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Abstract:

In this paper, we develop a spatial price network equilibrium model in which consumers

at the demand markets consider both the transportation cost and the transportation time

associated with obtaining the particular commodity. We provide the governing equilibrium

conditions for the multicriteria spatial price problem and derive the variational inequality

formulation. We establish existence and uniqueness of the equilibrium commodity shipment

and demand price pattern and then propose a dynamic tatonnement process whose set of

stationary points coincides with the set of solutions of the variational inequality problem.

An iterative scheme is described which provides a time discretization of the continuous time

adjustment process and which converges to a stationary point. Numerical examples are given

for illustrative purposes.
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1. Introduction

Spatial price equilibrium problems have provided a basic formalism for the study of a

wide variety of applications arising in agricultural markets, energy, and in interregional and

international trade. The rigorous formulation of such problems dates to Samuelson (1952)

and Takayama and Judge (1971) who considered problems in which the governing equilibrium

conditions could be reformulated as an equivalent mathematical programming (optimization)

problem.

In spatial price equilibrium problems, one assumes that the supply and demand markets

are spatially separated, that the competition is perfect, and that, in equilibrium, a commod-

ity produced at a supply market will be shipped to a demand market, where it is consumed,

provided that the supply price plus the unit transportation cost is equal to the demand price.

If the supply price at the supply market plus the unit cost of transportation exceeds the de-

mand price that the consumers are willing to pay for the commodity, then the commodity

will not be shipped between the pair of markets.

The basic models were subsequently extended to allow for the treatment of asymmetric

price and transportation cost functions and multicommodity situations using a variational

inequality framework (cf. Dafermos and Nagurney (1987), Florian and Los (1982), and

Nagurney (1987), among others). Refer to Nagurney (1999) and the references therein for

recent research on the formulation, theoretical analysis, and computation of solutions to

spatial price equilibrium problems.

In this paper, we propose a multicriteria spatial price network equilibrium model. In

the model, we assume that consumers in each distinct demand market may be faced with

several criteria in selecting the commodity that is produced, specifically, not only the price

of the commodity but also the time it takes to receive the commodity. Hence, the consumers

are not only price-sensitive but also time-sensitive. We construct explicit demand functions

which express these concerns and study the model both from a static perspective, from the

point of view of the equilibrium pattern, using the theory of variational inequalities, as well

as from a dynamic perspective through the use of a dynamic tatonnement process which

reveals how the producers adjust their commodity shipments to the demand markets and

how the generalized prices at the demand markets adjust. The theoretical analysis of the
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dynamics is conducted using projected dynamical systems theory (see Nagurney and Zhang

(1996)).

We note that multicriteria network equilibrium models have been constructed for traffic

networks and were introduced by Quandt (1967) and Schneider (1968) and explicitly con-

sider that travelers may be faced with several criteria, notably, travel time and travel cost,

in selecting their optimal routes of travel. The ideas were further developed by Dial (1979)

who proposed an uncongested model and Dafermos (1981) who introduced congestion ef-

fects and derived an infinite-dimensional variational inequality formulation of her multiclass,

multicriteria traffic network equilibrium problem, along with some qualitative properties.

Recently, there has been renewed interest in the formulation, analysis, and computation

of multicriteria traffic network equilibrium problems. Researchers who have considered an

infinite-dimensional variational inequality formulation, motivated by Dafermos’ (1981) mul-

ticlass model, have included Leurent (1993a) (see also Leurent (1993b)), who presented an

elastic demand formulation but did not allow travel cost to be a function of flow. For an

overview of multicriteria traffic network equilibrium problems and different formulations, see

Leurent (1998) and Marcotte (1998).

In this paper, we build upon the recent work of Nagurney (2000) and Nagurney and Dong

(2002) who developed, respectively, a multiclass, multicriteria traffic network equilibrium

model with fixed travel demands and with elastic travel demands. However, due to the

special structure of the spatial price network problem under consideration here we are able

to obtain sharper results in the sense that we are able to establish, under quite reasonable

conditions, strict monotonicity of the function that enters the variational inequality problem.

Moreover, for the first time, we propose a dynamical system to describe the evolution of the

trajectories for a multicriteria network equilibrium problem.

The paper is organized as follows. In Section 2, we present the multicriteria spatial

price equilibrium model and derive the variational inequality formulation of the governing

equilibrium conditions. In Section 3, we focus on the “statics” and obtain an existence result

as well as a uniqueness result. In Section 4, we then describe a dynamic tatonnement process

and relate the dynamic and static interpretations of the problem. In Section 5, we propose the

Euler method, which is a discrete-time algorithm, and provide convergence results. Section
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6 contains numerical examples which illustrate the model and the computational approach.

Section 7 summarizes our results and presents the conclusions.

4



2. The Multicriteria Spatial Price Model

In this Section, we develop the multicriteria spatial price network equilibrium model.

The model permits the consumers at each of the demand markets to weight the transporta-

tion cost and the transportation time associated with the shipment of the commodity from

the supply markets in an individual manner. The equilibrium conditions are then shown

to satisfy a finite-dimensional variational inequality problem (see, e.g., Kinderlehrer and

Stampacchia (1980) and Nagurney (1999)).

We assume that a certain commodity is produced at m supply markets and is consumed

at n demand markets. We denote a typical supply market by i and a typical demand market

by j. Let si denote the supply of the commodity at supply market i and let Qij denote the

nonnegative commodity shipment from supply market i to demand market j. We group the

supplies into a column vector s in Rm and the commodity shipments into a column vector

Q in Rmn.

We associate with each supply market i a supply price πi and we group the supply prices

into a row vector π in Rm. We assume that, in general, the supply price at a supply market

i can depend on the supplies of the commodity at all the supply markets, that is,

πi = πi(s), ∀i, (1)

where π is a known smooth function.

The supply of the commodity at each supply market i must satisfy the following conser-

vation of flow equation:

si =
n∑

j=1

Qij, (2)

that is, the supply of the commodity at a supply market must be equal to the sum of the

commodity shipments from the supply market to all the demand markets.

In view of (1) and (2), and, for simplicity of the subsequent derivations and notation,

we define the supply price function π̂i, for each supply market i, which is a function of the

commodity shipment pattern:

π̂i = π̂i(Q) ≡ πi(s), ∀i, (3)
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and we group these functions into the row vector π̂ ∈ Rm.

We introduce a unit transportation cost cij associated with shipping the commodity

between supply market i and demand market j and the transportation time tij associated

with the shipment. We group the transportation costs and times, respectively, into the row

vectors c in Rmn and t in Rmn. We assume, in turn, that the unit cost of transportation

depends on the quantity of the commodity shipped between the pair of markets, that is,

cij = cij(Qij), ∀ij, (4)

as does the transportation time, i.e.,

tij = tij(Qij), ∀ij, (5)

where the transportation costs and times are assumed to be known smooth functions.

We assume that each demand market represents a distinct class of consumer who perceives

the transportation cost and time in an individual manner. Hence, consumers in one demand

market may not be as concerned as to when the commodity is delivered provided that the

transportation cost is low, whereas consumers at another demand market may be more time-

sensitive and may be willing to pay a higher transportation cost provided that the commodity

reaches them in a more timely manner. We let w1
j denote the weight associated with the

transportation cost for demand market j and we let w2
j denote the weight associated with

the transportation time to demand market j. We assume that the weights are positive for

all demand markets.

We then construct the generalized cost associated with link (i, j) and denoted by ĉij as

follows:

ĉij = w1
j cij + w2

j tij. (6)

Note that a possible weighting scheme may be one where the weights for each demand market

sum to one, that is, w1
j +w2

j = 1, for all j. Dafermos (1981) utilized such a weighting scheme

in the context of a traffic network equilibrium model.

We assume that the demand for the commodity at demand market j is determined ac-

cording to:

dj = dj(λ), ∀j, (7)
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where λ is the column vector of demand market generalized (since it reflects both time and

cost) prices with demand market j’s generalized price being denoted by λj. We group the

demand fuctions into the row vector d(λ) ∈ Rn.

Multicriteria Spatial Price Network Equilibrium Conditions

The spatial price network equilibrium conditions in the case of known demand functions

(see Takayama and Judge (1971), Nagurney and Zhao (1993), and Nagurney, Takayama,

and Zhang (1995a, b)), in the generalized context of the multicriteria spatial price network

equilibrium problem, take on the form: A pattern (Q∗, λ∗) ∈ Rmn+n
+ is an equilibrium pattern

if for each pair of supply and demand markets (i, j) the following conditions hold:

π̂i(Q
∗) + w1

j cij(Q
∗
ij) + w2

j tij(Q
∗
ij)

{
= λ∗

j , if Q∗
ij > 0

≥ λ∗
j , if Q∗

ij = 0,
(8)

and

dj(λ
∗)





=
m∑

i=1

Q∗
ij, if λ∗

j > 0

≤
m∑

i=1

Q∗
ij, if λ∗

j = 0.
(9)

In other words, the commodity will be shipped between a pair of supply and demand

markets if the supply price plus the generalized cost associated with shipping the commod-

ity is equal to the generalized price at the demand market. If the supply price plus the

generalized cost exceeds the generalized price at the demand market, then there will be no

trade between the pair of markets. In addition, if the generalized price associated with a

demand market is positive, then the market clears for that demand market; that is, the sum

of the commodity shipments from the supply markets to that demand market is equal to

the demand associated with that demand market; if the generalized price is zero, then the

sum of the commodity shipments can exceed the demand for the commodity at the demand

market. Henceforth, we refer to the generalized price simply as the price of the commodity

at the particular demand market.

We define the feasible set K underlying the problem as K ≡ {(Q, λ) | (Q, λ) ∈ Rmn+n
+ }.

The equivalence between the multicriteria spatial price network equilibrium conditions

and a variational inequality is now established.
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Theorem 1: Variational Inequality Formulation

A multicriteria commodity shipment and demand price pattern (Q∗, λ∗) ∈ K is a spatial

price network equilibrium, that is, satisfies equilibrium conditions (8) and (9) if and only if

it satisfies the variational inequality problem:

m∑

i=1

n∑

j=1

(π̂i(Q
∗) + w1

j cij(Q
∗
ij) + w2

j tij(Q
∗
ij) − λ∗

j) × (Qij − Q∗
ij)

+
n∑

j=1

(
m∑

i=1

Q∗
ij − dj(λ

∗)) × (λj − λ∗
j) ≥ 0, ∀(Q, λ) ∈ K; (10)

equivalently, in standard form:

〈F (X∗), X − X∗〉 ≥ 0, ∀X ∈ K, (11)

where X ≡ (Q, λ), and F (X) ≡ (FQ(X), Fλ(X)) with component ij of FQ(X), denoted by

FQ(X)ij, given by:

FQ(X)ij = π̂i(Q) + w1
j cij(Qij) + w2

j tij(Qij) − λj, ∀ij,

and component j of Fλ(X), denoted by Fλ(X)j, given by:

Fλ(X)j =
m∑

i=1

Qij − dj(λ), ∀j.

The expression: 〈·, ·〉 denotes the inner product in N-dimensional Euclidean space RN where

here N = mn + n.

Proof: Assume that (Q∗, λ∗) satisfies equilibrium conditions (8) and (9). Then we have

from (8) that, for a fixed pair of supply and demand markets ij:

(π̂i(Q
∗) + w1

j cij(Q
∗
ij) + w2

j tij(Q
∗
ij) − λ∗

j) × (Qij − Q∗
ij) ≥ 0, ∀Qij ≥ 0, (12)

and from (9), that, for a fixed demand market j:

−(dj(λ
∗) −

m∑

i=1

Q∗
ij) × (λj − λ∗

j) ≥ 0, ∀λj ≥ 0. (13)
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Summing inequalities (12) over all pairs of markets ij, and summing (13) over all demand

markets j, and adding the two resulting inequalities, yields

m∑

i=1

n∑

j=1

(π̂i(Q
∗) + w1

j cij(Q
∗
ij) + w2

j tij(Q
∗
ij) − λ∗

j) × (Qij − Q∗
ij)

−
n∑

j=1

(dj(λ
∗) −

m∑

i=1

Q∗
ij)) × (λj − λ∗

j) ≥ 0, ∀(Q, λ) ∈ Rmn+n
+ , (14)

which is variational inequality (10).

Assume now that (Q∗, λ∗) ∈ K is a solution to variational inequality (10). Let λ = λ∗ and

let Qkl = Q∗
kl for all kl 6= ij, and substitute these into variational inequality (10), yielding

(π̂i(Q
∗) + w1

j cij(Q
∗
ij) + w2

j tij(Q
∗
ij) − λ∗

j) × (Qij − Q∗
ij) ≥ 0, ∀Qij ≥ 0, (15)

which, in turn, implies equilibrium conditions (8). Indeed, since if Q∗
ij > 0, then the term

following the multiplication sign in (15) can be either positive, negative, or zero, so for the

product to be nonnegative, we must have that the term preceding the multiplication sign in

(15) is zero. Hence, the first part of (8) holds true. On the other hand, if Q∗
ij = 0, then the

term after the multiplication sign in (15) is nonnegative and for the product of two terms in

(15) to be nonnegative, implies that the first term must be nonnegative, which, in turn, is

equivalent to the second part of condition (8) being satisfied.

Similarly, let Q = Q∗, and let λk = λ∗
k, for all k 6= j, and substitute into (10), yielding

−(dj(λ
∗) −

m∑

i=1

Q∗
ij) × (λj − λ∗

j) ≥ 0, ∀λj ≥ 0, (16)

which, in turn, arguing as above, implies equilibrium conditions (9). 2
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3. Qualitative Properties

In this Section, we provide some qualitative properties of the solution to variational

inequality (10). In particular, we derive existence and uniqueness results.We also investigate

properties of the function F (see (11)) that enters the variational inequality of interest here.

Since the feasible set K is not compact we cannot derive existence simply from the assump-

tion of continuity of the supply price, transportation cost and time, and demand functions.

Nevertheless, we can impose a rather weak condition to guarantee existence of a solution

pattern.

Let r = (r1, r2) ∈ R2 and denote by Ωr the rectangle in Rmn+n such that

Ωr = {(Q, λ)|0 ≤ Q ≤ r1, 0 ≤ λ ≤ r2}, (17)

where Q ≤ r1, λ ≤ r2 means that Qij ≤ r1 and λj ≤ r2 for all ij. Then Kr = K ∩ Ωr, the

intersection of original feasible set with the rectangle, is a bounded closed convex subset of

Rmn+n. Thus, the following variational inequality

〈F (Xr), X − Xr〉 ≥ 0, ∀Xr ∈ Kr, (18)

admits at least one solution Xr ∈ Kr, from the standard theory of variational inequalities,

since Kr is compact and F is continuous. Following Kinderlehrer and Stampacchia (1980)

(see also Theorem 1.5 in Nagurney (1999)), we then have:

Theorem 2

Variational inequality (10) admits a solution if and only if there exist r1 > 0, r2 > 0, such

that variational inequality (18) admits a solution Xr = (Qr, λr) in Kr with

Qr < r1, λr < r2. (19)

Proposition 1

Suppose that there exist positive constants M , N ,and R, with R > 0, such that:

π̂i(Q) + w1
jcij(Qij) + w2

j tij(Qij) > R, ∀Q, with Qij ≥ N, (20)
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dj(λ) ≤ N, ∀λ with λj > M. (21)

Then variational inequality (10) admits at least one solution.

Proof: Follows using analogous arguments as the proof of existence for Proposition 1 in

Nagurney and Zhao (1993).

Assumptions (20) and (21) are reasonable from an economics perspective, since when the

commodity shipment between a pair of markets is large, we can expect the corresponding

supply price or the generalized cost to also be large. Moreover, in the case where the

generalized price of the commodity at a demand market is high, we can expect that the

demand for the commodity will be low at that market.

We now turn to investigating uniqueness of the equilibrium, that is, a solution to varia-

tional inequality (10). We first, however, need to establish the following lemmas.

Lemma 1

Assume that the Jacobian matrices of the transportation cost and transportation time func-

tions are both positive definite, for all Q ∈ K. Then, the generalized cost function ĉ(Q) with

component ij given by w1
j cij(Qij) + w2

j tij(Qij) is strictly monotone for such Q, that is,

〈ĉ(Q1) − ĉ(Q2), Q1 − Q2〉 > 0, ∀Q1, Q2 ∈ K, Q1 6= Q2. (22)

Proof: Recall, from the standard theory of variational inequalities (see Kinderlehrer and

Stampacchia (1980) and Theorem 1.7 in Nagurney (1999)), that if the Jacobian matrix of

ĉ(Q) is positive definite over K, then ĉ(Q) is strictly monotone.

The Jacobian of ĉ(Q) can be expressed as:

∇ĉ(Q) = [∇c]
[
W 1

]
+ [∇t]

[
W 2

]
, (23)

where ∇c is the Jacobian of the transportation cost functions, ∇t is the Jacobian of the

transportation time functions, and W i; i = 1, 2 are diagonal mn × mn matrices with the
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diagonal components (wi
1, w

i
2, . . . , w

i
n) repeating m times. Note that since both the trans-

portation cost and time functions are assumed to be separable, their Jacobian matrices are

also diagonal.

Clearly, since the weights are assumed to be positive, both W 1 and W 2 are positive

definite matrices. Since the Jacobians of c and t are, by assumption, also positive definite

matrices, it follows that [∇c] [W 1] is positive definite since it is the product of two diagonal

and positive definite matrices as is [∇t] [W 2]. Finally, ∇ĉ must be positive definite, since it

is the sum of two positive definite matrices. 2

Lemma 2

Assume that π̂(Q) is strictly monotone increasing, that is, that

〈π̂(Q1) − π̂(Q2), Q1 − Q2〉 > 0, ∀Q1, Q2 ∈ K, Q1 6= Q2, (24)

d(λ) is strictly monotone decreasing, that is,

−〈d(λ1) − d(λ2), λ1 − λ2〉 > 0, ∀λ1, λ2 ∈ K, λ1 6= λ2, (25)

and that the Jacobian matrices ∇c and ∇t are positive definite over the feasible set. Then

F (X) is strictly monotone over K.

Proof: Write

〈F (X
′
) − F (X

′′
), X

′ − X
′′〉

=
m∑

i=1

n∑

j=1

(π̂i(Q
′)+w1

jcij(Q
′
ij)+w2

j tij(Q
′
ij)−λ′

j)−(π̂i(Q
′′)+w1

j cij(Q
′′
ij)+w2

j tij(Q
′′
ij)−λ′′

j ))×(Q′
ij−Q′′

ij)

+
n∑

j=1

((
m∑

i=1

Q′
ij − dj(λ

′)) − (
m∑

i=1

Q′′
ij − dj(λ

′′))) × (λ′
j − λ′′

j )

=
m∑

i=1

n∑

j=1

((π̂i(Q
′)+w1

j cij(Q
′
ij)+w2

j tij(Q
′
ij))− (π̂i(Q

′′)+w1
j cij(Q

′′
ij)+w2

j tij(Q
′′
ij))× (Q′

ij −Q′′
ij)

−
n∑

j=1

(dj(λ
′) − dj(λ

′′)) × (λ′
j − λ′′

j ). (26)
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We now argue that the right-most term in (26) is strictly greater than zero, and, hence,

F (X) is strictly monotone over K. Indeed, by assumption, we have that the demand func-

tions are strictly monotone decreasing, and we have already established in Lemma 1 that

the generalized cost functions are also strictly monotone under the assumptions of positive

definite Jacobians for the transportation cost and time functions. Finally, it is straightfor-

ward to verify that the Jacobian of π̂ is monotone. Hence, the expression(s) in (26) must be

strictly greater than zero and the conclusion follows. 2

Theorem 3: Uniqueness

Assume that π̂(Q) is strictly monotone increasing and that d(λ) is strictly monotone de-

creasing. Also, assume that ∇c and ∇t are positive definite over K. Then the equilibrium

pattern (Q∗, λ∗) satisfying variational inequality (10) is unique.

Proof: Assume that there are two distinct solutions (Q1, λ1) and (Q2, λ2) to variational

inequality (10). Then, we must have that:

m∑

i=1

n∑

j=1

(π̂i(Q
1) + w1

j cij(Q
1
ij) + w2

j tij(Q
1
ij) − λ1

j) × (Qij − Q1
ij)

+
n∑

j=1

(
m∑

i=1

Q1
ij − dj(λ

1)) × (λj − λ1
j) ≥ 0, ∀(Q, λ) ∈ K, (27)

and
m∑

i=1

n∑

j=1

(π̂i(Q
2) + w1

j cij(Q
2
ij) + w2

j tij(Q
2
ij) − λ2

j) × (Qij − Q2
ij)

+
n∑

j=1

(
m∑

i=1

Q2
ij − dj(λ

2)) × (λj − λ2
j) ≥ 0, ∀(Q, λ) ∈ K. (28)

Let (Q, λ) = (Q1, λ1) and substitute into (28) and let (Q, λ) = (Q2, λ2) and substitute

into (27). Adding the two resulting inequalities, after algebraic simplification, yields:

m∑

i=1

n∑

j=1

(π̂i(Q
1) + w1

j cij(Q
1
ij) + w2

j tij(Q
1
ij)) − (w1

j cij(Qij) + w2
j tij(Q

2
ij)) × (Q1

ij − Q2
ij)

−
n∑

j=1

(dj(λ
1) − dj(λ

2)) × (λ1
j − λ2

j) ≤ 0, (29)
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but this is in contradiction to the assumptions that the π̂ functions are strictly monotone

increasing, the demand functions d are strictly monotone decreasing, and we know from

Lemma 1 that the generalized cost functions are also strictly monotone. Hence, it follows

that (Q1, λ1) = (Q2, λ2). Thus, uniqueness has been established. 2
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4. The Dynamics

In this Section, a dynamic counterpart of the multicriteria spatial price network equilib-

rium model of Section 3 is developed. The set of stationary points coincides with the set of

solutions to a variational inequality problem.

The Dynamics of the Commodity Shipments

The dynamic model presented here assumes that the commodity shipments adjust ac-

cording to the difference between the generalized demand price and the supply price plus

the generalized cost associated with a market pair. Mathematically, we have that: For all

pairs of markets (i, j) at time τ :

Q̇ij(τ) =

{
λj(τ) − π̂i(Q(τ)) − w1

j cij(Qij(τ)) − w2
j tij(Qij(τ)), when Qij(τ) > 0,

max{0, λj(τ) − π̂i(Q(τ)) − w1
jcij(Qij(τ)) − w2

j tij(Qij(τ))}, when Qij(τ) = 0.
(30)

According to (30) the commodity shipment between a pair of supply and demand markets

will increase if the generalized demand price at the demand market exceeds the supply price

plus the generalized cost associated with shipping the commodity from the supply market.

On the other hand, the commodity shipment will decrease if the supply price at the supply

market plus the generalized cost exceeds the generalized demand price that the consumers

are paying at the demand market. Note also that (30) guarantees that the commodity

shipments can never be negative, which would violate feasibility.

The Generalized Demand Price Dynamics

The demand market generalized prices, in turn, evolve at time τ as follows:

λ̇j(τ)

{
= dj(λ(τ)) − ∑m

i=1 Qij(τ), when λj(τ) > 0,
= max{0, dj(λ(τ)) − ∑m

i=1 Qij(τ)}, when λj(τ) = 0.
(31)

According to (31), the generalized demand price of the commodity at a demand market

will increase if the demand exceeds the supply of the commodity at the demand market; it will

decrease if the supply exceeds the demand. Moreover, (31) guarantees that the generalized

price at the demand market will not be negative.
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Hence, this adjustment process is in concert with those proposed by Nagurney, Takayama,

and Zhang (1995a, b) for (single-criteria) spatial price equilibrium problems.

The Projected Dynamical System

The dynamic model described by (30) and (31) can now be rewritten as a projected dynam-

ical system (cf. Nagurney and Zhang (1996)). For definiteness, we recall some preliminaries

and the definition.

The class of ordinary differential equations of interest here takes the form:

Ẋ = ΠK(X,−F (X)), X(0) = X0 ∈ K, (32)

where K is a closed convex set, corresponding to the constraint set in a particular application,

F (X) is a vector field defined on K, and ΠK(X,−F (X)) is given by:

ΠK(X,−F (X)) = lim
δ→0

(PK(X − δF (X)) − X)

δ
(33)

and PK is the projection map:

PK(X) = arg min
z∈K

‖X − z‖. (34)

We refer to the ordinary differential equation in (32) as ODE(F,K).

Observe that the right-hand side of the ordinary differential equation (32) is associated

with a projection operator and is, hence, discontinuous on the boundary of K. Therefore,

one needs to explicitly state what one means by a solution to an ODE with a discontinuous

right-hand side.

Definition 1: Projected Dynamical System

Define the projected dynamical system (PDS) X0(t) : K×R 7→ K as the family of solutions

to the Initial Value Problem (IVP)(32) for all X0 ∈ K.

It is apparent from the definition that X0(0) = X0. In the context of the spatial price

equilibrium model, X0 = (Q0, λ0) is the initial point corresponding to the initial commodity
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shipment and price pattern. The trajectory of (32) describes the dynamic evolution of

and the dynamic interactions between the commodity shipment and the price patterns. A

projected dynamical system differs from a classical dynamical system in that the right-hand

side in (32) is discontinuous due to the explicit incorporation of the constraint set, where

recall that the constraint set here is the nonnegative orthant.

Theorem 4

The set of stationary points of the projected dynamical system (32) coincides with the set

of solutions of the variational inequality (11); equivalently, variational inequality (10).

Proof: According to the fundamental theorem of projected dynamical systems (see Nagur-

ney and Zhang (1996)), X∗ is a stationary point of the projected dynamical system (32) if

and only if it is a solution to variational inequality (11), which is equivalent to (10). 2
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5. The Discrete-Time Algorithm

In this Section, we propose a discrete-time algorithm, the Euler method, for the compu-

tation of the equilibrium pattern. The algorithm provides a discretization of the continuous

time adjustment process given in Section 4. Specifically, the Euler method is a special case

of the general iterative scheme for projected dynamical systems proposed by Dupuis and

Nagurney (1993) (see also Nagurney and Zhang (1996)). The algorithm, hence, computes a

solution to variational inequality (10) and also provides a discrete-time approximation to the

projected dynamical system (32), the stationary points of which (cf. Theorem 4) coincide

with the solutions of variational inequality (10).

Its statement in the general form for the solution of variational inequality (11) and for

the time discretization of the corresponding projected dynamical system is given by:

Xk+1 = PK(Xk − akF (Xk)), (35)

where k denotes an iteration (or time period) and {ak} is a sequence of positive scalars to

be discussed later.

In particular, in the context of the multicriteria spatial price network equilibrium problem

formulated as (10), with F as defined following (11) and the feasible set K being Rmn+n
+ , the

projection operation takes on a very simple form for computational purposes, and, hence, the

commodity shipments as well as the demand market prices can be computed at an iteration

in closed form as follows:

Qk+1
ij = max{0, ak(λ

k
j − w1

j cij(Q
k
ij) − w2

j tij(Q
k
ij) − π̂i(Q

k)) + Qk
ij}, ∀ij, (36)

and

λk+1
j = max{0, ak(dj(λ

k) −
m∑

i=1

Qk
ij) + λk

j}, ∀j. (37)

We first give the precise conditions for the general convergence theorem, present its state-

ment, and then interpret it for the Euler method applied to the spatial price equilibrium

problem. We note that the conditions are given for the general iterative scheme of Dupuis

and Nagurney (1993) where an iteration is given by:

Xk+1 = PK(Xk − akFk(X
k)) (38)
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with Fk denoting an approximation to F , which, in the case of the Euler method is: Fk = F .

Assumption 1

Fix an initial condition X0 ∈ K and define the sequence {Xk} by (38). Assume the following

conditions.

1.
∑∞

k=1 ak = ∞, ak > 0, ak → 0 as k → ∞.

2. d(Fk(X), F̄ (X)) → 0 uniformly on compact subsets of K as k → ∞, where d(X, A) =

inf{‖X − y‖, y ∈ A} and where the bar over the F denotes closure.

3. Define φy to be the unique solution to Ẋ = ΠK(X,−F (X)) that satisfies φy(0) = y ∈ K.

The ω−limit set

∪y∈K ∩t≥0 ∪s≥t {φy(s)}

is contained in the set of stationary points of Ẋ = ΠK(X,−F (X)).

4. The sequence {Xk} is bounded.

5. The solutions to Ẋ = ΠK(X,−F (X)) are stable in the sense that given any compact set

K1 there exists a compact set K2 such that ∪y∈K∩K1 ∪t≥0 {φy(t)} ⊂ K2.

The assumptions are phrased as they are because they describe more or less what is

needed for convergence, and because there are a number of rather different sets of conditions

that imply the assumptions, depending on the application (see, e.g., Nagurney and Zhang

(1996)).

Theorem 5 (Dupuis and Nagurney (1993))

Let S denote the solutions to the variational inequality (11), and invoke Assumption 1 and

Assumption 2, where

Assumption 2

There exists a B < ∞ such that the vector field −F : Rmn+n 7→ Rmn+n satisfies the linear
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growth condition: ‖ − F (X)‖ ≤ B(1 + ‖X‖) for X ∈ K, and also

〈−F (X) + F (y), X − y〉 ≤ B‖X − y‖2 (39)

for all X, y ∈ K.

Suppose {Xk} is the scheme generated by (38). Then d(Xk, S) → 0 as k → ∞.

Corollary 1 (Dupuis and Nagurney (1993))

Assume the conditions of Theorem 5, and also that S consists of a finite set of points. Then

limk→∞ Xk exists and equals a solution to the variational inequality (11).

We now interpret the meaning of Assumptions 1 and 2 in the context of the spatial price

equilibrium problem, in order to establish the convergence of the Euler-type method, which

is a special case of the general iterative scheme of Dupuis and Nagurney (1993).

In order to establish convergence of the Euler method we need to adopt the following

assumption:

Assumption 3

Assume that there exist sufficiently large constants Md, MQ, and Mλ, such that

dj(λ) ≤ Md, ∀λ ∈ Rn
+, (40)

λj ≤ π̂i(Q) + w1
j cij(Qij) + w2

j tij(Qij), if Qij ≥ MQ, (41)

dj(λ) ≤
m∑

i=1

Qij, if λj ≥ Mλ, (42)

for any j and i.

The convergence of the Euler method is stated in the following theorem.

Theorem 6

Suppose that the supply price functions are strictly monotone increasing, the demand func-

tions are strictly monotone decreasing, and the Jacobians of the transportation cost and time
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functions are positive definite over the feasible set. Let {ak} be a sequence of positive real

numbers that satisfies

lim
k→∞

ak = 0 (43)

∞∑

k=1

ak = ∞. (44)

In addition, assume that Assumption 3 holds true. Then the Euler method given by (35)

converges to the unique multicriteria spatial price network equilibrium pattern satisfying con-

ditions (8) and (9).

Proof: In view of Theorem 5 above, we need to verify that Assumptions 1 and 2 above are

satisfied here.

First, note that, under strict monotonicity, as established in Lemma 2, the vector field

F (X) that governs the projected dynamical system (32) satisfies the linear growth condition,

namely,

〈−F (X
′
) + F (X

′′
), X

′ − X
′′〉 ≤ 0

≤ B‖X ′ − X
′′‖2, (45)

for any positive B.

The first part of Assumption 1 of Dupuis and Nagurney (1993) is automatically satis-

fied by the selection of the appropriate ak sequence and the second part of Assumption 1

automatically holds for the Euler method (see also Nagurney and Zhang (1996)).

The third and fifth parts of Assumption 1 are also satisfied (see Propositions 4.1 and 4.2

in Nagurney and Zhang (1996)) since F is strictly monotone.

All that we need to establish now is the fourth part of Assumption 1, that is, we need to

show that the sequence generated by the Euler method is bounded. Assumption 3 guarantees

that the sequence generated is bounded following the proof of convergence of the Euler

method (see Theorem 7.11 in Nagurney and Zhang (1996)) for the traffic network equilibrium

problem with given demand functions.

The proof is complete. 2
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6. Numerical Examples

In this Section, we present numerical examples for illustrative purposes. Specifically, we

consider three spatial price equilibrium problems in which there are two supply markets and

two demand markets.

In these examples the supply price functions, the transportation cost and time, and

demand functions are identical and are given, respectively, by:

π1(s) = 5s1 + s2 + 2, π2(s) = 2s2 + 1.5s1 + 1.5,

so that

π̂1(Q) = 5
2∑

j=1

Q1j +
2∑

j=1

Q2j + 2, π̂2(Q) = 2
2∑

j=1

Q2j + 1.5
2∑

j=1

Q1j + 1.5,

t11(Q11) = Q11, t12(Qij) = 2Q12 + 3.5,

t21(Q21) = 3Q21 + 16.25, t22(Q22) = 2Q22 + 11.5,

c11(Q11) = 2Q11 + 5, c12(Q12) = Q12 + 2,

c21(Q21) = 3Q21 + 4, c22(Q22) = 5Q22 + 1,

d1(λ) = −2λ1 − 1.5λ2 + 1128.75, d2(λ) = −4λ2 − λ1 + 1241.

The weights w1
j and w2

j for j = 1, 2 differ in each example. The generalized costs were

constructed according to (6). Hence, these problems illustrate how the equilibrium pattern

changes as the weights change.

The Euler method for all the examples was initialized as follows: the commodity shipment

pattern Q1 was set to zero as were the demand prices λ1. The {ak} sequence that we utilized

was: .1 × {1, 1
2
, 1

2
, 1

3
, 1

3
, 1

3
, . . .}. The convergence criterion used was: |Qk+1 − Qk| ≤ ε and

|λk+1 − λk| ≤ ε with ε = .0001. Hence, the Euler method was considered to have converged

when the commodity price and shipment pattern had not changed very much between two

iterations and had, effectively, reached a stationary; equivalently, an equilibrium point.

We now report the computed results for the examples. The algorithm was coded in FOR-

TRAN and the system used was an IBM SP2 located at the Computer Science Department
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at the University of Massachusetts at Amherst. The CPU time is reported exclusive of input

and output times.

Example 1

In the first example, we assumed that the consumers in each of the two demand markets

weighted travel time and travel cost in the same way, and equally. The weights were: w1
1 =

w2
1 = w1

2 = w2
2 = 0.5.

The Euler method converged in 729 iterations and required .01 seconds of CPU time.

The computed equilibrium commodity shipment pattern was:

Q∗
11 = 44.194, Q∗

12 = 0.000, Q∗
21 = 51.475, Q∗

22 = 7.914,

which induced the equilibrium supply pattern:

s∗1 = 44.194, s∗2 = 59.389.

The computed demand price pattern was:

λ∗
1 = 351.158, λ∗

2 = 220.484.

The equilibrium conditions (8) and (9) were satisfied with good accuracy. Indeed, only

the commodity shipment between supply market 1 and demand market 2 was zero. In this

case, the supply price at supply market 1 incurred at the computed equilibrium plus the

generalized cost between supply market 1 and demand market 2 exceeded the generalized

price of the commodity at demand market 2 by 64.24. For the other pairs of supply and

demand markets, which were characterized by positive commodity shipments, the difference

between the supply price at a supply market plus the generalized cost between the pair of

supply and demand markets and the generalized price at the demand market was 0.0.

Also, in terms of equilibrium condition (9), for the first demand market, the sum of

the commodity shipments into it was equal to 95.7, which was the demand incurred at the

demand market at the computed equilibrium price pattern. In addition, the sum of the

computed equilibrium commodity shipments into the second demand market was equal to
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7.91, which was equal to the demand at that demand market evaluated at the computed

equilibrium price pattern.

Example 2

In the second example, we now modified the weights as follows: w1
1 = 0.0, w2

1 = 1.0,

w1
2 = 1.0, w2

2 = 0.0. Hence, in demand market 1 the consumers are transportation time-

sensitive and not transportation cost-sensitive, whereas in demand market 2 the consumers

are the opposite.

The Euler method converged in 865 iterations and required .01 seconds of CPU time.

The computed equilibrium commodity shipment pattern was:

Q∗
11 = 48.629, Q∗

12 = 0.000, Q∗
21 = 49.068, Q∗

22 = 6.797,

which induced the equilibrium supply pattern:

s∗1 = 48.629, s∗2 = 55.865.

The computed demand price pattern was:

λ∗
1 = 359.647, λ∗

2 = 221.143.

Since the consumers in demand market 1 are now more transportation time-sensitive then

they were in Example 1, the commodity shipment on the faster (with the lower transportation

time function) “link” (between supply market 1 and demand market 1) increased as compared

to the corresponding equilibrium commodity shipment in Example 1. As regards demand

market 2, in which consumers are now more transportation cost-sensitive than they were

in Example 1, the commodity shipment between supply market 2 and demand market 2

decreased.

As in Example 1, there was no trade between supply market 1 and demand market 2. For

this pair of markets, the supply price plus the generalized cost now exceeded the generalized

price by 81.865. The analogous difference for the three other market pairs, for which there

was trade, i.e., a positive commodity shipment, was 0.0, signifying that equilibrium condition
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(8) was satisfied to good accuracy, In addition, since the generalized prices were positive

at both demand markets, the sum of the commodity shipments into each demand market

was (essentially) equal to the computed demand at the respective market at the computed

equilibrium price pattern. Indeed, for demand market 1, the sum of commodity shipments

into it was 97.7, which was the computed demand. Also, the sum of the commodity shipments

into demand market 2 was 6.8 which was equal to the incurred demand at the demand market

at the equilibrium price pattern.

Example 3

In the third example, we now modified the weights as follows: w1
1 = 1.0, w2

1 = 0.0,

w1
2 = 0.0, w2

2 = 1.0. Hence, in demand market 1 the consumers are now transportation cost-

sensitive and not transportation time-sensitive, whereas in demand market 2 the consumers

are the opposite.

The Euler method converged in 973 iterations and required .01 seconds of CPU time.

The computed equilibrium commodity shipment pattern was:

Q∗
11 = 40.369, Q∗

12 = 0.000, Q∗
21 = 53.435, Q∗

22 = 9.791,

which induced the equilibrium supply pattern:

s∗1 = 40.360, s∗2 = 63.226.

The computed demand price pattern was:

λ∗
1 = 352.798, λ∗

2 = 219.598.

Since the generalized cost now between supply market 2 and demand market 1, which

now consists of only the transportation cost has now been reduced either relative to that

encountered by the consumers in demand market 1 in Example 1 or Example 2, the commod-

ity shipment Q∗
21 has increased relative to both equilibrium commodity shipments computed

between that pair of markets in the two preceding examples. As regards demand market

2, however, which is now more transportation time-sensitive than in the preceding two ex-

amples, the overall commodity shipments into that demand market decrease due to the

relatively high transportation times for the commodity.
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As in the two preceding examples, there was no trade between supply market 1 and

demand market 2, since the supply price at supply market 1 plus the generalized cost between

supply market 1 and demand market 2 exceeded the generalized price at demand market

2 by 50.97. The analogous difference for the other market pairs was 0.0, signifying that

equilibrium condition (8) held with good accuracy.

In terms of equilibrium condition (9), since the generalized price of the commodity was

positive at both demand markets, the computed sum of commodity shipments into each

demand market was approximately equal to the incurred demand at the market at the

computed equilibrium price pattern. Indeed, for demand market 1, the sum of the commodity

shipments was 93.8, which was also the incurred demand for that demand market, whereas

for demand market 2, the sum of the commodity shipments into it was 9.8, which was the

incurred demand at the computed equilibrium price pattern.
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7. Summary and Conclusions

In this paper, we have developed a multicriteria spatial price network equilibrium model

and studied it from two perspectives: a static one, with a focus on the equilibrium, and a

dynamic one, through a proposed tatonnement process for the evolution of the commodity

shipment and price patterns. The model handles consumers who weight the transportation

cost and the transportation time associated with the commodity shipment in an individual

fashion.

The statics were studied using the finite-dimensional variational inequality formulation

of the governing equilibrium conditions whereas the dynamic model was formulated as a

projected dynamical system. This is the first time that a multicriteria network equilibrium

problem was treated from two such perspectives.

We established that the set of stationary points of the projected dynamical system coin-

cides with the set of solutions of the variational inequality problem. In addition, we proved

both existence and uniqueness of the multicriteria spatial price equilibrium pattern under

reasonable conditions. These results are sharper than those that have been obtained recently

for multicriteria traffic network equilibrium problems.

We provided a discrete-time algorithm, the Euler method, for the approximation of the

trajectory, established convergence, and applied the algorithm to several examples for illus-

trative purposes.
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