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Abstract:

In this paper, a dynamical systems framework is developed for the modeling, qualitative

analysis, and computation of solutions to dynamic financial network problems with interme-

diation. An economy is considered consisting of three types of agents: those with sources

of funds, such as firms and households; intermediary ones, such as, banks, savings institu-

tions, insurance companies, investment companies, etc., and, finally, the consumers located

at demand markets corresponding to the uses of funds, such as household loans, real estate

loans, business loans, etc. We describe the behavior of the agents, identify the multi-tiered

network, and propose the projected dynamical system, along with stability analysis results,

that captures the adjustments of the financial flows and prices over space and time. A

discrete-time adjustment process is also proposed and implemented in order to demonstrate

the evolution of the flows and prices to the equilibrium solution.
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1. Introduction

The conceptualization of financial systems as networks dates to Quesnay (1758) who de-

picted the circular flow of funds in an economy as a network. His basic idea was subsequently

applied in the construction of flow of funds accounts, which are a statistical description of

the flows of money and credit in an economy (cf. Board of Governors (1980), Cohen (1987),

Nagurney and Hughes (1992)). However, since the flow of funds accounts are in matrix form,

and, hence, two-dimensional, they fail to capture the dynamic behavior on a micro level of

the various financial agents/sectors in an economy, such as banks, households, insurance

companies, etc. Moreover, as noted by the Board of Governors (1980), “the generality of

the matrix tends to obscure certain structural aspects of the financial system that are of

continuing interest in analysis,” with the structural concepts of concern including financial

intermediation.

Thore, in (1980), recognized some of the shortcomings of financial flow of funds accounts

and developed, instead, network models of linked portfolios with financial intermediation, us-

ing decentralization/decomposition theory. Note that, intermediation is typically associated

with financial businesses, including banks, savings institutions, investment and insurance

companies, etc., and the term implies borrowing for the purpose of lending, rather than for

nonfinancial purposes. He also constructed some basic intertemporal models. However, the

intertemporal models were not fully developed and the computational techniques at that

time were not sufficiently advanced for computational purposes.

Thore (1969) had earlier introduced networks, along with the mathematics, for the study

of systems of linked portfolios (see also Charnes and Cooper (1967)) in the context of credit

networks and made use of linear programming. Storoy, Thore, and Boyer (1975), in turn,

presented a network model of the interconnection of capital markets and demonstrated how

decomposition theory of mathematical programming could be exploited for the computation

of equilibrium. The utility functions facing a sector were no longer restricted to being linear

functions.

Nagurney, Dong, and Hughes (1992) developed a multi-sector, multi-instrument finan-

cial equilibrium model and recognized the network structure underlying the subproblems

encountered in their proposed decomposition scheme, which was based on finite-dimensional
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variational inequality theory. Nagurney and Ke Ke (2001), in turn, presented a general but,

static, model of financial intermediation. In this paper, we build upon that work as well

as the contribution of Dong, Zhang, and Nagurney (1996). These authors were the first to

develop a dynamic model of general financial equilibrium with multiple sectors and multi-

ple financial instruments, in which both the prices and the flows were endogeneous. They

formulated the model as a projected dynamical system (cf. Dupuis and Nagurney (1993),

Zhang and Nagurney (1995), and Nagurney and Zhang (1996)) and then established stability

analysis results. This work was later extended to the international domain by Nagurney and

Siokos (1997, 1998).

In this paper, we address the dynamics of the financial economy which explicitly includes

financial intermediaries along with the “sources” and “uses” of financial funds. The per-

spective is an equilibrium one since the equilibrium state serves as a valuable benchmark.

Tools are provided for studying the disequilibrium dynamics as well as the equilibrium state.

Also, we consider transaction costs in the model, since they bring a greater degree of realism

to the study of financial intermediation. Transaction costs have been studied to-date in

multi-sector, multi-instrument financial equilibrium models by Nagurney and Dong (1995,

1996 a,b) but without considering the more general dynamic intermediation setting.

This paper is organized as follows. In Section 2, the dynamic financial model is developed

with three distinct types of agents, the network structure of the problem is identified, and the

disequilibrium dynamics are proposed. Transaction costs are introduced and associated with

transactions conducted between agents located at distinct tiers of the networks. The problem

is formulated as a projected dynamical system and a discussion of the stationary/equilibrium

point is given. In Section 3, some qualitative properties of the dynamic trajectories are

provided, along with stability analysis results. In Section 4, a discrete-time algorithm is

proposed, which is a time discretization of the continuous adjustment process given in Section

2. The algorithm resolves the network problem into subproblems, each of which can be solved

exactly and in closed form. In Section 5, the discrete-time adjustment process is implemented

and applied to several numerical examples to determine the equilibrium flows and prices. The

paper concludes with a summary and conclusions in Section 6.
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2. The Dynamic Financial Network Model with Intermediation

In this Section, the dynamic financial network model is developed. The model consists

of: agents with sources of funds, agents who are intermediaries, as well as agents who are

consumers located at the demand markets. Specifically, we consider m agents with sources of

financial funds, such as households and businesses, involved in the allocation of their financial

resources among a portfolio of financial instruments which can be obtained by transacting

with distinct n financial intermediaries, such as banks, insurance and investment companies,

etc. The financial intermediaries, in turn, in addition to transacting with the source agents,

also determine how to allocate the incoming financial resources among distinct uses, as

represented by o demand markets with a demand market corresponding to, for example, the

market for real estate loans, household loans, or business loans, etc.

The financial network is now described and depicted graphically in Figure 1. The top tier

of nodes consists of the agents with sources of funds, with a typical source agent denoted by

i and associated with node i. The middle tier of nodes consists of the intermediaries, with a

typical intermediary denoted by j and associated with node j in the network. The bottom

tier of nodes consists of the demand markets, with a typical demand market denoted by k

and corresponding to node k.

For simplicity of notation, we assume that there are L instruments associated with each

intermediary. Hence, from each source of funds node, there are L links connecting such a

node with an intermediary node with the l-th such link corresponding to the l-th financial in-

strument available from the intermediary. In addition, we allow the option of non-investment

in the available financial instruments and to denote this option, we then also construct an

additional link from each source node to middle tier node n + 1, which represents non-

investment. From each intermediary node, we then construct o links, one to each “use” node

or demand market in the bottom tier of nodes in the network to denote the transaction

between the intermediary and the consumers at the demand market.

Let xijl denote the nonnegative amount of the funds that source i “invests” in financial

instrument l obtained from intermediary j. We group the financial flows associated with

source agent i, which are associated with the links emanating from the top tier node i to the

intermediary nodes, into the column vector xi ∈ RnL
+ . We assume that each source has, at
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Figure 1: The Network Structure of the Financial Economy with Intermediation and with
Non-investment Allowed

his disposal, an amount of funds Si and we denote the unallocated portion of this amount

(and flowing on the link joining node i with node n + 1) by si. We then group the xis of all

the source agents into the column vector x ∈ RmnL
+ .

We associate a distinct financial product k with each demand market, bottom-tiered node

k and let yjk denote the amount of the financial product obtained by consumers at demand

market k from intermediary j. We group these “consumption” quantities into the column

vector y ∈ Rno
+ . The intermediaries convert the incoming financial flows x into the outgoing

financial flows y.

The notation for the prices is now given. Note that there will be prices associated with

each of the tiers of nodes in the financial network. Let ρ1ijl denote the price associated with

instrument l as quoted by intermediary j to source agent i and group the first tier prices

into the column vector ρ1 ∈ RmnL
+ . Also, let ρ2j denote the price charged by intermediary j

and group all such prices into the column vector ρ2 ∈ Rn
+. Finally, let ρ3k denote the price

of the financial product at the third or bottom-tiered node k, and group all such prices into

the column vector ρ3 ∈ Ro
+.
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We now turn to describing the dynamics by which the source agents adjust the amounts

they allocate to the various instruments over time, the dynamics by which the intermediaries

adjust their transactions, and those by which the consumers obtain the financial products at

the demand markets. In addition, we describe the dynamics by which the prices adjust over

time. The dynamics are derived from the bottom tier of nodes of the financial network on up

since, as mentioned previously, we assume that it is the demand for the financial products

(and the corresponding prices) that actually drives the economic dynamics. We first present

the price dynamics and then the dynamics underlying the financial flows.

The Demand Market Price Dynamics

We begin by describing the dynamics underlying the prices of the financial products

associated with the demand markets (see the bottom-tiered nodes in the financial network).

We assume, as given, a demand function dk, which can depend, in general, upon the entire

vector of prices ρ3, that is,

dk = dk(ρ3), ∀k. (1)

Moreover, we assume that the rate of change of the price ρ3k, denoted by ρ̇3k, is equal to

the difference between the demand at the demand market k, as a function of the demand

market prices, and the amount available from the intermediaries at the demand market.

Hence, if the demand for the product at the demand market (at an instant in time) exceeds

the amount available, the price of the financial product at that demand market will increase;

if the amount available exceeds the demand at the price, then the price at the demand

market will decrease. Furthermore, we guarantee that the prices do not become negative.

Thus, the dynamics of the price ρ3k associated with the commodity at demand market k can

be expressed as:

ρ̇3k =

{
dk(ρ3) − ∑n

j=1 yjk, if ρ3k > 0
max{0, dk(ρ3) − ∑n

j=1 yjk}, if ρ3k = 0.
(2)
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The Dynamics of the Prices at the Intermediaries

The prices charged for the financial funds at the intermediaries, in turn, must reflect sup-

ply and demand conditions as well (and as we shall shortly see also reflect profit-maximizing

behavior on the part of the intermediaries who seek to determine how much of the financial

flows they obtain from the different sources of funds). In particular, we assume that the

price associated with intermediary j, ρ2j , and computed at node j lying in the second tier

of nodes of the financial network, evolves over time according to:

ρ̇2j =

{ ∑o
k=1 yjk − ∑m

i=1

∑L
l=1 xijl, if ρ2j > 0

max{0, ∑o
k=1 yjk − ∑m

i=1

∑L
l=1 xijl}, if ρ2j = 0.

(3)

Hence, if the amount of the financial funds desired to be transacted by the consumers

(at an instant in time) exceeds that available at the intermediary, then the price charged at

the intermediary will increase; if the amount available is greater than that desired by the

consumers, then the price charged at the intermediary will decrease. As in the case of the

demand market prices, we guarantee that the prices charged by the intermediaries remain

nonnegative.

Precursors to the Dynamics of the Financial Flows

We first introduce some preliminaries that will allow us to develop the dynamics of the

financial flows over the links of the financial network. In particular, we discuss the utility-

maximizing behavior of the source agents and the intermediaries.

We assume that each such source agent’s and each intermediary agent’s utility can be

defined as a function of the expected future portfolio value, where the expected value of the

future portfolio is described by two characteristics: the expected mean value and the uncer-

tainty surrounding the expected mean. Here, the expected mean portfolio value is assumed to

be equal to the market value of the current portfolio. Each agent’s uncertainty, or assessment

of risk, in turn, is based on a variance-covariance matrix denoting the agent’s assessment of

the standard deviation of the prices for each instrument/product. The variance-covariance

matrix associated with source agent i’s assets is denoted by Qi and is of dimension nL×nL,

and is associated with vector xi, whereas intermediary agent j’s variance-covariance matrix

is denoted by Qj , is of dimension o × o, and is associated with the vector yj. For further
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discussion of such assumptions, see the books by Nagurney and Siokos (1997) and Markowitz

(1959) and the references therein.

Optimizing Behavior of the Source Agents

We denote the total transaction cost associated with source agent i transacting with

intermediary j to obtain financial instrument l by cijl and assume that:

cijl = cijl(xijl), ∀i, j, l. (4)

The total transaction costs incurred by source agent i, thus, are equal to the sum of all

the agent’s transaction costs. His revenue, in turn, is equal to the sum of the price (rate of

return) that the the agent can obtain for the financial instrument times the total quantity

obtained/purchased of that instrument. Recall that ρ1ijl denotes the price associated with

instrument l/agent i/intermediary j.

We assume that each such source agent seeks to maximize net return while, simultane-

ously, minimizing the risk, with source agent i’s utility function denoted by U i. Moreover,

we assume that the variance-covariance matrix Qi is positive-semidefinite and that the trans-

action cost functions are continuously differentiable and convex. Hence, we can express the

optimization problem facing source agent i as:

Maximize Ui(xi) =
n∑

j=1

L∑
l=1

ρ1ijlxijl −
n∑

j=1

L∑
l=1

cijl(xijl) − xi
T Qixi, (5)

subject to xijl ≥ 0, for all j, l, and to the constraint:

n∑
j=1

L∑
l=1

xijl ≤ Si, (6)

that is, the allocations of source agent i’s funds among the financial instruments made

available by the different intermediaries cannot exceed his holdings. Note that the utility

function given in (5) is concave for each source agent i. Note that (6) allows a source agent

to not invest in any of the instrument. Indeed, as we shall show through numerical examples

in Section 5, this constraint has important financial implications.
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Clearly, in the case of unconstrained utility maximization, ∇xi
Ui = ( ∂Ui

∂xi11
, . . . , ∂Ui

∂xinL
),

represents agent i′s idealized direction, with the jl-component of ∇xi
Ui given by:

(ρ1ijl − 2Qi
zjl

· xi − ∂cijl(xijl)

∂xijl
), (7)

where Qi
zjl

denotes the zjl-th row of Qi, where zjl is the indicator defined as: zjl = (l−1)n+j.

We return later to describe how the constraints are explicitly incorporated into the dynamics.

Optimizing Behavior of the Intermediaries

The intermediaries (cf. Figure 1), in turn, are involved in transactions both with the

source agents, as well as with the users of the funds, that is, with the ultimate consumers

associated with the markets for the distinct types of loans/products at the bottom tier of

the network. Thus, an intermediary conducts transactions both with the “source” agents as

well as with the consumers at the demand markets.

An intermediary j is faced with what we term a handling/conversion cost, which may

include, for example, the cost of converting the incoming financial flows into the financial

loans/products associated with the demand markets. We denote this cost by cj and, in

the simplest case, we would have that cj is a function of
∑m

i=1

∑L
l=1 xijl, that is, the hold-

ing/conversion cost of an intermediary is a function of how much he has obtained from the

various source agents. For the sake of generality, however, we allow the function to, in

general, depend also on the amounts held by other intermediaries and, therefore, we may

write:

cj = cj(x), ∀j. (8)

The intermediaries also have associated transaction costs in regards to transacting with

the source agents, which we assume can be dependent on the type of instrument. We denote

the transaction cost associated with intermediary j transacting with source agent i associated

with instrument l by ĉijl and we assume that it is of the form

ĉijl = ĉijl(xijl), ∀i, j, l. (9)

Recall that the intermediaries convert the incoming financial flows x into the outgoing

financial flows y. We assume that an intermediary j incurs a transaction cost cjk associated

9



with transacting with demand market k, where

cjk = cjk(yjk), ∀j, k. (10)

The intermediaries associate a price with the financial funds, which recall is denoted by

ρ2j , for intermediary j. Assuming that the intermediaries are also utility maximizers with

the utility functions for each being comprised of net revenue maximization as well as risk

minimization, then the utility maximization problem for intermediary agent j with his utility

function denoted by U j , can be expressed as:

Maximize Uj(xj , yj)

=
m∑

i=1

L∑
l=1

ρ2jxijl − cj(x) −
m∑

i=1

L∑
l=1

ĉijl(xijl) −
o∑

k=1

cjk(yjk) −
m∑

i=1

L∑
l=1

ρ1ijlxijl − yj
T Qjyj (11)

subject to: the nonnegativity constraints: xijl ≥ 0, and yjk ≥ 0, for all i, l and k. Here, for

convenience, we have let xj = (x1j1, . . . , xmjL). Objective function (11) expresses that the

difference between the revenues minus the handling cost and the transaction costs and the

payout to the source agents should be maximized, whereas the risk should be minimized.

We assume that the variance-covariance matrix Qj is positive-semidefinite and that the

transaction cost functions are continuously differentiable and convex. Hence, the utility

function given in (11) is concave for each intermediary j.

Ignoring, for the time being, the constraints, ∇xj
Uj = (

∂Uj

∂x1j1
, . . . ,

∂Uj

∂xmjL
) represents agent

j’s idealized direction in terms of xj , whereas ∇yj
Uj = (

∂Uj

∂yj1
, . . . ,

∂Uj

∂yjo
) represents his idealized

direction in terms of yj. Note that the il-th component of ∇xj
Uj is given by:

(ρ2j − ρ1ijl − ∂cj(x)

∂xijl
− ∂ĉijl(xijl)

∂xijl
), (12)

whereas the jk-th component of ∇yj
Uj is given by:

(−∂cjk(yjk)

∂yjk
− 2Qj

k · yj). (13)

However, since both source agent i and intermediary j must agree in terms of the xijls,

the direction (7) must coincide with that in (12), yielding, after algebraic simplification:

(ρ2j − 2Qi
zjl

· xi − ∂cijl(xijl)

∂xijl
− ∂cj(x)

∂xijl
− ∂ĉijl(xijl)

∂xijl
). (14)
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The Dynamics of the Financial Flows Between the Source Agents and the Inter-

mediaries

We are now ready to express the dynamics of the financial flows between the source

agents and the intermediaries. In particular, we define the feasible set Ki ≡ {xi|xijl ≥
0, ∀i, j, l, and (6) holds}. Let also K be the Cartesian product fiven by K ≡ Πm

i=1Ki and

define F 1
ijl as minus the term in (14) with F 1

i = (F 1
i11, . . . , F

1
inL). Then the best realizable

direction for the vector of financial instruments xi can be mathematically expressed as:

ẋi = πKi
(xi,−F 1

i ), (15)

where πK(X, v) is defined as (cf. Dupuis and Nagurney (1993) and Nagurney and Zhang

(1996); see also Dong, Zhang, and Nagurney (1996)):

πK(X, v) = lim
δ→0

PK(X + δv) − X

δ
, (16)

and PK is the norm projection defined by

PK(X) = ArgminX′∈K‖X ′ − X‖. (17)

The Dynamics of the Financial Flows Between the Intermediaries and the De-

mand Markets

In terms of the financial flows between the intermediaries and the demand markets, both

the intermediaries and the consumers must be in agreement as to the financial flows y. The

consumers take into account in making their consumption decisions not only the price charged

for the financial product by the intermediaries but also their transaction costs associated with

obtaining the product.

Let ĉjk denote the transaction cost associated with obtaining the product at demand

market k from intermediary j. We assume that this unit transaction cost is continuous and

of the general form:

ĉjk = ĉjk(y), ∀j, k. (18)

The consumers take the price charged by the intermediaries, which, recall was denoted by

ρ2j for intermediary j, plus the unit transaction cost, in making their consumption decisions.
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From the perspective of the consumers at the demand markets, we can expect that an

idealized direction in terms of the evolution of the financial flow of a product between an

intermediary/demand market pair would be:

(ρ3k − ĉjk(y) − ρ2j). (19)

On the other hand, as already derived above, we can expect that the intermediaries would

adjust the volume of the product to a demand market according to (13). Combining now (13)

and (19), and guaranteeing that the financial products do not assume negative quantities,

yields the following dynamics:

ẏjk =




ρ3k − ĉjk(y) − ρ2j − ∂cjk(yjk)

∂yjk
− 2Qj

k · yj, if yjk > 0

max{0, ρ3k − ĉjk(y) − ρ2j − ∂cjk(yjk)

∂yjk
− 2Qj

k · yj, if yjk = 0.
(20)

The Projected Dynamical System

Consider now the dynamic model in which the demand prices evolve according to (2)

for all demand markets k, the prices at the intermediaries evolve according to (3) for all

intermediaries j; the financial flows between the source agents and the intermediaries evolve

according to (15) for all source agents i, and the financial products between the intermediaries

and the demand markets evolve according to (20) for all intermediary/demand market pairs

j, k.

Let now X denote the aggregate column vector (x, y, ρ2, ρ3) in the feasible set K ≡ K ×
Rno+n+o

+ . Define the column vector F (X) ≡ (F 1, F 2, F 3, F 4), where F 1 is as has been defined

previously; F 2 = (F 2
11, . . . , F

2
no), with component F 2

jk = (2Qj
k ·yj+

∂cjk(yjk)

∂yjk
+ĉjk(y)+ρ2j−ρ3k),

∀j, k; F 3 = (F 3
1 , . . . , F 3

n), where F 3
j ≡ (

∑m
i=1

∑L
l=1 xijl − ∑o

k=1 yjk), and F 4 = (F 4
1 , . . . , F 4

o ),

with F 4
k ≡ (

∑n
j=1 yjk − dk(ρ3)).

Then the dynamic model described by (2), (3), (15), and (20) for all k, j, i, l can be

rewritten as the projected dynamical system (PDS) (cf. Nagurney and Zhang (1996)) defined

by the following initial value problem:

Ẋ = πK(X,−F (X)), X(0) = X0, (21)
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where, as defined in (16), πK is the projection operator of −F (X) onto K at X and

X0 = (x0, y0, ρ0
2, ρ

0
3) is the initial point corresponding to the initial financial flows and the

initial prices. The trajectory of (21) describes the dynamic evolution of and the dynamic

interactions among the prices and the financial flows.

The dynamical system (21) is non-classical in that the right-hand side is discontinuous

in order to guarantee that the constraints, which in the context of the above model are

not only nonnegativity constraints on the variables, but also a form of budget constraints.

Such dynamical systems were introduced by Dupuis and Nagurney (1993) and to-date have

been used to model a variety of applications ranging from dynamic traffic network problems

(cf. Nagurney and Zhang (1997)) and oligopoly problems (see Nagurney, Dupuis, and Zhang

(1994)) and spatial price equilibrium problems (cf. Nagurney, Takayama, and Zhang (1995)).

Here we apply this methodology, for the first time, to study financial systems in the presence

of intermediation. A variety of dynamic financial models, but without intermediation, for-

mulated as projected dynamical systems can be found in the book by Nagurney and Siokos

(1997).

A Stationary/Equilibrium Point

We now discuss the stationary point of the projected dynamical system (21). Recall

that a stationary point is that point when Ẋ = 0 and, hence, in the context of our model,

when there is no change in the financial flows in the financial network and no change in the

prices. Moreover, as established in Dupuis and Nagurney (1993), since the feasible set K is a

polyhedron and convex, the set of stationary points of the projected dynamical system of the

form given in (21) coincides with the set of solutions to the variational inequality problem

given by: Determine X∗ ∈ K, such that

〈F (X∗), X − X∗〉 ≥ 0, ∀X ∈ K, (22)

where in the model F (X) and X are as defined above and 〈·, ·〉 denotes the inner product in

N -dimensional Euclidean space where here N = mnL+no+n+o. In particular, variational

inequality (22) here takes the form: Determine (x∗, y∗, ρ∗
2, ρ

∗
3) ∈ K, satisfying:

m∑
i=1

n∑
j=1

L∑
l=1

[
2Qi

zjl
· x∗

i +
∂cijl(x

∗
ijl)

∂xijl
+

∂cj(x
∗)

∂xijl
+

∂ĉijl(x
∗
ijl)

∂xijl
− ρ∗

2j

]
×

[
xijl − x∗

ijl

]
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+
n∑

j=1

o∑
k=1

[
2Qj

k · y∗
j +

∂cjk(y
∗
jk)

∂yjk

+ ĉjk(y
∗) + ρ∗

2j − ρ∗
3k

]
×

[
yjk − y∗

jk

]

+
n∑

j=1

[
m∑

i=1

L∑
l=1

x∗
ijl −

o∑
k=1

y∗
jk

]
×

[
ρ2j − ρ∗

2j

]

+
o∑

k=1


 n∑

j=1

y∗
jk − dk(ρ

∗
3)


 × [ρ3k − ρ∗

3k] ≥ 0, ∀(x, y, ρ2, ρ3) ∈ K, (23)

where K ≡ {K × Rno+n+o
+ }.

We now discuss the equilibrium conditions. First, note that if the rate of change of the

demand price ρ̇3k = 0, then from (2) we can conclude that:

dk(ρ
∗
3)




=
n∑

j=1

y∗
jk, if ρ∗

3k > 0

≤
n∑

j=1

y∗
jk, if ρ∗

3k = 0.
(24)

Condition (24) states that, if the price the consumers are willing to pay for the financial

product at a demand market is positive, then the quantity consumed by the consumers at

the demand market is precisely equal to the demand. If the demand is less than the amount

of the product available, then the price for that product is zero. This condition holds for all

demand market prices in equilibrium.

Note that condition (24) also follows directly from variational inequality (23) if we set

x = x∗; y = y∗, and ρ2 = ρ∗
2, and make the substitution into (23) and note that the demand

prices must be nonnegative.

Observe now that if the rate of change of a price charged by an intermediary is zero, that

is, ρ̇2j = 0, then (3) implies that

m∑
i=1

L∑
l=1

x∗
ijl −

o∑
k=1

y∗
jk

{
= 0, if ρ∗

2j > 0
≥ 0, if ρ∗

2j = 0.
(25)

In other words, if the price for the financial funds at an intermediary is positive, then the

market for the funds “clears” at the intermediary, that is, the supply of funds, as given by

14



∑m
i=1

∑L
l=1 x∗

ijl is equal to the demand of funds,
∑o

k=1 y∗
jk at the intermediary. If the supply

exceeds the demand, then the price at the intermediary will be zero. These are well-known

economic equilibrium conditions as are those given in (24). Of course, condition (25) could

also be recovered from variational inequality (23) by setting x = x∗, y = y∗, and ρ3 = ρ∗
3,

and making the substitution into (23) and noting that these prices must be nonnegative. In

equilibrium, conditions (25) holds for all intermediary prices.

On the other hand, if we set ẋi = 0 (cf. (15)), for all i; ẏjk = 0 for all j, k (cf. (20)), we

obtain that the following equilibrium conditions, which must be satisfied simultaneously.

Optimality Conditions for all Source Agents:

The optimality conditions for all source agents i, since each Ki is closed and convex, and

the objective function (5) is concave, can be expressed as (assuming a given ρ∗
1jl, for all i, j, l,

which we return to later (see also Bazaraa, Sherali, and Shetty (1993) and Bertsekas and

Tsitsiklis (1992)) as:

m∑
i=1

n∑
j=1

L∑
l=1

[
2Qi

zjl
· x∗

i +
∂cijl(x

∗
ijl)

∂xijl

− ρ∗
1ijl

]
×

[
xijl − x∗

ijl

]
≥ 0, ∀x ∈ K. (26)

Optimality Conditions for All Intermediary Agents:

The optimality conditions for all the intermediaries j, with objective functions of the

form (11), which are concave, can be expressed as:

m∑
i=1

n∑
j=1

L∑
l=1

[
∂cj(x

∗)
∂xijl

+ ρ∗
1ijl +

∂ĉijl(x
∗
ijl)

∂xijl
− ρ∗

2j

]
×

[
xijl − x∗

ijl

]

+
n∑

j=1

o∑
k=1

[
2Qj

k · yj +
∂cjk(y

∗
jk)

∂yjk
+ ρ∗

2j

]
×

[
yjk − y∗

jk

]
≥ 0, ∀x ∈ RmnL

+ , ∀y ∈ Rno
+ . (27)

Note that (27) provides a means for recovering the top-tiered prices, ρ∗
1. Indeed, for each

such y∗
jk we can set y∗

jk = ρ∗
2j − ∂cj(x∗)

∂xijl
− ∂ĉijl(x

∗
ijl)

∂xijl
. We do precisely this in Section 5, when we

present numerical examples.

Equilibrium Conditions for Consumers at the Demand Markets

15



Also, the equilibrium conditions for consumers at demand market k, thus, take the form:

for all intermediaries: j; j = 1, . . . , n:

ρ∗
2j + ĉjk(y

∗)

{
= ρ∗

3k, if y∗
jk > 0

≥ ρ∗
3k, if y∗

jk = 0,
(28a)

with (28a) holding for all demand markets k, which is equivalent to y∗ ∈ Rno
+ satisfying:

n∑
j=1

o∑
k=1

(ρ∗
2j + ĉjk(y

∗) − ρ∗
3k)) × (yjk − y∗

jk) ≥ 0, ∀y ∈ Rno
+ . (28b)

Conditions (28) simply state that consumers at demand market k will purchase the prod-

uct from intermediary j, if the price charged by the intermediary for the product plus the

transaction cost (from the perspective of the consumers) does not exceed the price that the

consumers are willing to pay for the product, i.e., ρ∗
3k.

In equilibrium, optimality conditions (26), (27), as well as (28), (25), and (24) must

hold simultaneously and these define the equilibrium state. This is equivalent to the vector

(x∗, y∗, ρ∗
2, ρ

∗
3) satisfying variational inequality (23) or to being a stationary point of the

projected dynamical system (21). Indeed, for (26), (27), and (28) to hold simultaneously,

the sum of the first two terms in (23) must be greater than or equal to zero, whereas for (25)

to hold the third term in (23) must be greater than or equal to zero, and, finally, for (24) to

hold, the fourth term in (23) must be greater than or equal to zero.

In Nagurney and Ke Ke (2001) a variational inequality of the form (23) was derived in

a manner entirely different from that given above for a static financial network model with

intermediation, but with a slightly different feasible set since therein it was assumed that

the constraints (6) had to be tight. In that paper, a different notation was also utilized for

the prices at the intermediary nodes. Here the approach is more general since we derive the

model by considering the disequilibrium dynamics.
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3. Qualitative Properties

In this Section, we provide some qualitative properties of the dynamical financial network

model with intermediation developed in Section 2. In particular, we provide conditions for

establishing the existence of a unique trajectory to the initial value problem (21) and a global

stability analysis result.

We now recall two results obtained by Nagurney and Ke Ke (2001), which we can utilize to

obtain qualitative properties of the dynamical system (21) due to the similarity of variational

inequality (23) and the one in the quoted paper. In particular, we have:

Theorem 1: Monotonicity (Nagurney and Ke Ke (2001))

If the cijl, cj, and ĉijl and cjk functions are convex, the ĉjk functions are monotone increasing,

the dk functions are monotone decreasing functions of the demand market prices, for all

i, j, k, l, and the variance-covariance matrices Qi and Qj are positive-semidefinite for all i

and j, then the vector function F that enters the variational inequality (23) is monotone,

that is,

〈F (X ′) − F (X ′′), X ′ − X ′′〉 ≥ 0, ∀X ′, X ′′ ∈ K. (29)

Theorem 2: Lipschitz Continuity (Nagurney and Ke Ke (2001))

The function that enters the variational inequality problem (23) is Lipschitz continuous, that

is,

‖F (X ′) − F (X ′′)‖ ≤ L‖X ′ − X ′′‖, ∀X ′, X ′′ ∈ K, (30)

under the following conditions:

(i). cijl, cj, ĉijl and cjk have bounded second-order derivatives, for all i, j, l, k;

(ii). ĉjk and dk have bounded first-order derivatives.

We now state a fundamental property of the projected dynamical system (21).

17



Theorem 3: Existence and Uniqueness

Assume the conditions of Theorem 2. Then, for any X0 ∈ K, there exists a unique solution

X0(t) to the initial value problem (21).

Proof: Follows from Theorem 2.5 in Nagurney and Zhang (1996). 2

We now turn to addressing the stability (see also Zhang and Nagurney (1995) and Nagur-

ney and Zhang (2001)) of the financial network system through the initial value problem (21).

We first recall the following:

Definition 1: Stability of the System

The system defined by (21) is stable if, for every X0 and every equilibrium point X∗, the

Euclidean distance ‖X∗ − X0(t)‖ is a monotone nonincreasing function of time t.

We state a global stability result in the next theorem.

Theorem 4: Stability of the System

Assume the conditions of Theorem 1. Then the dynamical system (21) underlying the finan-

cial network system with intermediation is stable.

Proof: Under the assumptions of Theorem 1, F (X) is monotone and, hence, the conclusion

follows directly from Theorem 4.1 of Zhang and Nagurney (1995). 2

From the above results, we see that the dynamic financial network model with interme-

diation as given by (21) is well-defined and, moreover, the system is stable.

18



4. The Discrete-Time Adjustment Process

Note that the projected dynamical system (21) is a continuous time adjustment process.

However, in order to further fix ideas and to provide a means of “tracking” the trajectory,

we propose a discrete-time adjustment process. The discrete-time adjustment process is a

special case of the general iterative scheme of Dupuis and Nagurney (1993) and is, in fact,

an Euler method, where at iteration τ the process takes the form:

Xτ = PK(Xτ−1 − ατ−1F (Xτ−1)), (31)

where recall that PK denotes the operator of projection (in the sense of the least Euclidean

distance (cf. Nagurney (1999)) onto the closed convex set K and F (X) is as defined preceding

(21). Specifically, the complete statement of this method in the context of our model takes

the form:

Step 0: Initialization Step

Set (x0, y0, ρ0
2, ρ

0
3) ∈ K. Let τ = 1 and set the sequence {aτ} so that

∑∞
τ=0 aτ = ∞, aτ > 0,

aτ → 0, as τ → ∞.

Step 1: Computation Step

Compute (xτ , yτ , ρτ
2, ρ

τ
3) ∈ K by solving the variational inequality subproblem:

m∑
i=1

n∑
j=1

L∑
l=1

[
xτ

ijl + aτ (2Q
i
zjl

· xτ−1
i +

∂cijl(x
τ−1
ijl )

∂xijl
+

∂cj(x
τ−1)

∂xijl
+

∂ĉijl(xijl
τ−1)

∂xijl
− ρτ−1

2j ) − xτ−1
ijl

]

×
[
xijl − xτ

ijl

]

+
n∑

j=1

o∑
k=1

[
yτ

jk + aτ (2Q
i
k · yτ−1

j + ĉjk(y
τ−1) +

∂cjk(y
τ−1
jk )

∂yjk
+ ρτ−1

2j − ρτ−1
3k ) − yτ−1

jk

]
×

[
yjk − yτ

jk

]

+
n∑

j=1

[
ρτ

2j + aτ (
m∑

i=1

L∑
l=1

xτ−1
ijl −

o∑
k=1

yτ−1
jk ) − ρτ−1

2j

]
×

[
ρ2j − ρτ

2j

]

+
o∑

k=1


ρ̄τ

3k + aτ (
n∑

j=1

yτ−1
jk − dk(ρ

τ−1
3 )) − ρτ−1

3k


 × [ρ3k − ρτ

3k] ≥ 0, ∀(x, y, ρ2, ρ3) ∈ K. (32)
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Step 2: Convergence Verification

If |xτ
ijl − xτ−1

ijl | ≤ ε, |yτ
jk − yτ−1

jk | ≤ ε, |ρτ
2j − ρτ−1

2j | ≤ ε, |ρτ
3k − ρτ−1

3k | ≤ ε, for all i = 1, · · · , m;

j = 1, · · · , n; l = 1, . . . , L; k = 1, · · · , o, with ε > 0, a pre-specified tolerance, then stop;

otherwise, set τ := τ + 1, and go to Step 1.

Note that the variational inequality subproblem (32) encountered at each iteration of

the discrete-time algorithm can be solved explicitly and in closed form since it is actually a

quadratic programming problem and the feasible set is a Cartesian product consisting of the

the product of K, which has a simple network structure, and the nonnegative orthants: Rno
+ ,

Rn
+, and Ro

+, and corresponding to the variables x, y, ρ2, and ρ3, respectively. In fact, the

subproblem in (32) in the x variables can be solved using exact equilibration (cf. Dafermos

and Sparrow (1969) and Nagurney (1999)), whereas the remainder of the variables in (32),

can be obtained by explicit formulae, which we provide below for convenience.

In particular, we compute, at iteration τ , yτ , according to:

yτ
jk = max{0, yτ−1

jk − aτ (2Q
i
k · yτ−1

j + ĉjk(y
τ−1) +

∂cjk(y
τ−1
jk )

∂yjk
+ ρτ−1

2j − ρτ−1
3k )}, ∀j, k. (33)

At iteration τ , we compute the ρτ
2 according to:

ρτ
2j = max{0, ρτ−1

2j − aτ (
m∑

i=1

L∑
l=1

xτ−1
ijl −

o∑
k=1

yτ−1
jk )}, ∀j, (34)

whereas the ρτ
3 are computed explicitly and in closed form according to:

ρτ
3k = max{0, ρτ−1

3k − aτ (
n∑

j=1

yτ−1
jk − dk(ρ

τ−1
3 ))}, ∀k. (35)

Note, that in the discrete-time adjustment process, the financial flows and prices are

updated simultaneously at each iteration.

Convergence conditions for this method can be found in Dupuis and Nagurney (1993)

and interpreted in a variety of distinct applications in Nagurney and Zhang (1996).
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Figure 2: The Financial Network Structure of the Numerical Examples

5. Numerical Examples

In this Section, we apply the discrete-tme algorithm to several numerical examples. The

algorithm was implemented in FORTRAN and the computer system used was a DEC Alpha

system located at the University of Massachusetts at Amherst. For the solution of the in-

duced network subproblems in x we utilized the exact equilibration algorithm (see Nagurney

(1999) and the references therein).

The convergence criterion used was that the absolute value of the flows and prices between

two successive iterations differed by no more than 10−4. For the examples, the sequence

{aτ} = .1{1, 1
2
, 1

2
, 1

3
, 1

3
, 1

3
, . . .}, which is of the form given in the intialization step of the

algorithm in the preceding section. The numerical examples had the network structure

depicted in Figure 2 and consisted of two source agents, two intermediaries, and two demand

markets, with a single financial instrument handled by each intermediary.

We initialized the algorithm as follows: Since there was a single financial instrument

associated with each of the intermediaries, we set xij1 = Si

n
for each source agent i. All the

other variables, that is, the initial vector y, ρ2, and ρ3 were all set to zero.
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Example 1

The data for the first example were constructed for easy interpretation purposes. The

supplies of the two source agents were: S1 = 10 and S2 = 10. The variance-covariance matri-

ces Qi and Qj were equal to the identity matrices for all source agents i and all intermediaries

j.

The transaction cost functions faced by the source agents associated with transacting

with the intermediaries were given by:

c111(x111) = .5x2
111 + 3.5x111, c121(x121) = .5x2

121 + 3.5x121,

c211(x211) = .5x2
211 + 3.5x211, c221(x221) = .5x2

221 + 3.5x221.

The handling costs of the intermediaries, in turn, were given by:

c1(x) = .5(
2∑

i=1

.5xi11)
2, c2(x) = .5(

2∑
i=1

xi21)
2.

The transaction costs of the intermediaries associated with transacting with the source

agents were, respectively, given by:

ĉ111(x111) = 1.5x2
111 + 3x111, ĉ121(x121) = 1.5x2

121 + 3x121,

ĉ211(x211) = 1.5x2
211 + 3x211, ĉ221(x221) = 1.5x2

221 + 3x221.

The demand functions at the demand markets were:

d1(ρ3) = −2ρ31 − 1.5ρ32 + 1000, d2(ρ3) = −2ρ32 − 1.5ρ31 + 1000,

and the transaction costs between the intermediaries and the consumers at the demand

markets were given by:

ĉ11(y) = y11 + 5, ĉ12(y) = y12 + 5, ĉ21(y) = y21 + 5, ĉ22(y) = y22 + 5.

We assumed for this and the subsequent examples that the transaction costs as perceived

by the intermediaries and associated with transacting with the demand markets were all

zero, that is, cjk(yjk) = 0, for all j, k.
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The discrete-time algorithm converged and yielded the following equilibrium pattern:

x∗
111 = x∗

121 = x∗
211 = x∗

221 = 5.000,

y∗
11 = y∗

12 = y∗
21 = y∗

22 = 5.000.

The vector ρ∗
2 had components: ρ∗

21 = ρ∗
22 = 262.6664, and the computed demand prices at

the demand markets were: ρ∗
31 = ρ∗

32 = 282.8106.

It is easy to verify that the optimality/equilibrium conditions were satisfied with good

accuracy. Note that in this example, constraint (6) was tight for both source agents, that

is, s∗1 = s∗2 = 0, and, hence, there was zero flow on the links connecting node 3 with top tier

nodes 1 and 2. Thus, it was optimal for both source agents to invest their entire financial

holdings in each instrument made available by each of the two intermediaries.

The prices ρ1ijl were as follows and were recovered according to the discussion following

(27). The ρ∗
1ijls were as follows: All ρ∗

1ij1s= 234.6664.

Example 2

We then constructed the following variant of Example 1. We kept the data identical

to that in Example 1 except that we increased the supply for each source sector so that

S1 = S2 = 50.

The discrete-time algorithm converged and yielded the following new equilibrium pattern:

x∗
111 = x∗

121 = x∗
211 = x∗

221 = 23.6832,

y∗
11 = y∗

12 = y∗
21 = y∗

22 = 23.7247.

The vector ρ∗
2 had components: ρ∗

21 = ρ∗
22 = 196.0174, and the demand prices at the demand

markets were: ρ∗
31 = ρ∗

32 = 272.1509.

It is easy to verify that the optimality/equilibrium conditions, again, were satisfied with

good accuracy. Note, however, that unlike the solution for Example 1, both source agent 1

and source agent 2 did not invest their entire financial holdings. Indeed, each opted to not

invest the amount 23.7209 and this was the volume of flow on each of the two links ending

in node 3 in Figure 2.
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The prices ρ∗
1ijl were as follows and were recovered according to the discussion following

(27). All the ρ∗
1ij1s= 74.6013. Note that since the supply of financial funds increased, the

price for the instruments charged by the intermediaries decreased from 262.6664 to 196.1074.

The demand prices at the demand markets also decreased, from 282.8106 to 272.1509.

Example 3

We then modified Example 2 as follows: The data were identical to that in Example 2

except that we modified the first diagonal term in the variance-covariance matrix Q1 from 1

to 2.

The discrete-time algorithm converged, yielding the following new equilibrium pattern:

x∗
111 = 18.8676, x∗

121 = 23.7285, x∗
211 = 25.1543, x∗

221 = 23.7267,

y∗
11 = y∗

12 = 22.0501, y∗
21 = y∗

22 = 23.7592.

The vector ρ∗
2 had components: ρ∗

21 = 201.4985, ρ∗
22 = 196.3633, and the demand prices at

the demand markets were: ρ∗
31 = ρ∗

32 = 272.6178.

The prices ρ1ijl at equilibrium were as follows: respectively: ρ∗
1111 = 97.8737, ρ∗

1121 =

74.7227, ρ∗
1211 = 79.0138, and ρ∗

1221 = 74.7281.

Example 4

The fourth example was constructed from Example 3. In particular, we made a single

change to the second demand function by modifying the fixed term 1000 to 1200. Thus, in

effect, we increased the demand for the second financial product.

The discrete-time algorithm yielded the following equilibrium pattern:

x∗
111 = 22.3404, x∗

121 = 27.6596, x∗
211 = 26.0638, x∗

221 = 23.9362,

y∗
11 = 0.0000, y∗

12 = 48.6257, y∗
21 = 0.0000, y∗

22 = 51.8172.

The vector ρ∗
2 had components: ρ∗

21 = 248.4244, ρ∗
22 = 238.8500, and the demand prices at

the demand markets were: ρ∗
31 = 200.6086, ρ∗

32 = 399.2637.
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Hence, the constraints (6) were tight for each source agent and the flows on the links

ending in node 3 in Figure 2 were equal to zero.

The prices ρ1ijl at equilibrium were as follows: ρ∗
1111 = 129.9989, ρ∗

1121 = 101.2755,

ρ∗
1211 = 118.887, and ρ∗

1221 = 112.4457.

Note that since now the demand for financial product 1 is identically equal to zero and,

hence, there are zero flows on links joining intermediary nodes 1 and 2 to the bottom tier

node 1.
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6. Summary and Conclusions

In this paper, we developed a framework for the formulation, qualitative analysis, and

computation of solutions to dynamic financial network problems with intermediation. The

financial network consists of a multi-tierd network. In particular, we proposed a projected

dynamical systems model by which agents in the form of source agents and intermediaries,

who are assumed to be utility maximizers, with their utility functions comprised of net return

and risk terms, determine their optimal allocations among financial instrument and products,

in response to demand market prices and the prices associated with the intermediaries, which

consumers also respond to. The prices adjust dynamically according to supply and demand

conditions.

We discussed the stationary/equilibrium point, established qualitative properties of the

dynamical trajectory, and also obtained a global stability analysis result.

We then proposed a discrete-time algorithm which is an approximation to the continuous-

time adjustment process and applied it to several numerical examples. This research extends

the work in general financial equilibrium modeling, analysis, and computation in a network

framework (see, e.g., Nagurney and Siokos (1997) and Thore (1980)) to include financial

intermediaries and the underlying dynamics associated with the financial flows and the prices.

It, thus, brings the added dimension, lacking in financial flow of funds accounts, of the

incorporation of the explicit dynamic behavior of the various financial agents as well as the

price dynamics.
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