
OFFPRINT

Robustness of transportation networks subject
to degradable links

A. Nagurney and Q. Qiang

EPL, 80 (2007) 68001

Please visit the new website
www.epljournal.org



Europhysics Letters (EPL) has a new online home at
www.epljournal.org

Take a look for the latest journal news and information on:

• reading the latest articles, free!

• receiving free e-mail alerts

• submitting your work to EPL

TAKE A LOOK AT
THE NEW EPL

www.epl journal.org



December 2007

EPL, 80 (2007) 68001 www.epljournal.org

doi: 10.1209/0295-5075/80/68001

Robustness of transportation networks subject to degradable links

A. Nagurney and Q. Qiang

University of Massachusetts - Amherst, MA 01003, USA

received 27 September 2007; accepted in final form 17 October 2007
published online 13 November 2007

PACS 87.23.Ge – Dynamics of social systems
PACS 89.40.-a – Transportation
PACS 89.90.+n – Other topics in areas of applied and interdisciplinary physics

Abstract – In this paper, we demonstrate how to capture the robustness of a transportation
network in the case of degradable links represented by decreasing capacities. The analysis is
conducted by utilizing Bureau of Public Road link travel cost functions and a recently proposed
network efficiency measure for congested networks. For specific networks we are able to derive
lower bounds for the robustness when percentage reductions in the link capacities take place.
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Introduction. – Transportation networks play a
major role as critical infrastructure networks underpin-
ning our societies and economies. Although the rigorous
modeling and analysis of transportation networks and the
underlying behavior of travelers dates to the seminal book
of Beckmann, McGuire, and Winsten [1], the research into
the robustness of transportation networks in the presence
of disruptions is relatively recent. This is particularly
interesting, since the degradation of our transportation
networks due to poor maintenance, natural disasters,
deterioration over time, as well as unforeseen attacks
now lead to estimates of $94 billion in the US in terms
of needed repairs for roads alone (cf. [2]). Poor road
conditions in the United States cost US motorists $54
billion in repairs and operating costs annually.
To the best of our knowledge, the works of Sakakibara
et al. [3] and that of Scott et al. [4] stand as the first
attempts to address the robustness of transportation
networks. [3] proposed a topological index and considered
a transportation network to be robust if it is “dispersed”
in terms of the number of links connected to each node. [4],
on the other hand, examined transportation network
robustness by analyzing the increase in the total network
cost after the removal of certain network components.
The concept of system robustness, in turn, has been

studied in both computer science and in engineering.
According to [5], robustness can be defined as “the degree
to which a system or component can function correctly in
the presence of invalid inputs or stressful environmental
conditions.” Gribble [6] defined system robustness as
“the ability of a system to continue to operate correctly
across a wide range of operational conditions, and to fail

gracefully outside of that range.” Ali et al. [7] considered
an allocation mapping to be robust if it “guarantees
the maintenance of certain desired system characteristics
despite fluctuations in the behavior of its component
parts or its environment.” Schillo et al. [8] argued that
robustness has to be studied “in relation to some definition
of performance measure.” According to Holmgren [9]:
“Robustness signifies that the system will retain its system
structure (function) intact (remain unchanged or nearly
unchanged) when exposed to perturbations.”
In addition, the physics research on complex networks

has also examined network robustness according to differ-
ent network measures and the accompanying degradation
of network performance in the presence of attacks on the
network; see, for example, [10]. However, the focus of that
research has been on the impact of the removal of nodes on
networks, whereas in this paper we focus on the degrada-
tion of links through reductions in their capacities and
the effects on the induced travel costs in the presence
of known travel demands and different functional forms
for the links. Hence, we are not concerned directly with
extreme events that may lead to the removal of nodes and
links from the network but, rather, with the deteriora-
tion of the network infrastructure, such as roads, through
changes in the link practical capacities. Finally, it is worth
noting that there is a literature in robust optimization,
which is a mathematical approach to deal with uncer-
tainty and, in particular, when a problem’s data may
be known only within certain bounds. Robustness is a
well-known concept in control, and the subject of robust
optimization dates to the pioneering work of Soyster [11]
and Ben-Tal and Nemirovsky [12,13]. Here, however, we
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deal with specific link functional forms, which are assumed
to be known, and we vary the specific link capacities.
In this paper, we will utilize for our transportation

network robustness analysis a recently proposed network
efficiency measure for congested networks (see Nagurney
and Qiang [14]). It is well-known that congestion is a
fundamental problem in a variety of modern network
systems, including urban transportation networks
(cf. [15–17]). Moreover, we will consider transportation
networks in which the user link cost functions are of the
general Bureau of Public Roads form, which is widely
used in practice. Such a functional form contains the
practical capacity of a link implicitly and, hence, it will
allow us to investigate the changes in performance of a
transportation network when the link practical capacities
are decreased.
This paper is organized as follows. We first briefly

recall the well-known traffic network equilibrium model
(see, e.g., [1,15,16,18–22]). We then recall the network
efficiency measure for congested networks. Subsequently,
we propose the robustness measure and provide several
examples. In addition, we derive some lower bounds for the
robustness of transportation networks of special structure.
We conclude the paper with a summary of the results.

Traffic network equilibrium model. – For
completeness and easy reference, we recall the traffic
network equilibrium model ([15–22]), which is widely
used. Consider a network G with the set of directed links
L with nL elements and the set of origin/destination
(O/D) pairs W with nW elements. We denote the set
of acyclic paths joining O/D pair w by Pw. The set of
(acyclic) paths for all O/D pairs is denoted by P and
there are nP paths in the network. Links are denoted by
a, b, etc; paths by p, q, etc., and O/D pairs by w1, w2, etc.
We assume that the demand dw is known for all w ∈W .

We denote the nonnegative flow on path p by xp and the
flow on link a by fa and we group the path flows into the
vector x∈RnP+ and the link flows into the vector f ∈R

nL
+ .

The following conservation of flow equations must hold:
∑

p∈Pw

xp = dw, ∀w ∈W, (1)

which means that the sum of path flows on paths connect-
ing each O/D pair must be equal to the demand for that
O/D pair.
The link flows are related to the path flows, in turn,

through the following conservation of flow equations:

fa =
∑

p∈P

xpδap, ∀a∈L, (2)

where δap = 1, if link a is contained in path p, and δap = 0,
otherwise. Hence, the flow on a link is equal to the sum of
the flows on paths that contain that link.
The user (travel) cost on a path p is denoted by Cp and

the user (travel) cost on a link a by ca. The user costs
on paths are related to user costs on links through the

following equations:

Cp =
∑

a∈L

caδap, ∀p∈ P, (3)

that is, the user cost on a path is equal to the sum of
user costs on links that make up the path. In engineering
practice (see [21]), the travel time on a link is used as a
proxy for the travel cost.
Since we are concerned with transportation networks,

we allow the user link cost function on each link to depend
upon the flow on that link, so that

ca = ca(fa), ∀a∈L. (4)

We assume that the link cost functions are continuous and
monotonically increasing. In view of (1), (2), and (3), we
may write

Cp =Cp(x), ∀p∈ P. (5)

A network equilibrium is defined as follows. A path flow
pattern x∗ ∈K1, where K1 ≡ {x|x∈RnP+ and (1) holds},
is said to be a network equilibrium, if the following
conditions hold for each O/D pair w ∈W and each path
p∈ Pw:

Cp(x
∗)

{

= λw, if x
∗
p > 0,

� λw, if x
∗
p = 0.

(6)

The interpretation of conditions (6) is that all used
paths connecting an O/D pair w have equal and minimal
costs (with the minimal path costs equal to the equilibrium
travel disutility, denoted by λw). These conditions are
also referred to as the user-optimized conditions (cf. [18]).
In this classical traffic network equilibrium problem, in
which the cost on each link (cf. (4)) depends solely on
the flow on that link, the traffic network equilibrium
conditions (6) can be reformulated as the solution to
an appropriately constructed optimization problem, as
established in [1]. Indeed, the equilibrium link flow (and
path flow pattern) can be obtained via the solution of the
following optimization problem:

Minimizef∈K2
∑

a∈L

∫ fa

0

ca(y)dy, (7)

where K2 ≡ {f ∈Rn+|∃x∈R
nP
+ satisfying (1), (2)). For

additional background on this model, along with its
impacts, see [23]. In particular, we know that if the user
link cost functions are strictly monotone (cf. [22]) then the
equilibrium link flow pattern is unique.
In this paper, we will consider user link cost func-

tions known as Bureau of Public Road (BPR) functions,
given by

ca(fa) = t
0
a

[

1+ k

(

fa

ua

)β
]

, ∀a∈L, (8)

where fa is the flow on link a; ua is the “practical” capacity
on link a, which also has the interpretation of the level-of-
service flow rate; t0a is the free-flow travel time or cost on
link a; k and β are the model parameters and both take
on positive values (see [24] and [21]). Often in applications
k= 0.15 and β = 4.
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The efficiency measure for congested networks

recalled. – We now recall a network efficiency measure
for congested networks proposed by [14]. The measure
is defined in the context of network equilibrium, and it
captures demands and costs, and the underlying behav-
ior of “users” of the network. The formal definition is
as follows. The network performance/efficiency measure,
E(G, c, d), for a given network topology G, vector of user
link cost functions c, and demand vector d, is defined as

E = E(G, c, d) =

∑

w∈W
dw
λw

nW
, (9)

where recall that nW is the number of O/D pairs in the
network, and dw and λw are, respectively, the demand and
the equilibrium disutility for O/D pair w (cf. (6)).
Note that this measure has a nice, economic mean-

ing in that it measures the average (O/D pair based)
performance vs. cost or price, with the performance being
measured by the demands and the cost or price by the
travel disutility.

Robustness of a transportation network. – Based
on the above network efficiency measure, we define the
robustness of a transportation network as follows.
The robustness measure Rγ for a transportation

network G with the vector of demands d, the vector of
user link cost functions c, and the vector of link capacities
u is defined as the relative performance retained under
a given uniform capacity retention ratio γ with γ ∈ (0, 1]
so that the new capacities (cf. (8)) are given by γu. Its
mathematical definition is given as

Rγ =R(G, c, d, γ, u) =
Eγ

E
× 100%, (10)

where E and Eγ are the network performance measures
with the original capacities and the remaining capacities,
respectively. For example, if γ = 0.9 this means that the
user link cost functions given by (8) now have the link
capacities given by 0.9ua for a∈L; if γ = 0.7 then the link
capacities become 0.7ua for all links a∈L, and so on.
From the above definition, a network, under a given

level of capacity retention/deterioration, is considered to
be robust if the network performance stays close to the
original level.
Below we illustrate the above robustness concept with

several network examples.
We then establish some theoretical results.

A simple network. Consider a simple network as
depicted in fig. 1. There are two nodes: 1 and 2; two links:
a and b; and a single O/D pair w= (1, 2). Therefore, there
are two paths connecting the single O/D pair, which are
denoted, respectively, by: p1 = a and p2 = b. The demand
is given by dw1 = 10.
We further assume that in the BPR link cost functions

(cf. (8)) that k= 1 and β = 4; and t0a = 10 and t
0
b = 1.

We evaluate the network robustness under two sets of
capacities for links a and b; namely, capacity set A and

1 2

a

b

Fig. 1: A simple network.
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Fig. 2: Robustness vs. capacity retention ratio.

set B. In capacity set A, ua = ub = 50 while in capacity
set B, ua = 50 and ub = 10. Therefore, under capacity set
A, the BPR link cost functions are given by

ca(fa) = 10

(

1+

(

fa

50

))4

cb(fb) = 10

(

1+

(

fb

50

))4

.

Under capacity set B, the BPR link cost functions are
given by

ca(fa) = 10

(

1+

(

fa

50

))4

cb(fb) = 10

(

1+

(

fb

10

))4

.

In fig. 2, we show the relationship between network
robustness and the capacity retention ratios for the two
capacity sets.
We can see from fig. 2 that the network with capacity

set A is more robust under different capacity retention
ratios. This is due to the fact that with the given demand,
capacity set A has more slack/redundant capacity that is
available when links in the network are subject to partial
degradation. Furthermore, the above analysis also has
implication for policy-making and planning. Obviously,
an effective policy should keep the network robustness
above a certain critical value. For example, in the case of
capacity set A, the network robustness drops significantly
when the capacity retention ratio is below 0.30. Hence,
appropriate maintenance measures need to be taken in
order to maintain the capacity retention ratio above 0.30.

The Braess network. We now consider the Braess
paradox network after the addition of a new link e and
as depicted in fig. 3 (see also [25] and [26]). There are four
nodes: 1, 2, 3, 4; five links: a, b, c, d, e; and a single O/D
pair w1 = (1, 4). There are, hence, three paths connecting
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2 3
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e

4

c d

Fig. 3: The Braess network topology.

Network Robustness for the Braess Network Example

0%

20%

40%

60%

80%

100%

120%

1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10

Capacity Retention Ratio 

s
s

e
nt

s
u

b
o

R
kr

o
wt

e
N

R

=1

Fig. 4: Robustness vs. capacity retention ratio (β = 1).

the single O/D pair, which are denoted, respectively, by
p1 = (a, c), p2 = (b, d), and p3 = (a, e, d).
Instead of using the original link cost functions,

however, since they are not in BPR form, we construct
a set of BPR functions under which the Braess paradox
still occurs (without any capacity reduction). We assume
that k= 1. Let t0a = t

0
d = 1, t

0
b = t

0
c = 50 and t

0
e = 10.

Furthermore, let ua = ud = 20, ub = uc = 50 and ue = 100.
The link cost functions are given by

ca(fa) = 1+

(

fa

20

)β

, cb(fb) = 50

(

1+

(

fb

50

)β
)

,

cc(fc) = 50

(

1+

(

fb

50

)β
)

, cd(fd) = 1+

(

fd

20

)β

,

ce(fe) = 10

(

1+

(

fe

100

)β
)

.

The demand is given by dw1 = 110. Figures 4 through 7
present the network robustness for the Braess net-
work under β values equal to 1, to 2, to 3, and to 4,
respectively.
From the above example, we see that, for a given

capacity retention ratio, when the value of β is small, the
robustness of the network drops less severely than when β
is large. This is due to the fact that β indicates, in part, the
effect of congestion on links in a network. Therefore, for
a certain capacity reduction, a “less congestion-sensitive”
network can keep its efficiency closer to the original value.

Network Robustness for the Braess Network Example
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Fig. 5: Robustness vs. capacity retention ratio (β = 2).

Network Robustness for the Braess Network Example
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Fig. 6: Robustness vs. capacity retention ratio (β = 3).

Network Robustness for the Braess Network Example
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Fig. 7: Robustness vs. capacity retention ratio (β = 4).

Some theoretical results. – In this section, we
consider transportation networks with special structure
for which we can obtain some theoretical results in terms
of robustness. In particular, we first consider a very simple
network with BPR functions given by (8) for any β. We
then consider networks of special topology consisting of a
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single O/D pair with parallel links for which the associated
BPR link cost functions have β = 1.

Theorem 1

Consider a network consisting of two nodes 1 and 2 as
in fig. 1, which are connected by a single link a and with
a single O/D pair w1 = (1, 2). Assume that the user link
cost function associated with link a is of the BPR form
given by (8). Then the network robustness given by the
expression (cf. (10)) is given by the explicit formula:

Rγ =
γβ [uβa + kd

β
w1
]

[γβuβa + kd
β
w1 ]
× 100%, (11)

where dw1 is the given demand for O/D pair w1 = (1, 2).
Moreover, the network robustness R is bounded from

below by γβ × 100%.

Proof: Clearly, since there is only a single O/D pair, and
a single path, we have that

Rγ =
Eγ

E
× 100%=

λw1
λ
γ
w1

× 100%,

where λγw1 denotes the incurred travel disutility for travel-
ers between O/D pair w1 with the capacity γua on link a.
We can write out λγw1 and λw1 explicitly for this simple

network, which yields

Rγ =

t0a

[

1+ k
(

dw1
ua

)β
]

t0a

[

1+ k
(

dw1
γua

)β
] × 100%.

After simplification, we obtain

Rγ =
γβ [uβa + kd

β
w1
]

[γβuβa + kd
β
w1 ]
× 100%,

which is exactly the form of (11).
To show the lower bound of Rγ , we can rearrange (11)

and get the following form:

Rγ =

γβ
[

1+ k
(

dw1
ua

)β
]

[

γβ + k
(

dw1
ua

)β
] × 100%.

Since γ ∈ (0, 1], we have that γβ ∈ (0, 1], ∀β > 0. Hence, we
have the following:

Rγ �

γβ
[

1+ k
(

dw1
ua

)β
]

[

1+ k
(

dw1
ua

)β
] × 100%= γβ × 100%,

which completes the proof.
Now let us consider a network with a special topology

as depicted in fig. 8. The network consists of a single
O/D pair which is connected by parallel links. In the

1 2
.

.

.

a

b

c

n

Fig. 8: A special network.

following theorem, we give the general form of the network
robustness as well as its lower bound for the above
network.

Theorem 2

Consider a network consisting of two nodes 1 and 2 as
in fig. 8, which are connected by a set of parallel links.
Assume that the associated BPR link cost functions have
β = 1 (cf. (8)). Furthermore, let us assume that there
are positive flows on all the links at both the original
and partially degraded capacity levels. Then the network
robustness given by the expression (cf. (10)) is given by
the explicit formula

Rγ =
γU + kγdw1
γU + kdw1

× 100%, (12)

where dw1 is the given demand for O/D pair w1 = (1, 2)
and U ≡ ua+ub+ . . .+un.
Moreover, the network robustness Rγ is bounded from

below by γ× 100%.

Proof: Clearly, since there is only a single O/D pair, we
have that

Rγ =
Eγ

E
× 100%=

λw1
λ
γ
w1

× 100%,

where λγw1 denotes the incurred travel disutility for trav-
elers between O/D pair w1 under the capacity retention
ratio γ.
Due to the special structure of the network as well as

the assumption that there are positive flows on all the
links before and after the capacity reduction, by referring
to the traffic network equilibrium conditions (6), we can
write λw1 and λ

γ
w1
explicitly as follows:

λw1 = t
0
a

(

1+ k
f∗a
ua

)

= t0b

(

1+ k
f∗b
ub

)

= . . .= t0n

(

1+ k
f∗n
un

)

,

where f∗a , f
∗
b . . . f

∗
n are the equilibrium link flows under

the link capacities: ua, ub, . . . , un, respectively, and

λγw1 = t
0
a

(

1+ k
f∗∗a
γua

)

= t0b

(

1+ k
f∗∗b
γub

)

= . . .=

t0n

(

1+ k
f∗∗n
γun

)

,

where f∗∗a , f
∗∗
b , . . . , f

∗∗
n are the equilibrium link flows

under the link capacities: γua, γub, . . . , γun, respectively.
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Hence, we have

Rγ =
λw1
λ
γ
w1

× 100%=
t0a

(

1+ k
f∗
a

ua

)

t0a

(

1+ k
f∗∗
a

γua

) × 100%=

t0b

(

1+ k
f∗
b

ub

)

t0b

(

1+ k
f∗∗
b

γub

) × 100%= · · ·=
t0n

(

1+ k
f∗
n

un

)

t0n

(

1+ k
f∗∗
n

γun

) × 100%,

which yields

Rγ =

(

1+ k
f∗
a

ua

)

+
(

1+ k
f∗
b

ub

)

+ · · ·+
(

1+ k
f∗
n

un

)

(

1+ k
f∗∗
a

γua

)

+
(

1+ k
f∗∗
b

γub

)

+ · · ·+
(

1+ k
f∗∗
n

γun

) × 100%.

After some simplification and from the fact that f∗a + f
∗
b +

. . .+ f∗n = f
∗∗
a + f

∗∗
b + . . .+ f

∗∗
n = dw1 , we have

Rγ =
γU + kγdw1
γU + kdw1

× 100%,

which is exactly the form of (12).
To show the lower bound of the network robustness, we

can rearrange (12) and get the following form:

Rγ =
γ
(

1+ k
dw1
U

)

γ+ k
dw1
U

× 100%.

Since γ ∈ (0, 1], we have the following:

Rγ �
γ
(

1+ k
dw1
U

)

(

1+ k
dw1
U

) × 100%= γ× 100%,

which completes the proof.

Summary of the results. – In this paper, we
presented a rigorous measure of transportation network
robustness based on our earlier proposed network effi-
ciency measure. We provided numerical examples and
established some theoretical results. In the future, it
would be very interesting to consider whether methods
of robust optimization could be applied to assess trans-
portation network robustness in the case of uncertain
underlying data.
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