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Abstract: In this paper, we propose a multilevel network perspective for the conceptu-

alization of the dynamics underlying supply chains in the presence of competition. The

multilevel network consists of: the logistical network, the informational network, and the

financial network. We describe the behavior of the network decision-makers, which are spa-

tially separated, and which consist of the manufacturers/producing firms, the retailers, and

the consumers located at the demand markets. We propose a projected dynamical system,

along with stability analysis results, that captures the adjustments of the commodity ship-

ments and the prices over space and time. A discrete-time adjustment process is described

and implemented in order to illustrate the evolution of the commodity shipments and prices

to the equilibrium solution in several numerical examples.
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1. Introduction

Networks are fundamental to the functioning of today’s societies and economies and come

in many forms: transportation networks, logistical networks, telecommunication networks,

as well as a variety of economic networks, including financial networks. Increasingly, these

networks are interrelated. In the case of electronic commerce, orders over the Internet trigger

shipments over logistical and transportation networks, and financial payments, in turn, over

a financial network. Teleshopping as well as telecommuting are examples of applications in

which economic activities are conducted on interrelated networks, in particular, transporta-

tion and telecommunication networks.

Recently, there has been growing interest in the development of theoretical frameworks for

the unified treatment of such complex network systems (cf. Nagurney and Dong (2002) and

Nagurney, Dong, and Mokhtarian (2001, 2002)) with the focus being principally the study

of teleshopping versus shopping and telecommuting versus commuting decision-making. In

this paper, in contrast, we tackle another problem entirely – that of supply chain analysis, a

topic of interdisciplinary nature and one which has received great attention (cf. Bramel and

Simchi-Levi (1997), Poirier (1996, 1999), Stadtler and Kilger (2000), Mentzer (2000), Bovet

(2000), and Miller (2001), and the references therein). Our approach, in contrast to that of

other authors, which tends to be an optimization approach, focuses on both the equilibrium

(see also Nagurney, Dong, and Zhang (2002) and Nagurney, Loo, Dong, and Zhang (2001)),

as well as the disequilibrium aspects of supply chains under competition. However, rather

than formulating such a problem over a single network, as was done by Nagurney, Dong, and

Zhang (2002) and Nagurney, Loo, Dong, and Zhang (2001), who proposed static models of

supply chain networks under competition, we propose a multilevel network framework and

address the dynamics.

The novelty of the proposed multilevel network framework allows one to capture distinct

flows, in particular, logistical, informational, and financial within the same network system,

while retaining the spatial nature of the network decision-makers. Moreover, since both the

logistical and financial networks are hierarchical, we are able to observe, through a discrete-

time process, how the prices as well as the commodity shipments are adjusted from iteration

to iteration (time period to time period), until the equilibrium state is reached. Although
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we focus on a supply chain consisting of competing producers/manufacturers, retailers, and

consumers, the framework is sufficiently general to include other levels of decision-makers in

the network such as owners of distribution centers, for example.

We assume that the manufacturers, who are spatially separated, are involved in the

production of a homogeneous commodity which is then shipped to the retailers, which are

located at distinct locations. The manufacturers obtain a price for the product (which is

endogenous) and seek to determine their optimal production and shipment quantities, given

the production costs as well as the transaction costs associated with conducting business with

the different retailers. Note that we consider a transaction cost to be sufficiently general, for

example, to include transportation/shipping cost.

The retailers, in turn, must agree with the manufacturers as to the volume of shipments

since they are faced with the handling cost associated with having the product in their retail

outlet. In addition, they seek to maximize their profits with the price that the consumers

are willing to pay for the product being endogenous.

Finally, in this supply chain, the consumers provide the “pull” in that, given the demand

functions at the various demand markets, they determine their optimal consumption levels

from the various retailers subject both to the prices charged for the product as well as the

cost of conducting the transaction. The demand markets are “separated” spatially from

the retailers through the inclusion of explicit transaction costs which also include the cost

associated with transportation.

The paper is organized as follows. In Section 2, we present the multilevel network repre-

senting the supply chain system and consisting of the logistical, the informational, and the

financial networks. We propose the disequilibrium dynamics underlying the supply chain

problem, derive the projected dynamical system, and discuss the stationary/equilibrium

point. In Section 3, we provide some qualitative properties of the dynamic trajectories,

along with stability analysis results. In Section 4, we describe the discrete-time adjustment

process, which is a time discretization of the continuous adjustment process given in Section

2.

In Section 5, we implement the discrete-time adjustment process and apply it to several
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numerical examples. A summary and suggestions for future research are given in Section 6.
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2. The Dynamic Supply Chain Model

In this Section, we develop the dynamic supply chain model with manufacturers, retailers,

and consumers using a multilevel network perspective. This multilevel network consists of a

logistical network, an informational network, and a financial network. We first identify the

multilevel network structure of the problem and the corresponding flows and prices. We then

describe the underlying functions and the behavior of the various network decision-makers,

who are spatially separated and consist of the manufacturers, the retailers, and the consumers

located at the demand markets. Our perspective is an equilibrium one, since we believe that,

in an environment of competition, an equilibrium state provides a valuable benchmark. We

also provide a mechanism for describing and understanding the disequilibrium dynamics.

We now describe the structure of the supply chain as well as the distinct networks and

associated flows that make up the entire system. We assume that there are m manufacturers

involved in the production of a homogeneous commodity, which can then be sold and shipped

to n retailers, and, finally, purchased (and consumed) by consumers at o demand markets.

Both the manufacturers as well as the consumers at the demand markets can be located at

distinct spatial locations. We denote a typical manufacturer by i, a typical retailer by j,

and a typical demand market by k. Let qij denote the nonnegative volume of commodity

shipment between manufacturer i and retailer j and let qjk denote the nonnegative volume

of the commodity between retailer j and consumers at demand market k. We group the

commodity shipments between the manufacturers and the retailers into the column vector

Q1 ∈ Rmn
+ and the commodity shipments between the retailers and the demand markets

into the column vector Q2 ∈ Rno
+ . Let qi denote the amount of the commodity produced

by manufacturer i and group the production outputs of all manufacturers into the column

vector q ∈ Rm
+ .

The logistical network (cf. Figure 1) is the bottom network of the multilevel network

for the supply chain model. Specifically, the logistical network represents the commodity

production outputs and the shipments between the network agents, that is, between the

manufacturers and the retailers, and the retailers and the demand markets. As depicted in

Figure 1, the top tier of nodes of the logistical network consists of the manufacturers, the

middle tier consists of nodes of the retailers, and the bottom tier, of the demand markets.
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Figure 1: Multilevel Network Structure of the Supply Chain System

The links joining two tiers of nodes correspond to transactions between the nodes in the

supply chain that take place. The flows on the links in the logistical network correspond

to the commodity shipments with the flow on a link (i, j) joining a node i in the top tier

with node j in the middle tier given by qij and the flow on a link (j, k) joining node j at the

middle tier with node k at the bottom tier by qjk.

The financial network, in turn, is the top network in the multilevel framework shown

in Figure 1 and its flows are the prices associated with the commodity. This financial

network also has a three-tiered nodal structure as does the logistical network with the nodes

corresponding to distinct decision-makers as before. However, the links in the financial

network go in the opposite direction from those in the logistical network. This reflects both

the “bottom up” approach of our model, in that the consumers provide the “pull” through

the prices they are willing to pay for the product, as well as representing the payments for

the commodity, which move in an upward direction.
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Specifically, we let ρ1ij denote the price of the commodity of manufacturer i (located

at tier 1 of the financial network) associated with retailer j, and group the manufacturer’s

prices for the product (at the beginning of the supply chain) into the column vector ρ1i ∈ Rn
+.

We then further group all the manufacturers’ prices into the column vector ρ1 ∈ Rmn
+ . We

denote the price charged by retailer j, located at tier 2, by ρ2j and we group the retailers’

prices into the vector ρ2 ∈ Rn
+. Finally, we let ρ3k denote the true price of the commodity

as perceived by consumers located at demand market k at the third tier of nodes and group

these prices into the column vector ρ3 ∈ Ro
+.

Central to the multilevel network perspective of the supply chain model is the Informa-

tional Network depicted between the Logistical and Financial Networks in Figure 1. Note

that the links in the Informational Network are bidirectional since the informational network,

as we shall subsequently describe, stores and provides the commodity shipment and price

information over time, which allows for the recomputation of the new commodity shipments

and prices, until, ultimately, the equilibrium pattern is attained.

The Dynamics

We now turn to describing the dynamics by which the manufacturers adjust their com-

modity shipments over time, the consumers adjust their consumption amounts based on the

prices of the product at the demand markets, and the retailers operate between the two. We

also describe the dynamics by which the prices adjust over time. The commodity shipment

flows evolve over time on the logistical network, whereas the prices do so over the financial

network. The informational network stores and provides the commodity shipment and price

information so that the new commodity shipments and prices can be computed. The dy-

namics are derived from the bottom tier of nodes on up since, as mentioned previously, we

assume that it is the demand for the product (and the corresponding prices) that actually

drives the supply chain dynamics.

The Demand Market Price Dynamics

We begin by describing the dynamics underlying the prices of the product associated with

the demand markets (see the bottom-tiered nodes in the financial network). We assume, as

given, a demand function dk, which can depend, in general, upon the entire vector of prices
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ρ3, that is,

dk = dk(ρ3), ∀k. (1)

Moreover, we assume that the rate of change of the price ρ3k, denoted by ρ̇3k, is equal to

the difference between the demand at the demand market k, as a function of the demand

market prices, and the amount available from the retailers at the demand market. Hence, if

the demand for the product at the demand market (at an instant in time) exceeds the amount

available, the price at that demand market will increase; if the amount available exceeds the

demand at the price, then the price at the demand market will decrease. Furthermore, we

guarantee that the prices do not become negative. Hence, the dynamics of the price ρ3k

associated with the commodity at demand market k can be expressed as:

ρ̇3k =

{
dk(ρ3) −

∑n
j=1 qjk, if ρ3k > 0

max{0, dk(ρ3) −
∑n

j=1 qjk}, if ρ3k = 0.
(2)

The Dynamics of the Commodity Shipments Between the Retailers and the

Demand Markets

We now describe the dynamics of the commodity shipments of the logistical network

taking place over the links joining the retailers to the demand markets. We assume that

retailer j has a unit transaction cost cjk associated with transacting with consumers at

demand market k where

cjk = cjk(Q
2), ∀j, k, (3)

that is, the unit cost associated with transacting can, in general, depend upon the vector

Q2. Note that this unit cost is assumed to also include the transportation cost associated

with consumers at demand market k obtaining the commodity from retailer j.

We assume that the rate of change of the commodity shipment qjk is equal to the difference

between the price the consumers are willing to pay for the product at demand market k minus

the unit transaction cost and the price charged for the product at the retail outlet. Of course,

we also must guarantee that these commodity shipments do not become negative. Hence,

we may write:

q̇jk =

{
ρ3k − cjk(Q

2) − ρ2j, if qjk > 0
max{0, ρ3k − cjk(Q

2) − ρ2j}, if qjk = 0.
(4)
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Thus, according to (4), if the price the consumers are willing to pay for the product at a

demand market exceeds the price the retailers charge for the product at the outlet plus the

unit transaction cost (at an instant in time), then the volume of the commodity between

that retail and demand market pair will increase; if the price charged by the retailer plus

the transaction cost exceeds the price the consumers are will to pay, then the volume of flow

of the commodity between that pair will decrease.

The Dynamics of the Prices at the Retail Outlets

The prices charged for the product at the retail outlets, in turn, must reflect supply and

demand conditions as well. In particular, we assume that the price for the product associated

with retail outlet j, ρ2j, and computed at node j lying in the second tier of nodes of the

financial network, evolves over time according to:

ρ̇2j =

{ ∑o
k=1 qjk −

∑m
i=1 qij, if ρ2j > 0

max{0, ∑o
k=1 qjk −

∑m
i=1 qij}, if ρ2j = 0.

(5)

Hence, if the amount of the commodity desired to be transacted by the consumers (at an

instant in time) exceeds that available at the retail outlet, then the price charged at the retail

outlet will increase; if the amount available is greater than that desired by the consumers,

then the price charged at the retail outlet will decrease.

The Dynamics of Commodity Shipments Between Manufacturers and Retailers

We now describe the dynamics underlying the commodity shipments between the man-

facturers and the retailers. We assume that each manufacturer i is faced with a production

cost function fi, which can depend, in general, on the entire vector of production outputs.

Since, according to the conservation of flow equations:

qi =
n∑

j=1

qij, ∀i, (6)

without any loss in generality, we may write the production cost functions as a function of

the vector Q1, that is, we have that

fi = fi(Q
1), ∀i. (7)
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In addition, we associate with each manufacturer and retailer pair (i, j) a transaction

cost, denoted by cij. The transaction cost includes the cost of shipping the commodity. We

assume that the transaction costs are of the form:

cij = cij(qij), ∀i, j. (8)

The total costs incurred by a manufacturer i, thus, are equal to the sum of the manufac-

turer’s production cost plus the total transaction costs. Its revenue, in turn, is equal to the

price that the manufacturer charges for the product to the retailers (and the retailers are

willing to pay) times the quantity of the commodity obtained/purchased the manufacturer

by the retail outlets.

We assume that a fair price for the product for a given manufacturer is equal to its

marginal costs of production and transacting, that is: ∂fi(Q
1)

∂qij
+ ∂cij(qij)

∂qij
.

A retailer j, in turn, is faced with what we term a handling cost, which may include,

for example, the display and storage cost associated with the product. We denote this cost

by cj and, in the simplest case, we would have that cj is a function of
∑m

i=1 qij, that is, the

holding cost of a retailer is a function of how much of the product he has obtained from the

various manufacturers. However, for the sake of generality, and to enhance the modeling of

competition, we allow the function to, in general, depend also on the amounts of the product

held by other retailers and, therefore, we may write:

cj = cj(Q
1), ∀j. (9)

The retailer j, on the other hand, ideally, would accept a commodity shipment from

manufacturer i at a price that is equal to the price charged at the retail outlet for the com-

modity (and that the consumers are willing to pay) minus its marginal cost associated with

handling the product. Now, since the commodity shipments sent from the manufacturers

must be accepted by the retailers in order for the transactions to take place in the supply

chain, we propose the following rate of change for the commodity shipments between the

top tier of nodes and the middle tier in the logistical network:

q̇ij =





ρ2j − ∂cj(Q
1)

∂qij
− ∂fi(Q1)

∂qij
− ∂cij(qij)

∂qij
, if qij > 0

max{0, ρ2j − ∂cj(Q1)

∂qij
− ∂fi(Q

1)
∂qij

− ∂cij(qij)

∂qij
}, if qij = 0.

(10)
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Following the above discussion, (10) states that the commodity shipment between a man-

ufacturer/retailer pair evolves according to the difference between the price charged for the

product by the retailer and its marginal cost, and the price charged by the manufacturer

(which recall, assuming profit-maximizing behavior, was set to the marginal cost of produc-

tion plus its marginal cost of transacting with the retailer). We also guarantee that the

commodity shipments do not become negative as they evolve over time.

The Projected Dynamical System

Consider now the dynamic model in which the demand prices evolve according to (2) for all

demand market prices k, the retail/demand market commodity shipments evolve according

to (4) for all pairs of retailers/demand markets j, k, the retail prices evolve according to (5)

for all retailers j, and the commodity shipments between the manufacturers and retailers

evolve over time according to (10) for all manufacturer/retailer pairs i, j. Let now X denote

the aggregate column vector (Q1, Q2, ρ2, ρ3) in the feasible set K ≡ Rmn+no+n+o
+ . Define the

column vector F (X) ≡ (Fij, Fjk, Fj, Fk)i=1,...,m;j=1,...,n;k=1,...,o, where Fij ≡ ∂fi(Q1)
∂qij

+
∂cij(qij)

∂qij
+

∂cj(Q
1)

∂qij
−ρ2j; Fjk ≡ ρ2j + cjk(Q

2)−ρ3k; Fj ≡
∑m

i=1 qij −
∑o

k=1 qjk, and Fk ≡ ∑n
j=1 qjk −dk(ρ3).

Then the dynamic model described by (2), (4), (5), and (10) for all k, j, i can be rewritten

as the projected dynamical system (PDS) (cf. Nagurney and Zhang (1996)) defined by the

following initial value problem:

Ẋ = ΠK(X,−F (X)), X(0) = X0, (11)

where ΠK is the projection operator of −F (X) onto K at X and X0 = (Q10
, Q20

, ρ0
2, ρ

0
3) is the

initial point corresponding to the initial commodity shipments between the manufacturers

and the retailers, and the retailers and the demand markets, and the initial retailers’ prices

and demand prices. The trajectory of (11) describes the dynamic evolution of and the

dynamic interactions among the commodity shipments between the tiers of the logistical

network and the prices on the financial network. The informational network, in turn, stores

and provides the commodity shipment and price information over time as needed for the

dynamic evolution of the supply chain transactions.

We emphasize that the dynamical system (11) is non-classical in that the right-hand side

is discontinuous in order to guarantee that the constraints, which in the context of the above
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model are nonnegativity constraints on the variables, are not violated. Such dynamical

systems were introduced by Dupuis and Nagurney (1993) and to-date have been used to

model a variety of applications ranging from dynamic traffic network problems (cf. Nagurney

and Zhang (1997)) and oligopoly problems (see Nagurney, Dupuis, and Zhang (1994)) and

spatial price equilibrium problems (cf. Nagurney, Takayama, and Zhang (1995)).

A Stationary/Equilibrium Point

We now discuss the stationary point of the projected dynamical system (11). Recall that

a stationary point is that point when Ẋ = 0 and, hence, in the context of our model, when

there is no change in the commodity shipments in the logistical network and no change in

the prices in the financial network. This point is also an equilibrium point and, furthermore,

has a variational inequality formulation (see Nagurney and Zhang (1996), Nagurney (1999)).

We identify an equilibrium point, henceforth, with an “∗”.

Note that the stationary point such that ρ̇3k = 0 for all demand markets k and q̇jk = 0 for

all retail/demand market pairs j, k (see (2) and (4), respectively) coincides with the following

equilibrium conditions: For all retailers and demand markets: j = 1, . . . , n; k = 1, . . . , o, we

must have that:

ρ∗
2j + cjk(Q

2∗)

{
= ρ∗

3k, if q∗jk > 0
≥ ρ∗

3k, if q∗jk = 0,
(12)

and for all demand markets k = 1, . . . , o, we must have that:

dk(ρ
∗
3)





=
n∑

j=1

q∗jk, if ρ∗
3k > 0

≤
n∑

j=1

q∗jk, if ρ∗
3k = 0.

(13)

Conditions (12) state that consumers at demand market k will purchase the product from

retailer j, if the price charged by the retailer for the product plus the unit transaction cost

does not exceed the price that the consumers are willing to pay for the product. Conditions

(13) state, in turn, that if the price the consumers are willing to pay for the product at the

demand market is positive, then the quantities purchased of the product from the retail-

ers will be precisely equal to the demand for that product at the demand market. These
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conditions correspond to the well-known spatial price equilibrium conditions (cf. Samuelson

(1952), Takayama and Judge (1971), Nagurney (1999) and the references therein).

In terms of the prices of the product at the retail outlets (cf. (5)), if ρ̇2j = 0 for all j,

then the following equilibrium condition must be satisfied: For all retailers j = 1, . . . , n, we

must have that:
m∑

i=1

q∗ij −
o∑

k=1

q∗jk

{
= 0, if ρ∗

2j > 0
≥ 0, if ρ∗

2j = 0.
(14)

Conditions (14) state that the price of the product at a retail outlet j will be positive if

the “supply” at the outlet, that is,
∑m

i=1 q∗ij of the product is equal to the “demand” at the

outlet, that is,
∑o

k=1 q∗jk; if the supply exceeds the demand, then the price will be zero at

that outlet.

Finally, for all q̇ij to be zero (cf. (10)), we must have: for all manufacturer/retailer pairs

that: i = 1, . . . , m; j = 1, . . . , n:

∂fi(Q
1∗)

∂qij
+

∂cij(q
∗
ij)

∂qij
+

∂cj(Q
1∗)

∂qij
− ρ∗

2j

{
= 0, if q∗ij > 0
≥ 0, if q∗ij = 0.

(15)

Conditions (15) state that, in equilibrium, if there is a positive volume of commodity

flow between a manufacturer/retailer pair, then the marginal cost of production plus the

marginal cost of transacting and the marginal cost of handling the product must be equal

to the price of the product at the retail outlet. If the marginal costs exceed the price, then

there will be no commodity shipments between that pair.

In equilibrium, the conditions (12) – (15) are all satisfied simultaneously.

Furthermore, as established in Dupuis and Nagurney (1993), the set of stationary points

of a projected dynamical system of the form given in (11) coincides with the set of solutions

to the variational inequality problem given by: Determine X∗ ∈ K, such that

〈F (X∗), X − X∗〉 ≥ 0, ∀X ∈ K, (16)

where, in our problem, F (X) was defined prior to (11). Furthermore, the vector X∗ =

(Q1∗, Q2∗, ρ∗
2, ρ

∗
3) satisfying the equilibrium conditions (12) – (15) satisfies the variational
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inequality (16), which explicitly has the form;

m∑

i=1

n∑

j=1

[
∂fi(Q

1∗)

∂qij

+
∂cij(q

∗
ij)

∂qij

+
∂cj(Q

1∗)

∂qij

− ρ∗
2j

]
×

[
qij − q∗ij

]

+
n∑

j=1

o∑

k=1

[
ρ∗

2j + cjk(Q
2∗) − ρ∗

3k

]
×

[
qjk − q∗jk

]
+

n∑

j=1

[
m∑

i=1

q∗ij −
o∑

k=1

q∗jk

]
×

[
ρ2j − ρ∗

2j

]

+
o∑

k=1




n∑

j=1

q∗jk − dk(ρ
∗
3)


 × [ρ3k − ρ∗

3k] ≥ 0, ∀(Q1, Q2, ρ2, ρ3) ∈ Rmn+no+n+o
+ . (17)

Interestingly, Nagurney, Dong, and Zhang (2002) derived the same variational inequality

formulation (using a slightly different notation for the price vector ρ2) of their static supply

chain model using, however, an entirely different approach from the one above. They also

obtained existence and uniqueness results under reasonable conditions.

In the next Section, we provide some qualitative properties of the dynamic trajectories

for (11). In particular, we establish the existence of a unique trajectory satisfying (11), as

well as a global stability result.
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3. Qualitative Properties

In this Section, we provide some qualitative properties. We first recall the definition of

an additive production cost which was introduced in Zhang and Nagurney (1996) and also

utilized by Nagurney, Dong, and Zhang (2002) and Nagurney, Loo, Dong, and Zhang (2001).

Definition 1: Additive Production Cost

Suppose that for each manufacturer i, the production cost fi is additive, that is,

fi(q) = f 1
i (qi) + f 2

i (q̄i), (18)

where f 1
i (qi) is the internal production cost that depends solely on the manufacturer’s own

output level qi, which may include the production operation and the facility maintenance,

etc., and f 2
i (q̄i) is the interdependent part of the production cost that is a function of all the

other manufacturers’ output levels q̄i = (q1, · · · , qi−1, qi+1, · · · , qm) and reflects the impact of

the other manufacturers’ production patterns on manufacturer i’s cost. This interdependent

part of the production cost may describe the competition for the resources, consumption of

the homogeneous raw materials, etc..

We now recall two results obtained by Nagurney, Dong, and Zhang (2002), which we will

utilize to obtain qualitative properties of the dynamical system (11). In particular, we have:

Theorem 1: Monotonicity (Nagurney, Dong, and Zhang (2002))

Suppose that the production cost functions fi; i = 1, ..., m, are additive, as defined in Defi-

nition 1, and f 1
i ; i = 1, ..., m, are convex functions. If the cij and cj functions are convex,

the cjk functions are monotone increasing, and the dk functions are monotone decreasing

functions of the demand market prices, for all i, j, k, then the vector function F that enters

the variational inequality (16) is monotone, that is,

〈F (X ′) − F (X ′′), X ′ − X ′′〉 ≥ 0, ∀X ′, X ′′ ∈ Rmn+no+n+o
+ . (19)

Theorem 2: Lipschitz Continuity (Nagurney, Dong, and Zhang (2002))
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The function that enters the variational inequality problem (16) is Lipschitz continuous, that

is,

‖F (X ′) − F (X ′′)‖ ≤ L‖X ′ − X ′′‖, ∀X ′, X ′′ ∈ K, (20)

under the following conditions:

(i). Each fi; i = 1, ..., m, is additive and has a bounded second-order derivative;

(ii). cij and cj have bounded second-order derivatives, for all i, j;

(iii). cjk and dk have bounded first-order derivatives.

We now state a fundamental property of the projected dynamical system (11).

Theorem 3: Existence and Uniqueness

Assume the conditions of Theorem 2. Then, for any X0 ∈ K, there exists a unique solution

X0(t) to the initial value problem (11).

Proof: Follows from Theorem 2.5 in Nagurney and Zhang (1996). 2

We now turn to addressing the stability (see also Zhang and Nagurney (1995) and Nagur-

ney and Zhang (2001)) of the supply chain network system through the initial value problem

(11). We first recall the following:

Definition 2: Stability of the System

The system defined by (11) is stable if, for every X0 and every equilibrium point X∗, the

Euclidean distance ‖X∗ − X0(t)‖ is a monotone nonincreasing function of time t.

We state a global stability result in the next theorem.

Theorem 4: Stability of the System

Assume the conditions of Theorem 1. Then the dynamical system (11) underlying the supply

chain is stable.

16



Proof: Under the assumptions of Theorem 1, F (X) is monotone and, hence, the conclusion

follows directly from Theorem 4.1 of Zhang and Nagurney (1995). 2
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4. The Discrete-Time Adjustment Process

Note that the projected dynamical system (11) is a continuous time adjustment process.

However, in order to further fix ideas and to provide a means of “tracking” the trajectory,

we propose a discrete-time adjustment process. The discrete-time adjustment process is a

special case of the general iterative scheme of Dupuis and Nagurney (1993) and is, in fact,

an Euler method, where at iteration τ the process takes the form:

Xτ = PK(Xτ−1 − ατ−1F (Xτ−1)), (21)

where PK denotes the operator of projection (in the sense of the least Euclidean distance

(cf. Nagurney (1999)) onto the closed convex set K and F (X) is as defined preceding (11).

Specifically, the complete statement of this method in the context of our model takes the

form:

Step 0: Initialization Step

Set (Q10, Q20, ρ0
2, ρ

0
3) ∈ K. Let τ = 1 and set the sequence {ατ} so that

∑∞
τ=1 ατ = ∞,

ατ > 0, ατ → 0, as τ → ∞. We note that the sequence {ατ} must satisfy the above-stated

conditions (cf. Dupuis and Nagurney (1993)) for the scheme to converge.

Step 1: Computation Step

Compute (Q1τ
, Q2τ

, ρτ
2, ρ

τ
3) ∈ K by solving the variational inequality

m∑

i=1

n∑

j=1

[
qτ
ij + ατ (

∂fi(Q
1τ−1

)

∂qij
+

∂cij(q
τ−1
ij )

∂qij
+

∂cj(Q
1τ−1

)

∂qij
− ρτ−1

2j ) − qτ−1
ij

]
×

[
qij − qτ

ij

]

+
n∑

j=1

o∑

k=1

[
qτ
jk + ατ (ρ

τ−1
2j + cjk(Q

2τ−1
) − ρτ−1

3k ) − qτ−1
jk

]
×

[
qjk − qτ

jk

]

+
n∑

j=1

[
ρτ

2j + ατ (
m∑

i=1

qτ−1
ij −

o∑

k=1

qτ−1
jk ) − ρτ−1

2j

]
×

[
ρ2j − ρτ

2j

]

+
o∑

k=1


ρτ

3k + ατ (
n∑

j=1

qτ−1
jk − dk(ρ

τ−1
3 )) − ρτ−1

3k


 × [ρ3k − ρτ

3k] ≥ 0, ∀(Q1, Q2, ρ2, ρ3) ∈ K. (22)
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Step 2: Convergence Verification

If |qτ
ij − qτ−1

ij | ≤ ε, |qτ
jk − qτ−1

jk | ≤ ε, |ρτ
2j − ρτ−1

2j | ≤ ε, |ρτ
3k − ρτ−1

3k | ≤ ε, for all i = 1, · · · , m;

j = 1, · · · , n; k = 1, · · · , o, with ε > 0, a pre-specified tolerance, then stop; otherwise, set

τ := τ + 1, and go to Step 1.

The sequence {ατ} can be interpreted as a series of parameters that model a type of

learning process in that, at the beginning of the discrete-time process, the terms are larger,

whereas as time proceeds and the decision-makers have acquired more experience, the terms

in the series decrease.

We note that since K is the nonnegative orthant the solution of (22) is accomplished

exactly and in closed form as follows:

Computation of the Commodity Shipments:

At iteration τ compute the qτ
ijs according to:

qτ
ij = max{0, qτ−1

ij − ατ (
∂fi(Q

1τ−1
)

∂qij
+

∂cij(q
τ−1
ij )

∂qij
+

∂cj(Q
1τ−1

)

∂qij
− ρτ−1

2j )}, ∀i, j. (23)

Also, at iteration τ compute the qτ
jks according to:

qτ
jk = max{0, qτ−1

jk − ατ (ρ
τ−1
2j + cjk(Q

2τ−1
) − ρτ−1

3k }, ∀j, k. (24)

Computation of the Prices:

The prices, ρτ
2j , in turn, are computed at iteration τ explicitly according to:

ρτ
2j = max{0, ρτ−1

2j − ατ (
m∑

i=1

qτ−1
ij −

o∑

k=1

qτ−1
jk )}, ∀j, (25)

whereas the prices, ρ3k, are computed according to:

ρτ
3k = max{0, ρτ−1

3k − ατ (
n∑

j=1

qτ−1
jk − dk(ρ

τ−1
3 ))}, ∀k. (26)
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Discussion of Computations at the Logistical and Financial Network Levels and

the Information Flows Through the Informational Network Level

We now discuss the above discrete-time adjustment process in the context of the multilevel

network in Figure 1. The computation of the commodity shipments according to (23) and

(24) takes place on the logistical network, whereas the computation of the prices at the tiers

according to (25) and (26) takes place on the financial network.

Note that, according to (23), in order to compute the new commodity shipment between a

manufacturer/retailer pair, the logistical network requires the price at the particular retailer

from the preceding iteration as well as all the commodity shipments between the manu-

facturers and the retailers at the preceding iteration from the informational network. This

type of computation can be done simultaneously for all pairs of manufacturers and retailers.

Similarly, according to (24), in order to compute the new commodity shipment between

a retailer and demand market pair, the logistical network requires from the informational

network the prices at the particular retail outlet from the preceding iteration, and also the

demand market price, as well as the commodity shipments between the retailers and the

demand markets from the preceding iteration.

The financial network requires from the informational network, at a given iteration (or

time period) for the computation of the retail prices (cf. (25)), the commodity shipments to

and from the particular retailer at the preceding iteration, as well as the retail price at the

retail outlet from the preceding iteration.

Finally, for the computation of the demand market price at a given iteration according

to (26), the financial network requires from the informational network the demand prices

for the product at all the demand markets from the preceding iteration and the commodity

shipments at the preceding iteration from the retailers to the particular demand market.

The computation of the demand market prices at all the demand markets are accomplished

in a similar manner.

The informational network, thus, provides the information necessary for the computation

of both the logistical flows and the financial flows at each iteration. Of course, different

informational networks may provide information which is of different quality levels or time-
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liness but in this paper the focus is on the multilevel network concept, the dynamics, as well

as what information is needed for the iterative process to converge.

Hence, according to the discrete-time adjustment process described above, the process

is initialized with a vector of commodity shipments and prices. The informational network

stores this information and then the logistical network and the financial network simulta-

neously compute the new commodity shipments between tiers of nodes and the new prices

at the nodes, respectively. This information is then fed back to the informational network

and transferred to the logistical and financial networks at the next iteration as needed. This

process continues until convergence is reached, that is, until the absolute difference of the

commodity shipments between two successive iterations and that of the prices between two

successive iterations lies within an acceptable tolerance. Clearly, it is easy to see from (22) as

well as from (23) – (26) that once the convergence tolerance has been reached (and, hence,

these differences are approximately zero) then the equilibrium conditions (12) – (15) are

satisfied; equivalently, a stationary point of the projected dynamical system (11) is attained,

and, also a solution to variational inequality (16).

In Figure 2, the multilevel network with the equilibrium flows and prices is given. Note

that in the financial network, we have explicitly labeled the prices ρ∗
1 at the top tier of nodes

in the financial network. Although we do not compute these prices explicitly through the

discrete-time algorithm, they can, nevertheless, be recovered from the equilibrium solution,

according to:

ρ∗
1ij =

∂fi(Q
1∗)

∂qij
+

∂cij(q
∗
ij)

∂qij
= ρ∗

2j −
∂cj(Q

1∗)

∂qij
, ∀i, j, such that q∗ij > 0;

otherwise, ρ∗
1ij = ∂fi(Q

1∗)
∂qij

+
∂cij(q

∗
ij)

∂qij
, since we have assumed profit-maximization behavior for

both the manufacturers and the retailers.

Convergence conditions for this method can be found in Dupuis and Nagurney (1993)

and studied in a variety of application contexts in Nagurney and Zhang (1996).
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Figure 2: The Supply Chain Multilevel Network at Equilibrium
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Figure 3: Multilevel Network for Numerical Example 1

5. Numerical Examples

In this Section, we apply the discrete-time adjustment process (algorithm) to five distinct

numerical supply chain examples. The algorithm was implemented in FORTRAN and the

computer system used was a DEC Alpha system located at the University of Massachusetts

at Amherst. The convergence criterion used was that the absolute value of the flows and

prices between two successive iterations differed by no more than 10−4. The sequence {ατ}
was set to {1, 1

2
, 1

2
, 1

3
, 1

3
, 1

3
, . . .} for all the examples. The initial commodity shipments and

prices were all set to zero for each example.

Example 1

The first numerical example consisted of two manufacturers, two retailers, and two de-

mand markets. Its multilevel network structure is given in Figure 3.
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The data for this example were constructed in order to readily enable interpretation. The

production cost functions for the manufacturers were given by:

f1(q) = 2.5q2
1 + q1q2 + 2q1, f2(q) = 2.5q2

2 + q1q2 + 2q2.

The transaction cost functions faced by the manufacturers and associated with transacting

with the retailers were given by:

c11(q11) = .5q2
11+3.5q11, c12(q12) = .5q2

12+3.5q12, c21(q21) = .5q2
21+3.5q21, c22(q22) = .5q2

22+3.5q22.

The handling costs of the retailers, in turn, were given by:

c1(Q
1) = .5(

2∑

i=1

qi1)
2, c2(Q

1) = .5(
2∑

i=1

qi2)
2.

The demand functions at the demand markets were:

d1(ρ3) = −2ρ31 − 1.5ρ32 + 1000, d2(ρ3) = −2ρ32 − 1.5ρ31 + 1000,

and the transaction costs between the retailers and the consumers at the demand markets

were given by:

c11(Q
2) = q11 + 5, c12(Q

2) = q12 + 5, c21(Q
2) = q21 + 5, c22(Q

2) = q22 + 5.

The discrete-time adjustment process required 151 iterations for convergence and yielded

the following equilibrium pattern: the commodity shipments between the two manufacturers

and the two retailers were:

Q1∗ : q∗11 = q∗12 = q∗21 = q∗22 = 16.608,

the commodity shipments (consumption volumes) between the two retailers and the two

demand markets were:

Q2∗ : q∗11 = q∗12 = q∗21 = q∗22 = 16.608,

the vector ρ∗
2 had components:

ρ∗
21 = ρ∗

22 = 254.617,
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and the demand prices at the demand markets were:

ρ∗
31 = ρ∗

32 = 276.224.

It is easy to verify that the optimality/equilibrium conditions were satisfied with good

accuracy. We note that the same problem was solved in Nagurney, Dong, and Zhang (2002)

but with the modified projection method, which, nevertheless, does not “track” the contin-

uous adjustment process as the discrete-time algorithm thus. Moreover, the modified pro-

jection method required 257 iterations to converge to the same solution as above, whereas

the discrete-time algorithm only required 151 iterations. Furthermore, each iteration of the

discrete-time algorithm is simpler than that of the modified projection method.

Example 2

We then modified Example 1 as follows: The production cost function for manufacturer

1 was now given by:

f1(q) = 2.5q2
1 + q1q2 + 12q1,

whereas the transaction costs for manufacturer 1 were now given by:

c11(q11) = q2
11 + 3.5q11, c12(q12) = q2

12 + 3.5q12.

The remainder of the data was as in Example 1. Hence, both the production costs and

the transaction costs increased for manufacturer 1. The multilevel network is still as given

in Figure 3.

The discrete-time algorithm converged in 154 iterations and yielded the following equi-

librium pattern: the commodity shipments between the two manufacturers and the two

retailers were now:

Q1∗ : q∗11 = q∗12 = 14.507, q∗21 : q∗22 = 17.230,

the commodity shipments (consumption amounts) between the two retailers and the two

demand markets were now:

Q2∗ : q∗11 = q∗12 = q∗21 = q∗22 = 15.869,
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the vector ρ∗
2, was now equal to

ρ∗
21 = ρ∗

22 = 255.780,

and the demand prices at the demand markets were:

ρ∗
31 = ρ∗

32 = 276.646.

Thus, manufacturer 1 now produced less than it did in Example 1, whereas manufacturer

2 increased its production output. The price charged by the retailers to the consumers

increased, as did the demand price at the demand markets, with a decrease in the incurred

demand.

We note that in Nagurney, Dong, and Zhang (2002) this example was also solved, but

with the modified projection method, which required 258 iterations for convergence, which is

a higher number than required by the discrete-time algorithm, which, nevertheless, yielded

the same solution as the modified projection method.

Example 3

The third supply chain problem consisted of two manufacturers, three retailers, and two

demand markets. Its multilevel network structure is given in Figure 4.

The data for the third example were constructed from Example 2, but we added data for

the manufacturers’ transaction costs associated with the third retailer; handling cost data

for the third retailer, and the transaction cost data between the new retailer and the demand

markets. Hence, the complete data for this example were given by:

The production cost functions for the manufacturers were given by:

f1(q) = 2.5q2
1 + q1q2 + 2q1, f2(q) = 2.5q2

2 + q1q2 + 12q2.

The transaction cost functions faced by the two manufacturers and associated with trans-

acting with the three retailers were given by:

c11(q11) = q2
11 + 3.5q11, c12(q12) = q2

12 + 3.5q12, c13(q13) = .5q2
13 + 5q13,
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Figure 4: Multilevel Network for Example 3
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c21(q21) = .5q2
21 + 3.5q21, c22(q22) = .5q2

22 + 3.5q22, c23(q23) = .5q2
23 + 5q23.

The handling costs of the retailers, in turn, were given by:

c1(Q
1) = .5(

2∑

i=1

qi1)
2, c2(Q

1) = .5(
2∑

i=1

qi2)
2, c3(Q

1) = .5(
2∑

i=1

qi3)
2.

The demand functions at the demand markets, again, were:

d1(ρ3) = −2ρ31 − 1.5ρ32 + 1000, d2(ρ3) = −2ρ32 − 1.5ρ31 + 1000,

and the transaction costs between the retailers and the consumers at the demand markets

were given by:

c11(Q
2) = q11 + 5, c12(Q

2) = q12 + 5,

c21(Q
2) = q21 + 5, c22(Q

2) = q22 + 5,

c31(Q
2) = q31 + 5, c32(Q

2) = q32 + 5.

The discrete-time method converged in 215 iterations and yielded the following equi-

librium pattern: the commodity shipments between the two manufacturers and the three

retailers were:

Q1∗ : q∗11 = q∗12 = 9.243, q∗13 = 14.645, q∗21 = q∗22 = 13.567, q∗23 = 9.726,

the commodity shipments between the three retailers and the two demand markets were:

Q2∗ : q∗11 = q∗12 = q∗21 = q∗22 = 11.404, q∗31 = q∗32 = 12.184.

The vector ρ∗
2 had components:

ρ∗
21 = ρ∗

22 = 259.310, ρ∗
23 = 258.530,

and the prices at the demand markets were:

ρ∗
31 = ρ∗

32 = 275.717.

Note that the prices at the demand markets were now lower than in Example 2, since there

is now an additional retailer and, hence, increased competition. The incurred demand also

28



increased at both demand markets, as did the production outputs of both manufacturers.

Since the retailers now handled a greater volume of commodity flows, the prices charged

for the product at the retail outlets, nevertheless, increased due to increased handling cost.

The same problem was also solved in Nagurney, Dong, and Zhang (2002) with the modified

projection method which required 361 iterations for convergence. As already noted, each

iteration of the modified projection method is more complex than that of the discrete-time

algorithm. In fact, it requires two steps with each step of the same order of complexity as

the computation step in the discrete-time algorithm. Hence, these numerical results suggest

that the discrete-time algorithm is a viable alternative to the modified projection method

for the computation of the equilibrium pattern. Furthermore, as well shall see in Example

5, it also tracks the dynamic trajectories of the commodity shipments and the prices.

Example 4

The fourth numerical example consisted of three manufacturers, two retailers, and three

demand markets. The multilevel network structure for this supply chain problem is given in

Figure 5.

The data for the fourth example was constructed from the data for Example 1, with the

addition of the necessary functions for the third manufacturer and the third demand market

resulting in the following functions:

The production cost functions for the manufacturers were given by:

f1(q) = 2.5q2
1 + q1q2 + 2q1, f2(q) = 2.5q2

2 + q1q2 + 2q2, f3(q) = .5q2
3 + .5q1q3 + 2q3.

The transaction cost functions faced by the manufacturers and associated with transacting

with the retailers were given by:

c11(q11) = .5q2
11+3.5q11, c12(q12) = .5q2

12+3.5q12, c21(q21) = .5q2
21+3.5q21, c22(q22) = .5q2

22+3.5q22,

c31(q31) = .5q2
31 + 2q31, c32(q32) = .5q2

32 + 2q32.

The handling costs of the retailers, in turn, were given by:

c1(Q
1) = .5(

2∑

i=1

qi1)
2, c2(Q

1) = .5(
2∑

i=1

qi2)
2.
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Figure 5: Multilevel Network for Example 4
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The demand functions at the demand markets were:

d1(ρ3) = −2ρ31 − 1.5ρ32 + 1000, d(ρ3) = −2ρ32 − 1.5ρ31 + 1000,

d3(ρ3) = −2ρ33 − 1.5ρ31 + 1000,

and the transaction costs between the retailers and the consumers at the demand markets

were given by:

c11(Q
2) = q11 + 5, c12(Q

2) = q12 + 5, c13(Q
2) = q13 + 5,

c21(Q
2) = q21 + 5, c22(Q

2) = q22 + 5, c23(Q
2) = q23 + 5.

The discrete-time algorithm converged in 175 iterations and yielded the following equi-

librium pattern: the commodity shipments between the three manufacturers and the two

retailers were:

Q1∗ : q∗11 = q∗12 = q∗21 = q∗22 = 12.395, q∗31 = q∗32 = 50.078.

The commodity shipments (consumption levels) between the two retailers and the three

demand markets were computed as:

Q2∗ : q∗11 = q∗12 = q∗13 = q∗21 = q∗22 = q∗23 = 24.956,

whereas the vector ρ∗
2, was now equal to:

ρ∗
21 = ρ∗

22 = 241.496,

and the demand prices at the three demand markets were:

ρ∗
31 = ρ∗

32 = ρ∗
33 = 271.454.

Note that, in comparison to the results in Example 1, with the addition of a new man-

ufacturer, the price charged at the retail outlets was now lower, due to the competition,

and increased supply of the product. The consumers at the three demand markets gained,

as well, with a decrease in the generalized demand market and an increased demand. The
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equilibrium solution was identical to that computed by the modified projection method for

the same example in Nagurney, Dong, and Zhang (2002), but in 230 iterations.

Example 5

The fifth, and final, example consisted of two manufacturers, two retailers, and two

demand markets, and its multilevel network structure was, hence, as depicted in Figure 3.

For this example, we not only report the equilibrium solution computed by the discrete-

time algorithm, which converged in 196 iterations, but we print out the iterates to show the

tracking of the dynamic trajectories over time to the equilibrium solution.

The production cost functions for the manufacturers were given by:

f1(q) = 2.5q2
1 + q1q2 + 10q1, f2(q) = 2.5q2

2 + q1q2 + 2q2.

The transaction cost functions faced by the manufacturers and associated with transacting

with the retailers were given by:

c11(q11) = q2
11+3.5q11, c12(q12) = .5q2

12+3.5q12, c21(q21) = .5q2
21+3.5q21, c22(q22) = .5q2

22+3q22.

The handling costs of the retailers, in turn, were given by:

c1(Q
1) = .5(

2∑

i=1

qi1)
2, c2(Q

1) = .75(
2∑

i=1

qi2)
2.

The demand functions at the demand markets were:

d1(ρ3) = −2ρ31 − 1.5ρ32 + 1200, d2(ρ3) = −2.5ρ32 − 1ρ31 + 1000,

and the transaction costs between the retailers and the consumers at the demand markets

were given by:

c11(Q
2) = q11 + 5, c12(Q

2) = q12 + 5, c21(Q
2) = 3q21 + 5, c22(Q

2) = q22 + 5.

The discrete-time adjustment process yielded the following equilibrium pattern: the com-

modity shipments between the two manufacturers and the two retailers were:

Q1∗ : q∗11 = 19.002, q∗12 = 16.920, q∗21 = 30.225, q∗22 = 9.6402,
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the commodity shipments (consumption volumes) between the two retailers and the two

demand markets were:

Q2∗ : q∗11 = 49.228, q∗12 = 0.000, q∗21 = 26.564, q∗22 = 0.000,

the vector ρ∗
2 had components:

ρ∗
21 = 320.2058, ρ∗

22 = 289.7407,

and the demand prices at the demand markets were:

ρ∗
31 = 374.433, ρ∗

32 = 250.227.

Note that there were zero shipments of the commodity from both retailers to demand

market 2, where the demand for the commodity was zero.

In the subsequent figures we provide the iterates from the algorithm (cf. (22)) in which

we present the outputs of the logistical network (see (23) and (24)) and the financial network

(see (25) and (26)).

Indeed, in Figure 6, we provide the generated commodity shipments between the manu-

facturers and the retailers, the qijs. In Figure 7, we show the commodity shipments between

the retailers and the demand markets, the qjks over time. In Figure 8, in turn, we graph the

retail prices, the ρ2s, and in Figure 9, we present the demand market prices, the ρ3s over

time. Note that our convergence tolerance is quite tight with ε = 10−4. Nevertheless, the

commodity shipments and the prices appear to have stabilized after the fiftieth iteration or

so. Also, note, from Figure 7, that the commodity shipments to the second demand market

remain at level zero after the fourth iteration.
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6. Summary and Conclusions

In this paper, we have proposed a multilevel network framework, consisting of logistical,

informational, and financial networks, for the conceptualization of supply chain problems.

The manufacturers, as well as the retailers, and the consumers at the demand markets are

spatially separated. We proposed the underlying dynamics of these network agents and

showed that the dynamical system satisfied a projected dynamical system.

We studied the dynamical system qualitatively and established conditions for the exis-

tence of a unique trajectory as well as a global stability analysis result. We discussed the

stationary/equilibrium point and gave an interpretation of the equilibrium conditions from

an economic perspective.

We then proposed a discrete-time approximation to the continuous time adjustment

process in which the computation of the commodity shipments takes place on the logis-

tical network whereas the computation of the prices takes place on the financial network.

The informational network stores and provides the necessary information from time period

to time period for the computations/adjustments to take place. The computations that take

place from time period to time period are very simple and yield closed form expressions for

the new commodity shipments and the prices.

We then implemented the discrete-time adjustment process/algorithm and applied it to

several supply chain examples. The method not only computed the equilibrium solutions in

a timely manner but actually outperformed a previous algorithm. Furthermore, it tracks the

dynamic trajectories.

Future research will include an actual application of this framework to a particular prod-

uct. In addition, the association of logistical nodes with physical locations will be made

and the incorporation of the physical transportation network for the actual shipment of

the goods. Another potential research question involves allowing the informational network

to vary with respect to the timeliness and quality of information provided and to allow the

decision-makers on the network to select among different modes of information with different

costs.
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