ser-

vice levels sj, ∀j, or one of the transaction cost functions c2ijl, ∀i, j, l, and tijl, ∀i, j, l, is a

family of decreasing and strictly concave functions of the service levels sj, ∀j.

Then the vector function F that enters the variational inequality (23) is strictly monotone,

with respect to (Q1, Q2, ρ3, s), that is, for any two X ′, X ′′ with (Q1′, Q2′, ρ′
3, s

′) 6= (Q1′′, Q2′′, ρ′′
3, s

′′):

〈(F (X ′) − F (X ′′))T , X ′ − X ′′〉 > 0. (37)

Theorem 6: Uniqueness

Assuming the conditions of Theorem 5, there must be a unique production shipment pattern

Q1∗ and Q2∗, a unique retailer price vector ρ∗
3, and a unique service vector s∗ satisfying

the equilibrium conditions of the multitiered, multicriteria supply chain network. In other

words, if the variational inequality (22) admits a solution, that should be the only solution

in Q1, Q2, ρ3, s.

Theorem 7: Lipschitz Continuity

The function that enters the variational inequality problem (22) is Lipschitz continuous, that

is,

‖F (X ′) − F (X ′′)‖ ≤ L‖X ′ − X ′′‖, ∀X ′, X ′′ ∈ K, (38)

under the following conditions:

(i). c1ijl, hj, c2ijl and tijl have bounded second-order derivatives, ∀i, j, l, with respect to q;

(ii). dk, ∀k, have bounded second-order derivatives, with respect to qjk;

(iii). dk have bounded second-order derivatives, ∀k;

(iv). hj, ∀j; c2ijl, ∀i, j, k; tijl, ∀i, j, k, have bounded second-order partial derivatives with re-

spect to s.

Proof: Since the probability function Pj is always less than or equal to 1, for each retailer

j, the result is direct by applying a mid-value theorem from calculus to the vector function

F that enters the variational inequality problem (22). 2
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4. The Algorithm

Now we present the modified projection method of Korpelevich (1977) which can be

applied to solve the variational inequality problem in standard form (22). The statement of

the modified projection method is as follows, where T denotes an iteration counter:

Modified Projection Method

Step 0: Initialization

Set X0 ∈ K. Let T = 1 and let α be a scalar such that 0 < α ≤ 1
L
, where L is the Lipschitz

continuity constant (cf. (38)).

Step 1: Computation

Compute X̄T by solving the variational inequality subproblem:

〈(X̄T + αF (XT −1) − XT −1)T , X − X̄T 〉 ≥ 0, ∀X ∈ K. (39)

Step 2: Adaptation

Compute XT by solving the variational inequality subproblem:

〈(XT + αF (X̄T ) − XT −1)T , X − XT 〉 ≥ 0, ∀X ∈ K. (40)

Step 3: Convergence Verification

If max |XT
l − XT −1

l | ≤ ε, for all l, with ε > 0, a prespecified tolerance, then stop; else, set

T =: T + 1, and go to Step 1.

Theorem 8: Convergence

Assume that the function that enters the variational inequality (22) has at least one solution

and satisfies the conditions in Theorem 4 and in Theorem 7. Then the modified projection

method described above converges to the solution of the variational inequality.

Proof: According to Korpelevich (1977), the modified projection method converges to the

solution of the variational inequality problem of the form (23), provided that the function

F that enters the variational inequality is monotone and Lipschitz continuous and that

a solution exists. Existence of a solution follows from Theorem 3. Monotonicity follows

Theorem 4. Lipschitz continuity, in turn, follows from Theorem 7. 2
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Recall that Figure 1 depicts the multitiered network structure of the supply chain in

equilibrium. The vectors of prices ρ∗
1, γ∗, and ρ∗

3 are associated with the respective tiers

of nodes on the network, whereas the components of the vector of the equilibrium product

shipments Q1∗ correspond to the flows on the links joining the manufacturer nodes with the

distributor nodes. The components of ρ∗
1 and ρ∗

2 can be determined as discussed following

(4) and (8), respectively, whereas the components of ρ∗
3 are explicit in the solution of the

variational inequality (22). The components of the vector of equilibrium product shipments

Q2∗, in turn, correspond to the flows on the links joining the distributor nodes with the

demand market nodes.

In future work, we will apply this computational procedure to a variety of supply chain

network problems.
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5. Summary and Conclusions

This paper develops a mathematical model for the study of multitiered supply chain

networks with multicriteria decision-makers and considers manufacturers, distributors, and

retailers, respectively, in different tiers of the supply chain network. To cope with the practi-

cal concern of uncertain demand, the model assumes that each retailer is faced with demand

that is a random function of his retail price. The optimality conditions for the decision-

makers at each tier of the network are derived and are interpreted economically. These

conditions are then integrated into a single variational inequality formulation that governs

the equilibrium conditions of the entire supply chain network. The analytic properties of

the variational inequality formulation are investigated. In particular, we show that, under

reasonable conditions, there exists a unique production and shipment pattern for the manu-

facturers, a unique set of service levels for the distributors, a unique consumption pattern of

the multiclass consumers, and a unique demand price pattern. A computational procedure

is also proposed for the determination of the equilibrium shipment, price, and service level

pattern, along with convergence results.

This research generalizes existing supply chain network models to include multicriteria

decision-making and decision-making under uncertainty within a unified equilibrium frame-

work.
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