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Abstract

In this paper, we establish the equivalence between the solutions
to an evolutionary variational inequality and the critical points
of a projected dynamical system in infinite–dimensional spaces.
We then present an algorithm, with convergence results, for the
computation of solutions to evolutionary variational inequalities
based on a discretization method and with the aid of projected
dynamical systems theory. A numerical traffic network example
is given for illustrative purposes.
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1 Introduction

Numerous problems in engineering, in operations research and the man-
agement sciences, as well as in economics and finance involve interac-
tions among decision-makers and the competition for resources. In such
problems, the concept of equilibrium plays a central role and provides
a valuable benchmark against which an existing state of such complex
systems can be compared. Examples, par excellence, of such equilibrium
problems include: congested urban transportation networks, the Inter-
net, multi-sector, multi-instrument financial equilibrium problems as well
as a variety of decentralized supply chain networks (see, e.g., [33], [34],
and [25]).

Various methodologies have been developed to formulate and solve
such problems, which are often large-scale. For example, Dafermos [11]
showed that the traffic network equilibrium conditions as formulated by
Smith [39] were a finite-dimensional variational inequality and then uti-
lized the theory to establish both existence and uniqueness results of
the equilibrium traffic flow pattern as well as to propose an algorithm
with convergence results (see also [12]). Finite-dimensional variational
inequality theory has been applied to-date to the wide range of equilib-
rium problems noted above, as well as to game theoretic problems, such
as oligopolistic market equilibrium problems (see, e.g., [24], [13], and [34],
and the references therein).

As important as the study of the equilibrium state is that of the
study of the underlying dynamics or disequilibrium behavior of such sys-
tems. Note that since such problems typically involve more than a single
decision-maker who is faced with constraints (such as, for example, bud-
getary, conservation of flow, nonnegativity assumptions on the variables,
among others) classical dynamical systems theory is no longer sufficient
for the formulation and solution of such problems. Towards that end,
Dupuis and Nagurney [23] introduced a new class of dynamical system
with a discontinuous right-hand side and provided the foundational the-
ory for such projected dynamical systems . Moreover, they established,
under suitable conditions, that the set of stationary points of a projected
dynamical system coincided with the set of solutions of the associated
finite-dimensional variational inequality. This connection allowed for the
investigation of the disequilibrium behavior preceding the attainment of
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the equilibrium. Zhang and Nagurney [42] (see also [36]), subsequently,
developed the stability theory for finite-dimensional projected dynami-
cal systems. Such results are relevant since without such a theory the
concept of equilibrium may not be valid.

Isac and Cojocaru ([28], [29]) initiated the systematic study of pro-
jected dynamical systems on infinite-dimensional Hilbert spaces in 2002
with the fundamental issue of existence of solutions to such problems
answered by Cojocaru [6] in her thesis (see also Cojocaru and Jonker
[7]).

Evolutionary variational inequalities, which are also infinite-dimen-
sional, were originally introduced by Lions and Stampacchia [31] and by
Brezis [3] in order to study problems arising principally from mechanics.
They provided a theory for the existence and uniqueness of the solution
of such problems. Steinbach [40], on the other hand, studied an obstacle
problem with a memory term as a variational inequality problem and
established existence and uniqueness results under suitable assumptions
on the time-dependent conductivity. Daniele, Maugeri, and Oettli (cf.
[19] and [20]), motivated by dynamic traffic network problems, introduced
evolutionary (time-dependent) variational inequalities to this application
domain and to several others as we shall highlight later.

As noted by Cojocaru, Daniele, and Nagurney [8], the theory and ap-
plication of evolutionary variational inequalities was developing in par-
allel to that of projected dynamical systems. That reference reviews the
theoretical foundations of both of these methodologies and surveys the
historical developments. Moreover, it makes explicit for the first time
the connection between projected dynamical systems on Hilbert spaces
and evolutionary variational inequalities. Finally, the authors provide an
illustrative dynamic traffic network example. In [9], the same authors
established further results on the unified theory of projected dynamical
systems and evolutionary variational inequalities in the context of double-
layered dynamics. Moreover, stability analysis results were provided for
the curve of equilibria.

This paper expands upon the theme of that first and second joint
paper of ours – that of the synthesis and expansion of the theories of
projected dynamical systems and evolutionary variational inequalities to
enable the richer modeling and rigorous analysis of a plethora of complex
dynamic problems subject to constraints. In particular, here we provide
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a new proof of the equivalence between solutions to an evolutionary vari-
ational inequality and the critical points of a projected dynamical system
in infinite dimensions. In addition, we propose a new algorithm for the
computation of solutions to evolutionary variational inequalities that ex-
ploits the equivalence. Convergence results are also provided.

We now recall some fundamentals and results of our prior work, which,
along with the preliminary results in Section 2, will allow us to establish
the main contributions of this paper.

Let K be a convex polyhedral set in Rn, F : K → Rn and let us
introduce the operator

ΠK : R×K→ Rn

defined by means of the directional derivative in the sense of Gâteaux

ΠK(x,−F (x)) = lim
t→0+

PK(x− tF (x))− x

t

of the projection operator PK : Rn → K given by

‖PK(z)− z‖ = inf
y∈K

‖y − z‖.

In [23] Dupuis and Nagurney considered the differential equation with a
discontinuous right–hand side

d x(t)

d t
= ΠK(x(t),−F (x(t)))

and the associated Cauchy problem




d x(t)

d t
= ΠK(x(t),−F (x(t)))

x(0) = x0 ∈ K,

(1)

whose solutions (see also [42]) they called projected dynamical systems
(PDS). A similar idea, in different contexts, can be found in the papers
[10], [27], [1] and in the book [2], as we shall see in Remark 3.1. In
[22] and [23] existence theorems of an absolutely continuous solution are
shown, provided that F is assumed to be Lipschitz continuous and with
linear growth.

The key trait of a projected dynamical system was first found by
Dupuis and Nagurney in [23]. In particular, the authors proved the
following theorem.
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Theorem 1.1 The critical points of equation

d x(t)

d t
= ΠK(x(t),−F (x(t))), (2)

namely, the solutions such that
d x(t)

d t
≡ 0, are the same as the solutions

to the variational inequality

Find x ∈ K : 〈F (x), y − x〉 ≥ 0, ∀y ∈ K.

As noted above, variational inequalities in the finite–dimensional case
have been used to formulate a spectrum of problems arising in engineer-
ing, operations research and the management sciences, transportation
science, economics, and finance, as, for example, in the case of the traffic
network equilibrium, spatial price equilibrium, oligopolistic market equi-
librium, and financial equilibrium problems. All these applications have
also benefited from the theory of projected dynamical systems in terms
of analysis and computation (see [33], [8], and the references therein).

As also noted above, projected dynamical systems have been consid-
ered in the framework of Hilbert spaces (see [6], [7], [8], [26] and [37]).
We now provide a definition of a projected dynamical system.

Definition 1.1 A projected dynamical system is given by a mapping Ψ :
R+ ×K→ K which solves the initial value problem:

Ψ̇(t, x) = ΠK(Ψ(t, x),−F (Ψ(t, x))), Ψ(0, x) = x ∈ K.

In [6] and [7] the following theorem has been proved.

Theorem 1.2 Let H be a Hilbert space and let K ⊂ H be a nonempty,
closed and convex subset. Let F : K → H be a Lipschitz continuous
vector field with Lipschitz constant b. Let x0 ∈ K and L > 0 such that
‖x0‖ ≤ L. Then the initial value problem (1) admits a unique solution
in the class of the absolutely continuous functions on the interval [0, l]

where l =
L

‖F (x0)‖+ b L
.

In fact, in [6], the author shows that solutions to problem (1) on
Hilbert spaces can be extended to R+, so Definition 1.1 also holds in the
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context of Hilbert spaces. The important consequence of such a theory
in the Hilbert space is that we can establish a connection between the
solutions to an evolutionary variational inequality and the stationary
solutions to projected dynamical equations in Hilbert spaces (see [6] and
[7]).

For completeness and definiteness, we now provide some additional
citations to evolutionary variational inequalities and applications. In [19]
and [20] Daniele, Maugeri, and Oettli formulated time–dependent traffic
equilibria as evolutionary variational inequalities. In [17] Daniele and
Maugeri developed a time–dependent spatial equilibrium model (price
formulation) in which bounds over the time on the supply and demand
market prices and on the commodity shipments between supply and de-
mand market pairs were imposed. Moreover, the authors addressed the
time–dependent spatial price equilibrium problem in which the variables
were commodity shipments. In [16] Daniele introduced a time–dependent
financial network model consisting of multiple sectors, each of which seeks
to determine its optimal portfolio given time–depending supplies of the
financial holding.

Cojocaru, Daniele, and Nagurney in [8] showed that the all the above
considered problems can be formulated into a unified definition as we
recall below. We consider the nonempty, convex, closed, bounded subset
of the Hilbert space L2([0, T ],Rq) given by

K =
⋃

t∈[0,T ]

{
u ∈ L2([0, T ],Rq) : λ(t) ≤ u(t) ≤ µ(t) a.e. in [0, T ];

q∑
i=1

ξji ui(t) = ρj(t) a.e. in [0, T ], (3)

ξji ∈ {0, 1} , i ∈ {1, . . . , q} j ∈ {1, . . . , l}
}

.

Let λ, µ ∈ L2([0, T ],Rq), ρ ∈ L2([0, T ],Rl) be convex functions. For
chosen values of the scalars ξji, of the dimensions q and l, and of the con-
straints λ, µ, we obtain each of the previous above–cited model constraint
set formulations (see [8]), as follows:

• for the traffic network problem (see [19], [20]), we let ξji ∈ {0, 1},
i ∈ {1, . . . , q}, j ∈ {1, . . . , l}, and λ(t) ≥ 0 for all t ∈ [0, T ];
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• for the quantity formulation of spatial price equilibrium (see [14]),
we let q = n + m + nm, ξji ∈ {0, 1}, i ∈ {1, . . . , q}, j ∈ {1, . . . , l};
µ(t) large and λ(t) = 0, for any t ∈ [0, T ];

• for the price formulation of spatial price equilibrium (see [15] and
[17]), we let q = n + m + mn, l = 1, ξji = 0, i ∈ {1, . . . , q},
j ∈ {1, . . . , l}, and λ(t) ≥ 0 for all t ∈ [0, T ];

• for the financial equilibrium problem (see [16]), we let q = 2mn+n,
l = 2m, ξji = {0, 1} for i ∈ {1, . . . , n}, j ∈ {1, . . . , l}; µ(t) large
and λ(t) = 0, for any t ∈ [0, T ].

Then, setting

¿ Φ, u À=

∫ T

0

〈Φ(t), u(t)〉 dt

where Φ ∈ L2([0, T ],Rq)∗ and u ∈ L2([0, T ],Rq), if F is given such that
F : K → L2([0, T ],Rq), we have the following standard form of the
evolutionary variational inequality:

find u ∈ K : ¿ F (u), v − u À≥ 0, ∀v ∈ K. (4)

In [20] sufficient conditions that ensure the existence of a solution to (4)
are given.

Now the following general result holds in Hilbert spaces (see [6], [7],
[26] and [37]), as we shall prove in Section 4.

Theorem 1.3 Assume that the hypotheses of Theorem 1.2 hold. Then
the solutions to the variational inequality (4) are the same as the critical
points of the projected differential equation (PrDE) (2), that is, the points
x ∈ K such that

ΠK(x(t),−F (x(t))) = 0,

and viceversa.

As a consequence, and by choosing the Hilbert space H to be L2([0, T ],Rp),
we find that the solutions to the evolutionary variational inequality:

find u ∈ K :

∫ T

0

〈F (u(t)), v(t)− u(t)〉 dt ≥ 0, ∀v ∈ K (5)
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are the same as the critical points of the equation:

d u(t, τ)

d τ
= ΠK(u(t, τ),−F (u(t, τ))), (6)

that is, the points such that

ΠK(u(t, τ),−F (u(t, τ))) ≡ 0 a.e. in [0, T ],

which are obviously stationary with respect to τ.
As noted in [8], the meaning of the two “times” in (6) needs to be

well understood. Intuitively, at each instant t ∈ [0, T ], the solution of
the evolutionary variational inequality (5) represents a static state of the
underlying system. As t varies over [0, T ], the static states describe one
(or more) curves of the equilibria. In contrast, τ here is the time that
describes the dynamics of the system until it reaches one of the equilibria
of the curve.

Section 2 is dedicated to the presentation of additional definitions and
preliminary results that we need in the subsequent sections. In Section
3 we present a self–contained proof of Theorem 1.3 and we reference
similar existing results. In Section 4 we show how a solution to the
evolutionary variational inequality (5) can be computed with the aid of
the projected dynamical systems theory. In Section 5 we present a proof
of the convergence of the algorithm. In Section 6 we present a numerical
dynamic traffic network example that is distinct from the one in [8].

2 Definitions and Preliminary Results

Following the paper by J. Gwinner [26], let us recall some well-known
objects of convex analysis which we need in what follows.
Let H be a real Hilbert space, whose inner product we denote by 〈·, ·〉.

Definition 2.1 For a subset M ⊂ H the polar M0 is defined by

M0 = {ξ ∈ H : 〈ξ, x〉 ≤ 1, ∀x ∈ M} .

For a cone C Definition 2.1 simplifies into

C0 = C− = {ξ ∈ H : 〈ξ, x〉 ≤ 0, ∀x ∈ C} .
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Definition 2.2 Let K be a nonempty, closed, convex subset of H. For all
z ∈ K we define the support cone (or tangent cone, or contingent cone)
to K at x as the set

TK(x) =
⋃

λ>0

λ (K− x).

Definition 2.3 We define the normal cone to K at x as the set

NK(x) = {ξ ∈ H : 〈ξ, z − x〉 ≤ 0, ∀z ∈ K} .

Proposition 2.1 We then have the following result:

(TK(x))0 = NK(x) = (TK(x))− .

Proof. It is clear (see [2], Proposition 2, page 220) that

(TK(x))0 ⊆ NK(x) = {ξ ∈ H : 〈ξ, z − x〉 ≤ 0, ∀z ∈ K} ,

because z− x ∈ TK(x), ∀z ∈ K. Viceversa, NK(x) ⊆ (TK(x))0 , because if
y = lim

n
λn(zn − x), zn ∈ K, λn ≥ 0 ∀n ∈ N, for each ξ ∈ NK(x) :

〈ξ, λn(zn − x)〉 ≤ 0, ∀n ∈ N

and, hence,

〈ξ, y〉 ≤ 0, ∀y ∈ TK(x),

and the assertion is proved. 2

The set TK(x) is clearly a closed convex cone with vertex 0 and it is
the smallest cone C whose translate x + C has vertex x and contains K.
The utility of the support cone derives from the following result:

Theorem 2.1 If we denote by PK = Proj (K, ·) the projection onto K of
an element of H, then:

PK(x + λh) = x + λPTK(x)h + o(λ)

for any x, h, and λ > 0.

Proof. See [41] Lemma 4.6 page 300. 2
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Corollary 2.1 If we define the projection of h at x with respect to K as
the directional derivative in the sense of Gâteaux

ΠK(x, h) = lim
λ→0+

PK(x + λh)− x

λ
,

then
ΠK(x, h) = PTK(x)h,

namely, ΠK(x, h) is the projection of h on the support cone TK(x).

Definition 2.4 The set of unit inward normals to K at x is defined by

nK(x) = {v : ‖v‖ = 1 and 〈v, x− y〉 ≤ 0, ∀y ∈ K} .

Then, using Proposition 2.1, we have that

Proposition 2.2 The set of unit normals to K at x satisfies:

nK(x) = ∂B(0, 1) ∩ − (TK(x))0 ,

where ∂B(0, 1) = {z : ‖z‖ = 1} .

Now, since in infinite dimensions the interior as well as the relative alge-
braic interior of a convex set can be empty, we introduce the concepts of
quasi interior of K, which may be nonempty.

Definition 2.5 We call the quasi interior of K (denoted by qi K) the
set of those x ∈ K for which TK(x) = H.

Definition 2.6 We define the quasi boundary of a closed convex set K
(denoted by qbdry K) as the set K \ qi K.

Then the following proposition holds.

Proposition 2.3 x ∈ qbdry K if and only if nK(x) 6= ∅.
Proof. Let x ∈ qbdry K. Then, by virtue of Proposition 2.1 in [4], there
exists a ξ 6= 0 such that 〈ξ, x〉 ≤ 〈ξ, y〉, ∀y ∈ K, and, hence:

〈 ξ

‖ξ‖ , x− y〉 ≤ 0 ∀y ∈ K.
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Viceversa, if nK(x) is nonempty, then there exists a ξ with ‖ξ‖ = 1 such
that 〈ξ, x− y〉 ≤ 0, ∀y ∈ K. Then x /∈ qi K, because:
if x ∈ qi K, then 〈ξ, x− y〉 ≤ 0, ∀y ∈ K implies 〈ξ, λ(x− y)〉 ≤ 0, ∀λ > 0
and ∀y ∈ K. If y ∈ TK(x), then we can write y = lim

n
λn(zn − x) and

so 〈ξ, λn(zn − x)〉 ≤ 0, ∀n ∈ N. When n → ∞, then we get 〈ξ, y〉 ≤ 0,
∀y ∈ TK(x). Therefore, if x ∈ qi K, then TK(x) = H and, hence, 〈ξ, y〉 ≤ 0
∀y ∈ H. Choosing −y ∈ H, we get 〈ξ,−y〉 ≤ 0, that is, 〈ξ, y〉 = 0 ∀y ∈ H.
Choosing y = ξ, we obtain ‖ξ‖ = 0, and then ξ = 0, which is an absurdity
since ‖ξ‖ = 1. 2

Following an idea of Dupuis [21] on Euclidean space, later used in [23]
for the theory of finite-dimensional PDS, we present next a generalization
of the geometric interpretation of the operator ΠK on infinite–dimensional
H–spaces. A similar result, also in infinite–dimensional spaces, can be
found in Isac and Cojocaru [29] (see also [26] and [38]).

Theorem 2.2

1. If x ∈ qi K, then for any h ∈ H it follows that: ΠK(x, h) = h;

2. If x ∈ qbdry K, then for any v ∈ H\TK(x) there exists n∗(x) ∈ nK(x)
such that

β(x) = −〈v, n∗(x)〉 > 0,

ΠK(x, v) = v + β(x) n∗(x).

Proof. If x ∈ qi K, then TK(x) = H, by definition of qi K, and it follows
that

ΠK(x, h) = PTK(x)h = PHh = h.

If x ∈ qbdry K, then setting v̂ = ΠK(x, v), we get:

v̂ = ΠK(x, v) = PTK(x)v,

namely:

〈v − v̂, w − v̂〉 ≤ 0, ∀w ∈ TK(x).

Since TK(x) is a cone with vertex 0, choosing, in turn, w = 0 and w = 2v̂,
we get:

〈v − v̂, v̂〉 = 0. (7)
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Moreover, if we set w = y + v̂ with y ∈ TK(x), we obtain

〈v − v̂, y + v̂ − v̂〉 = 〈v − v̂, y〉 ≤ 0, ∀y ∈ TK(x)

and, hence,
v − v̂ ∈ (TK(x))0 . (8)

Since v 6= v̂, because v ∈ H \ TK(x) and v̂ ∈ TK(x) by assumption, then
the relation (8) implies the existence of some n∗ ∈ n(x) and β > 0 such
that

v̂ − v = β n∗.

Moreover, the orthogonality 〈n∗, v̂〉 = 0 implies

β = −〈v, n∗〉,
and the assertion is proved. 2

We also obtain the following characterization (see also [26]).

Corollary 2.2 Let x ∈ K. Then for any v ∈ H:

ΠK(x, v) = Pv−NK(x)(0) = (v −NK(x))# .

Proof. If x ∈ qi K, from Theorem 2.2 we derive

ΠK(x, v) = v.

On the other hand, if x ∈ qi K, by definition, TK(x) = H and NK(x) =
(TK(x))− = H− = {0} . Let us suppose now that x ∈ qbdry K. From
Theorem 2.2 we know that

v − v̂ ∈ (TK(x))0 = NK(x),

where v̂ = ΠK(x, v). Then we get

v̂ ∈ v −NK(x).

Since v̂ = ΠK(x, v) = PTK(x)v, then we have v̂ ∈ TK(x) and, hence,

〈z, v̂〉 ≤ 0, ∀z ∈ (TK(x))0 = NK(x). Taking into account (7), we get

〈v̂, v − v̂ − z〉 ≥ 0, ∀z ∈ NK(x)

and, thus, v̂ = Pv−NK(x)(0). 2
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3 Proof of Theorem 1.3

We shall now present a new proof of Theorem 1.3, in light of our results
in the previous sections. Theorem 1.3 is crucial in the study of projected
dynamics and perturbed equilibria. It also has an interesting history: the
first proof of this theorem appears in [23] in Euclidean space. In more
general spaces, such as Hilbert spaces (finite- or infinite-dimensional),
there already exist several proofs of this result, as one can see in [7],
Theorem 2.2 [29], Proposition 6. However, we give here a novel proof,
independent of the previous ones (see [26]).

Let x∗ be a solution to the variational inequality

〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈ K. (9)

Using the characterization of the solution by means of the projection, we
get

x∗ = PK (x∗ − λF (x∗)) , ∀λ > 0.

Hence,

ΠK(x∗,−F (x∗)) = lim
λ→0+

PK(x∗ − λF (x∗))
λ

= lim
λ→0+

x∗ − x∗

λ
= 0.

Viceversa, let x∗ be a stationary point of the projected dynamical system,
namely, x∗ is such that

0 = ΠK(x∗,−F (x∗)) = PTK(x)(−F (x∗)).

First, let us consider the case when x∗ ∈ qbdry K and −F (x∗) /∈ TK(x).
By virtue of Theorem 2.2, there exist β∗ > 0 and n∗ ∈ nK(x∗) such that:

F (x∗) = β∗ n∗.

Since n∗ ∈ nK(x∗), we have

〈β∗ n∗, x∗ − y〉 ≤ 0, ∀y ∈ K

and, therefore,

〈F (x∗), y − x∗〉 ≥ 0, ∀y ∈ K.
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Let us consider now the case when x∗ ∈ qbdry K and −F (x∗) ∈ TK(x∗).
In this case we get

0 = ΠK(x,−F (x∗)) = PTK(x∗)(−F (x∗)) = −F (x∗)

and, hence, the variational inequality (9) is satisfied.
Finally, if x∗ ∈ qi K, then TK(x∗) coincides with H and we get

0 = PH(−F (x∗)) = −F (x∗)

as above. 2

Remark 3.1 By virtue of Corollary 2.2, we derive that

d ẋ(t)

d t
= ΠK(x,−F (x)) = P−F (x)−NK(x)(0) =

=

{
v̂ ∈ − (F (x) + NK(x)) : ‖v̂‖ = min

y∈−(F (x)+NK(x))
‖y‖

}
.

Then, the initial value problem





d ẋ(t)

d t
= ΠK(x(t),−F (x(t)))

x(0) = x0 ∈ K
(10)

consists in finding the “slow” solution (the solution of minimal norm) to
the differential variational inequality

ẋ(t) ∈ − (NK(x(t)) + F (x(t)))

under the initial condition
x(0) = x0.

Since
ΠK(x(t),−F (x(t))) = PTK(x(t))(−F (x(t))),

problem (10) is equivalent to finding the “slow” solution to the problem




ẋ(t) ∈ PTK(x)(−F (x(t)))

x(0) = x0

(11)
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where the operator F is single–valued.
Then, as already observed in the Introduction, the results of [2] Chapter
6, Section 6, and of [1] Theorem 2, can be applied to our projected
dynamical system.

Remark 3.2 It is worth noting that the variational inequality (4) is
equivalent to the problem:

find u ∈ K : 〈F (u(t)), v(t)− u(t)〉 ≥ 0, ∀v ∈ K, a.e. in [0, T ]. (12)

Moreover, this remark is interesting because it means that we may have
the possibility of applying to (12), among others, the direct method (that
is, finding the explicit closed form solution) in order to find solutions to
the variational inequality (4). We illustrate this in the case of a numerical
example in Section 6 (see also [18], [32], and [16]).

4 Computational Procedure

We now consider the time–dependent variational inequality (5) where
K is given by (3). From Remark 3.2, it is equivalent to (12). Let the
operator F be strictly monotone (see, e.g., [30] and [33]), so that the
solution u is unique and assume that, using a regularization procedure
(for example, one can follow the technique used by Gwinner in [26] page
239 to achieve such a regularization) under regularity assumptions on the
data, the variational inequality (12) has the solution u(t) ∈ C0([0, T ],Rq).
Hence, it follows that:

〈F (u(t)), v(t)− u(t)〉 ≥ 0, ∀t ∈ [0, T ].

Consider now a sequence of partitions πn of [0, T ], such that:

πn =
(
t0n, . . . , tNn

n

)
, 0 = t0n < t1n < . . . < tNn

n = T

and
kn = max

{
tjn − tj−1

n : j = 1, . . . , Nn

}

with kn → 0 when n → ∞. Then, for each value tj−1
n , we consider the

variational inequality

〈F (
u

(
tj−1
n

))
, v − u

(
tj−1
n

)〉 ≥ 0, ∀v ∈ K (
tj−1
n

)
(13)

15



where

K
(
tj−1
n

)
=

{
v ∈ Rq : λ

(
tj−1
n

) ≤ v ≤ µ
(
tj−1
n

)
,

q∑
i=1

ξji vi = ρj

(
tj−1
n

)
}

.

We can compute now the unique solution to the finite-dimensional vari-
ational inequality (13) by means of the critical point of the projected
dynamical system

ΠK
(
u

(
tj−1
n , τ

)
,−F

(
u

(
tj−1
n , τ

)))
= 0

and we can construct an interpolation function un(t) such that

lim ‖un(t)− u(t)‖L∞([0,T ],Rq) = 0.

Remark 4.1 We can overcome the regularization assumption on the so-
lution u, by considering a discretization procedure and by computing the
solution to the finite–dimensional variational inequality obtained after
the discretization (see [38]), using the corresponding projected dynami-
cal system. We will demonstrate how to accomplish this in Section 5.

5 Proof of the Convergence

The discretization procedure for the calculus to the solution of the evo-
lutionary variational inequality (5) runs as follows.

We consider a sequence {πn} of partitions of [0, T ], such that:

πn = (t0n, . . . , t
Nn
n ), 0 = t0n < t1n < . . . < tNn

n = T

and
kn := max

{
tjn − tj−1

n : j = 1, . . . , Nn

}

with kn → 0 when n →∞.
We consider the space of Rm–value piecewise constant functions in-

duced by πn :

Pn ([0, T ],Rm) :=
{

v ∈ L∞ ([0, T ],Rm) :

v(tj−1
n , tjn] = vj ∈ Rm, j = 1, . . . , Nn

}
(14)
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where vj denotes the constant value of v on (tj−1
n , tjn].

The mean value operators µn : L1 ([0, T ],Rm) → Pn ([0, T ],Rm) are
then introduced by:

µn v(tj−1
n , tjn] :=

1

tjn − tj−1
n

∫ tjn

tj−1
n

v(s) ds. (15)

The following Lemma (see, for instance, [5]) will be useful:

Lemma 5.1 Let 1 ≤ r < ∞. Then, the linear operators

µn : Lr ([0, T ],Rm) → Lr ([0, T ],Rm)

are uniformly bounded with norm 1 and:

µnv → v in Lr ([0, T ],Rm)

as n →∞, ∀v ∈ Lr ([0, T ],Rm) .

Consider now the following closed and convex set:

K :=
{
F (t) ∈ L2 ([0, T ],Rm) : λ ≤ F (t) ≤ ν, a.e. in [0, T ],

Φ F (t) = ρ(t), λ, ν ≥ 0,
}

(16)

where, for the time being, the upper and lower bounds and the ρ(t)
are constant (i.e. not time-dependent) functions, and a linear mapping
C : [0, T ]×K→ L2 ([0, T ],Rm) :

C[t, F (t)] = A(t) F (t) + B(t), A(t) ∈ L∞, B(t) ∈ L2.

Thus, we are led to solve the problem of finding H(t) ∈ K :

∫ T

0

〈A(t) H(t) + B(t), F (t)−H(t)〉 dt ≥ 0, ∀F (t) ∈ K. (17)

In correspondence to each partition we can write:

∫ T

0

〈A(t) H(t) + B(t), F (t)−H(t)〉 dt =

Nn∑
j=1

∫ tjn

tj−1
n

〈A(t) H(t) + B(t), F (t)−H(t)〉 dt. (18)

17



Thus, in each interval [tj−1
n , tjn] we can consider the problem of finding

un
j (t) ∈ K :

∫ tjn

tj−1
n

〈A(t) Hn
j (t) + B(t), F n

j (t)−Hn
j (t)〉 dt ≥ 0, ∀F n

j (t) ∈ K. (19)

Instead of (19), consider now the finite–dimensional problem of finding
Hn

j ∈ Km ⊂ Rm :

〈An
j Hn

j + Bn
j , F n

j −Hn
j 〉 ≥ 0, ∀F n

j ∈ Km (20)

where

An
j =

1

tjn − tj−1
n

∫ tjn

tj−1
n

A(t) dt; Bn
j =

1

tjn − tj−1
n

∫ tjn

tj−1
n

B(t) dt (21)

and consider Hn
j as constant approximations of the solutions Hn

j (t) of
(19). Here Km is the convex subset of Rm with same lower and upper
bounds and the same demand of K.

Our aim is to prove that the functions:

Hn(t) =
Nn∑
j=1

χ(tj−1
n , tjn) Hn

j (22)

are, in a suitable sense, piecewise constant approximations to solutions
to the original problem (17). We can then prove the following theorem
(see [38]):

Theorem 5.1 Let K be as in (16) and, moreover, let A(t) be positive
definite a.e. in [0, T ]. Then, the set U = {Hn}n∈N is (weakly) compact
and its cluster points are feasible. Moreover, if H̄ is a weak cluster point
for U, then H̄ solves (17).

In Theorem 5.1 we have considered the constant convex set (16). Now
we turn back to the case of a time-dependent convex set:

K :=
{
F (t) ∈ L2 ([0, T ],Rm) : λ(t) ≤ F (t) ≤ ν(t), a.e. in [0, T ],

λ(t), ν(t) ≥ 0, ΦF (t) = ρ(t) a.e. in [0, T ]
}

(23)

and consider piecewise constant approximations for it. For the sake of
clarity and completeness, let us recall some basic definitions of set con-
vergence.

18



Definition 5.1 Let S be a metric space and {Kn} a sequence of sets of
S. We say that Kn is Kuratowsky–convergent to K if and only if:

lim inf
n

Kn = lim sup
n

Kn = K,

where

lim sup
n

Kn :=
{

y ∈ S : ∃n1 < n2 < . . . , with yni
∈ Kn, y = lim

i
yni

}

lim inf
n

Kn :=
{

y ∈ S : ∃n0 ∈ N : ∀n > n0 ∃yn ∈ Kn, and lim
n

yn = y
}

.

Definition 5.2 Let S be a normed space and {Kn} a sequence of closed
and convex subsets therein. We say that Kn is Mosco convergent to K if
and only if:

w − lim sup
n

Kn ⊂ K ⊂ s− lim inf Kn (24)

where w and s mean weak and strong topology, respectively.

We now turn to our set (23) and, in correspondence to each partition
πn of [0, T ] consider the sets:

Kn
j :=

{
F (t) ∈ L2 ([0, T ],Rm) , piecewise constant:

λ̄j,n ≤ Fj(t) ≤ ν̄j,n, a.e. in (tj−1, tj), (25)

Φ F (t) = ρ̄j,n, a.e. in (tj−1, tj)
}
,

where λ̄j,n = µj,n λ(t), ν̄j,n = µj,n ν(t) and ρ̄j,n = µj,n ρ(t) are the mean
values of λ(t), ν(t) and ρ(t) on (tj−1, tj). Thus, we can consider the set
Kn = ∩Kn

j which, ∀n ∈ N, has piecewise constant lower and upper
bounds and demand which we denote by λ̄n, ν̄n and ρ̄j,n, respectively.
Then, the following result holds (see [26]).

Lemma 5.2 The set sequence Kn converges to K (in Mosco sense).

We come back now to our problem of finding H(t) ∈ K(t) :

∫ T

0

〈C[t,H(t)], F (t)−H(t)〉 dt ≥ 0, ∀F (t) ∈ K(t) (26)
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Figure 1: Network Structure of the Numerical Example

and, ∀F (t) ∈ K(t), consider F n(t) ∈ Kn such that F n(t) → F (t) (strongly).
Such F n(t) does exist thanks to the first part of the proof of Lemma 5.2.

Let, ∀n ∈ N, consider a solution Hn(t) =
Nn∑
j=1

χ(tj−1
n , tjn)Hn

j , where Hn
j is

the solution to the finite–dimensional variational inequality:

〈An
j Hn

j + Bn
j , F n

j −Hn
j 〉 ≥ 0, ∀F n

j ∈ Kn
j .

We are now able to present the final result (see [26]).

Theorem 5.2 Let A(t) be positive definite a.e. in [0, T ]. Then the se-
quence Hn(t) defined in (22) admits weak cluster points. Each cluster
point is feasible and solves the original variational inequality.

6 A Numerical Dynamic Traffic Network

Example

In this section, we present a numerical example that is taken from trans-
portation science. For additional background, we refer the reader to [8],
[19], [20], and the references therein. We consider a transportation net-
work consisting of a single origin/destination pair of nodes and two paths
connecting these nodes of a single link each, as depicted in Figure 1.

The feasible set K is as in (3), where we take p := 2. We also have
that q := 2, j := 1, T := 2, ρ(t) := t, and ξji := 1 for i ∈ {1, 2}:

K =
⋃

t∈[0,2]

{
u ∈ L2([0, 2],R2)|
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(0, 0) ≤ (u1(t), u2(t)) ≤
(

t,
3

2
t

)
a.e. in [0, 2];

2∑
i=1

ui(t) = t a.e. in [0, 2]

}
.

In this application u(t) denotes the vector of path flows at t. The
cost functions on the paths are defined as: u1(t) + 1 for the first path
and u2(t) + 2 for the second path. We consider a vector field F defined
by

F : L2([0, 2],R2) → L2([0, 2],R2);

(F1(u(t), F2(u(t))) = (u1(t) + 1, u2(t) + 2).

The theory of EVI (as described above) states that the system has a
unique equilibrium, since F is strictly monotone, for any arbitrarily fixed
point t ∈ [0, 2]. Indeed, one can easily see that 〈F (u1, u2)−F (v1, v2), (u1−
v1, u2 − v2)〉 = (u1 − v1)

2 + (u2 − v2)
2 > 0, for any u 6= v ∈ L2([0, 2],R2).

With the help of PDS theory, we can compute an approximate curve

of equilibria, by selecting t0 ∈
{

k

4
|k ∈ {0, . . . , 8}

}
. Hence, we ob-

tain a sequence of PDS defined by the vector field −F (u1(t0), u2(t0)) =
(−u1(t0) + 1,−u2(t0) + 2) on nonempty, closed, convex, 1–dimensional
subsets:

Kt0 :=

{{
[0, t0]×

[
0,

3

2
t0

]}
∩ {x + y = t0}

}
.

For each, we can compute the unique equilibrium of the system at
the point t0, that is, the point:

(u1(t0), u2(t0)) ∈ R2 such that − F (u1(t0), u2(t0)) ∈ NKt0
(u1(t0), u2(t0)).

Proceeding in this manner, we obtain the equilibria consisting of the
points:

{
(0, 0),

(
1

4
, 0

)
,

(
1

2
, 0

)
,

(
3

4
, 0

)
, (1, 0) ,

(
9

8
,
1

8

)
,

(
5

4
,
1

4

)
,

(
11

8
,
3

8

)
,

(
3

2
,
1

2

)}
.

The interpolation of these points yields the curve of equilibria.
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We note that due to the simplicity of the network topology in Figure
1 and the linearity (and separability of the cost functions in this example)
we can also obtain explicit formulae for the path flows over time as given
below: 




u1(t) = t,

u2(t) = 0
if 0 ≤ t ≤ 1

and 



u1(t) =
t + 1

2
,

u2(t) =
t− 1

2
.

if 1 ≤ t ≤ 2

The above results demonstrate how the two theories of projected dy-
namical systems and evolutionary variational inequalities that have been
developed in parallel can be connected to enhance the modeling, analysis,
and computation of solutions to a plethora of time–dependent equilib-
rium problems that arise in such disciplines as engineering, operations
research/management science, economics, and finance.
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