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Abstract: In this paper, we present a new Generalized Nash Equilibrium (GNE) model

for post-disaster humanitarian relief by introducing novel financial funding functions and

altruism functions, and by also capturing competition on the logistics side among humani-

tarian organizations. The common, that is, the shared, constraints associated with the relief

item deliveries at points of need are imposed by an upper level humanitarian organization

or regulatory body and consist of lower and upper bounds to ensure the effective delivery

of the estimated volumes of supplies to the victims of the disaster. We identify the network

structure of the problem, with logistical and financial flows, and propose a variational equi-

librium framework, which allows us to then formulate, analyze, and solve the model using

the theory of variational inequalities (rather than quasivariational inequality theory). We

then utilize Lagrange analysis and investigate qualitatively the humanitarian organizations’

marginal utilities if and when the equilibrium relief item flows are (or are not) at the imposed

demand point bounds. We illustrate the game theory model through a case study focused on

tornadoes hitting western Massachusetts, a highly unusual event that occurred in 2011. This

work significantly extends the original model of Nagurney, Alvarez Flores, and Soylu (2016),

1



which, under the imposed assumptions therein, allowed for an optimization formulation, and

adds to the literature of game theory and disaster relief, which is nascent.

Keywords: disaster relief, humanitarian logistics, financial funds, supply chains, compe-

tition for funds, NGOs, networks, Generalized Nash Equilibrium, variational equilibrium,

variational inequalities
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1. Introduction

Disaster relief is fraught with many challenges: the infrastructure, from transportation

to communications to energy delivery, may be damaged or destroyed, and services, from

healthcare to governmental ones, impacted, all while victims are in desperate need of relief

items such as water, food, medicines, and shelter. A timely response to a disaster, hence,

can save lives, reduce suffering, and assist in recovery. Moreover, it can also enhance the

reputations of humanitarian organizations and their very sustainability in terms of financial

donations.

Disasters come in many forms, from natural disasters, such as tornadoes, earthquakes,

and typhoons, which are often sudden-onset, to famines, which are slow-onset, and can occur

not only from changes in weather patterns, resulting in droughts, for example, but also from

political situations, including war (cf. Van Wassenhove (2006)). Hence, certain disasters are

man-made, as in the case of the Syrian refugee crisis (cf. Sumpf, Isaila, and Najjar (2016)),

and terrorist attacks, such as 9/11 (Cox (2008)).

The number of disasters is growing as well as the number of people affected by them

(Nagurney and Qiang (2009)) with additional pressures coming from climate change, in-

creasing growth of populations in urban environments, and the spread of diseases brought

about by global air travel. The associated costs of the damage and losses due to natural

disasters is estimated at an average $117 billion a year between 1991 and 2010 (Watson et al.

(2015)). Notable sudden-onset natural disasters have included Hurricane Katrina in 2005,

which was the second costliest natural disaster in the US, with Hurricane Harvey, which

hit Texas in 2017 being the costliest; the Haiti earthquake in 2010, the triple disaster in

Fukushima, Japan in 2011, consisting of an earthquake, followed by a tsunami and a nu-

clear meltdown technological disaster, Superstorm Sandy in 2012, tropical cyclone Haiyan in

2013, which was the strongest cyclone ever recorded, the earthquake in Nepal in 2015, and

Hurricane Matthew in 2016. In 2017, the United States experienced a record year in weather

and climate disasters, with the cumulative cost exceeding $300 billion (NOAA (2017)) and

with 16 natural disasters costing more than $1 billion each in terms of damages.

The challenges to disaster relief (humanitarian) organizations, including nongovernmental

organizations (NGOs), are immense. The majority operate under a single, common, human-

itarian principle of protecting the vulnerable, reducing suffering, and supporting the quality

of life, while, at the same time, competing for financial funds from donors to ensure their

own sustainability. As noted in Nagurney, Alvarez Flores, and Soylu (2016), competition is

intense, with the number of registered US nonprofit organizations increasing from 12,000 in
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1940 to more than 1.5 million in 2012. Approximately $300 billion are donated to charities

in the United States each year (Zhuang, Saxton, and Wu (2014)). At the same time, many

stakeholders believe that humanitarian aid has not been as successful in delivering on the

humanitarian principle as might be feasible due to a lack of coordination, which results in

duplication of services (see Kopinak (2013)).

We believe that some of the challenges that humanitarian organizations engaged in dis-

aster relief are faced with can be addressed through the use of game theory. Game theory is

a methodological framework that captures complex interactions among competing decision-

makers (noncooperative games) or cooperating ones (cooperative games). The contributions

of John Nash (1950, 1951), in particular, are highly relevant and established some of the

foundations of game theory. Specifically, we note that, in the case of noncooperative games,

in which the utilities of the competing players, that is, the decision-makers, in the game,

depend on the other players’ strategies, the governing concept is that of Nash Equilibrium.

If, however, the feasible sets, that is, the constraints, are not specific to each player, but,

rather, depend also on the strategies of the other players, then we are dealing with a Gen-

eralized Nash Equilibrium, introduced by Debreu (1952) (see, also, von Heusinger (2009),

Fischer, Herrich, and Schonefeld (2014), and the references therein).

In particular, in this paper, we construct a new Generalized Nash Equilibrium (GNE)

network model for disaster relief, which models competition among NGOs for financial funds

post-disaster, as well as for the delivery of relief items. The utility function that each NGO

seeks to maximize depends on its financial gain from donations plus the weighted benefit

accrued from doing good through the delivery of relief items minus the total cost associated

with the logistics of delivering the relief items. The model extends the earlier model of

Nagurney, Alvarez Flores, and Soylu (2016) in the following significant ways, which means

that the optimization reformulation, as done in that paper, no longer applies:

1. The financial funds functions, which capture the amount of donations to each NGO,

given their visibility through media of the supplies of relief items delivered at demand points,

and under competition, need not take on a particular structure.

2. The altruism or benefit functions, also included in each NGO’s utility function, need

not be linear.

3. The competition associated with logistics is captured through total cost functions that

depend not only on a particular NGO’s relief item shipments but also on those of the other

NGOs.
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In order to guarantee effective product delivery at the demand points, we retain the

lower and upper bounds, as introduced in Nagurney, Alvarez Flores, and Soylu (2016). Such

common, or shared constraints, assist in coordination (cf. Balcik et al. (2010)) and would

be imposed by a higher level humanitarian organization or regulatory authority in order

to ensure that the needed volumes of relief items are delivered but are not oversupplied,

which can results in congestion, materiel convergence, and wastage. We assume that the

NGOs have prepositioned the supplies of the disaster relief items and that the total amount

available across all NGOs is sufficient to meet the needs of the victims.

It is important to emphasize that Generalized Nash Equilibrium problems are more chal-

lenging to formulate and solve and are usually tackled via quasivariational inequalities (cf.

Bensoussan (1974)), the theory of which, as well as the associated computational proce-

dures, are not in as an advanced state as that of variational inequalities (see Kinderlehrer

and Stampacchia (1980) and Nagurney (1999)). Here we utilize, for the first time, in the

context of humanitarian operations and disaster relief, a variational equilibrium. As noted

in Nagurney, Yu, and Besik (2017)), a variational equilibrium is a specific kind of GNE

(cf. Facchinei and Kanzow (2010), Kulkarni and Shanbhag (2012)). The variational equilib-

rium allows for alternative variational inequality formulations of our new Generalized Nash

Equilibrium network model. What is notable about a variational equilibrium (see also Luna

(2013)) is that the Lagrange multipliers associated with the shared or coupling constraints

of the NGOs are the same for all NGOs in the disaster relief game. This also provides us

with an elegant economic and equity interpretation.

The only other game theory model for disaster relief that includes elements of logistics

plus financial funds is that of Nagurney, Alvarez Flores, and Soylu (2016). Zhuang, Saxton,

and Wu (2014) proposed a model that showed that the amount of charitable contributions

made by donors is positively dependent on the amount of disclosure by the NGOs. The

authors emphasized that there is a dearth of existing game-theoretic research on nonprofit

organizations. Toyasaki and Wakolbinger (2015) developed game theory models to analyze

whether an NGO should establish a special fund after a disaster (in terms of earmarked dona-

tions) or allow only unearmarked donations. Nagurney (2016), in turn, presented a network

game theory model in which multiple freight service providers are engaged in competition to

acquire the business of carrying disaster relief supplies of a humanitarian organization in the

amounts desired to the destinations. Coles and Zhuang (2011), on the other hand, argued for

the need for cooperative game theory models for disaster recovery operations by highlighting

a stream of post-disaster operations. Muggy and Stamm (2014) give an excellent review of

game theory in humanitarian operations and note that there are many untapped research
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opportunities for modeling in this area. See also the dissertation of Muggy (2015). The

research in our paper adds to the still nascent literature on game theory and disaster relief

/ humanitarian operations.

This paper is organized as follows. In Section 2, we construct the novel Generalized Nash

Equilibrium model for disaster relief, which captures competition both on the financial funds

side as well as on the logistics side and we identify the network structure. We present the

variational equilibrium framework and also prove the existence of an equilibrium solution.

In addition, we provide, for completeness, the variational inequality formulation of a special

case of the model, under the Nash equilibrium solution, in the absence of imposed common

demand constraints. In Section 3, we then explore, through Lagrange analysis, the humani-

tarian organizations’ marginal utilities when the equilibrium disaster relief flows are at the

upper or the lower bounds of the imposed demands of the regulatory body or lie in between.

In order to illustrate the framework developed here, Section 4 presents both an algorithmic

scheme and a case study, inspired by tornadoes that hit western Massachusetts in June 2011,

with devastating impact (cf. Western Massachusetts Regional Homeland Advisory Council

(2012)). We summarize our results and present our conclusions in Section 5. We also provide

directions for future research.
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2. The Variational Equilibrium Network Framework for Humanitarian Organi-

zations in Disaster Relief

We now present the new Generalized Nash Equilibrium model for disaster relief, along

with the variational equilibrium framework. As mentioned in the Introduction, the model

extends the earlier model of Nagurney, Alvarez Flores, and Soylu (2016), which, under

the imposed assumptions therein, allowed for an optimization reformulation. Our notation

follows closely the notation in the above paper but here we utilize, in contrast, a more general

variational equilibrium framework.

We consider m humanitarian organizations, here referred to as nongovernmental organi-

zations (NGOs), with a typical NGO denoted by i, seeking to deliver relief supplies, post a

disaster, to n demand points, with a typical demand point denoted by j. The relief supplies

can be water, food, or medicine. We assume that the product delivered can be viewed as

being homogeneous. We denote the volume of the relief item shipment (flow) delivered by

NGO i to demand point j by qij. We group the nonnegative relief item flows from each

NGO i; i = 1, . . . ,m, into the vector qi ∈ Rn
+ and then we group the relief item flows of all

the NGOs to all the demand points into the vector q ∈ Rmn
+ . The vector qi is the vector of

strategies of NGO i.

The NGOs compete for financial funds from donors, while also engaging in competition

on the logistic side in terms of costs, since there may be competition for freight services,

etc., as well as congestion at the demand sites. The network structure of the problem is

given in Figure 1. Note that the links from the first tier nodes representing the NGOs to

the bottom tier nodes, corresponding to the demand points, are the shipment links and

have relief item flows associated with them. The links from the demand nodes to the NGO

nodes (in the opposite direction) are the links with the financial flows from the donors

reacting to the visibility of the NGOs in their delivery of the needed supplies through the

media. The network structure of this problem differs from the network underlying the model

given in Nagurney, Alvarez Flores, and Soylu (2016) since in that model, the financial flows,

once collected, were partitioned to each NGO, using a factor representing the portion of

the financial funds each humanitarian organization was (likely) to get of the total amount

donated.

We emphasize that, in terms of the sequence of events, the humanitarian organizations

first decide on the level of relief items to be provided at each demand point and deliver

the amounts. Then they receive the corresponding financial flows. Therefore, the financial

flows are received after the supplies arrive. As noted in Nagurney, Alvarez Flores, and Soylu

7



(2016), empirically, these funds are realized and made available quickly, and these two events

are almost concurrent in many cases. The justification of this assumption is also provided

by the nature of the incentives of the decision-makers in our model, which is to provide

humanitarian relief as quickly as possible whenever a disaster strikes.
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Figure 1: The Network Structure of the Game Theory Model

Each NGO i encumbers a cost, cij, associated with shipping the relief items to location

j, where we assume that

cij = cij(q), j = 1, . . . n, (1)

with these cost functions being convex and continuously differentiable. These costs also

include transaction costs (see also Nagurney (2006)). Note that the cost functions (1) are

associated with the logistics aspects and, hence, the cost on a shipment link can depend not

only on its flow but also on the flows on the other shipment links associated with the same

NGO or with other NGOs.

Each NGO i; i = 1, . . . ,m, based on the media attention and the visibility of NGOs at

demand point j; j = 1, . . . , n, receives financial funds from donors given by the expression

n∑
j=1

Pij(q), (2)

where Pij(q) denotes the financial funds in donation dollars given to NGO i due to visibility

of NGO i at location j. Hence, Pij(q) corresponds to the financial flow on the link joining

demand node j with node NGO i in Figure 1. Observe that, according to (2), there is com-

petition among all the NGOs for financial donations since the financial amount of donations

that an NGO receives depends not only on its relief item deliveries but also on those delivered
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by other NGOs. Indeed, according to (2), an NGO may benefit from donations even through

visibility of other NGOs providing the product because of, for example, loyalty and support

for a specific NGO. We assume that the Pij functions are increasing, concave, and continu-

ously differentiable. Hence, we have positive but decreasing marginal utility of providing aid

(in terms of the NGO’s effect on attracting donations). It is important to mention that the

Pij(q) function contains, as a special case, the financial funds donor function of Nagurney,

Alvarez Flores, and Soylu (2016), with Pij(q) = βiPj(q); i = 1, . . . ,m; j = 1, . . . , n. Fur-

thermore, Natsios (1995) noted that the cheapest way for relief organizations to fundraise

is to provide early relief in highly visible areas. In our case study in Section 4 we construct

explicit Pij(q) functions for all NGOs i and demand points j.

Also, since the NGOs are humanitarian organizations involved in disaster relief, each NGO

i also derives some utility from delivering the needed relief supplies. We, hence, introduce

an altruism/benefit function Bi; i = 1, . . . ,m, such that

Bi = Bi(q), (3)

and each benefit function is assumed to be concave and continuously differentiable. Previ-

ously utilized benefit functions in this application domain were of the form: Bi =
n∑

j=1

γijqij;

j = 1, . . . , n. Furthermore, when we construct each NGO’s full utility function we will also

assign a weight ωi before each Bi(q); i = 1, . . . ,m, to represent a monetized weight associ-

ated with altruism of i. Such weight concepts are used in multicriteria decision-making; see,

e.g., Fishburn (1970), Chankong and Haimes (1983), Yu (1985), Keeney and Raiffa (1993),

and Nagurney, Alvarez Flores, and Soylu (2016).

Each NGO i; i = 1, . . . ,m, has an amount si of the relief item that it can allocate

post-disaster, which must satisfy:
n∑

j=1

qij ≤ si. (4)

We assume that the relief supplies have been prepositioned so that they are in stock and

available, since time is of the essence. According to Roopanarine (2013), prepositioning of

supplies can make emergency relief more effective and this is a strategy followed not only

by the UNHRD (United Nations Humanitarian Response Depot) but also by the Red Cross

and even some smaller relief organizations such as AmeriCares. Gatignon, Van Wassenhove,

and Charles (2010) also note the benefits of proper prepositioning of supplies in the case of

the International Federation of the Red Cross (IFRC) in terms of cost reduction and a more

timely response.
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In addition, the relief item flows for each i; i = 1, . . . ,m, must be nonnegative, that is:

qij ≥ 0, j = 1, . . . , n. (5)

Each NGO i; i = 1, . . . ,m, seeks to maximize its utility, Ui, with the utility consisting of

the financial gains due to its visibility through media of the relief item flows,
n∑

j=1

Pij(q), plus

the utility associated with the logistical (supply chain) aspects of delivery of the supplies,

which consists of the weighted altruism/benefit function minus the logistical costs. For

additional background on utility functions for nonprofit and charitable organizations, see

Rose-Ackerman (1982) and Malani, Philipson, and David (2003).

Without the imposition of demand bound constraints (which will follow), the optimization

problem faced by NGO i; i = 1, . . . ,m, is, thus,

Maximize Ui(q) =
n∑

j=1

Pij(q) + ωiBi(q)−
n∑

j=1

cij(q) (6)

subject to constraints (4) and (5).

Before imposing the common constraints, we remark that the above model, in the absence

of any common constraints, is a Nash Equilibrium problem, which we know can be formulated

and solved as a variational inequality problem (cf. Gabay and Moulin (1980) and Nagurney

(1999)). Indeed, although the utility functions of the NGOs depend on their strategies and

those of the other NGOs, the respective NGO feasible sets do not. However, the NGOs

may be faced with several common constraints, which make the game theory problem more

complex and challenging. The common constraints, which are imposed by an authority, such

as a governmental one or a higher level humanitarian coordination agency, ensure that the

needs of the disaster victims are met, while recognizing the negative effects of waste and

material convergence. The imposition of such constraints in terms of effectiveness and even

gains for NGOs was demonstrated in Nagurney, Alvarez Flores, and Soylu (2016). Later in

this section, we present the variational inequality framework. Hence, we will not need to

make use of quasivariational inequalities (cf. von Heusinger (2009)) for our new model.

Specifically, the two sets of common imposed constraints, at each demand point j; j =

1, . . . , n, are as follows:
m∑

i=1

qij ≥ dj, (7)

and
m∑

i=1

qij ≤ d̄j, (8)
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where dj is the lower bound on the amount of the relief item needed at demand point j

and d̄j is the upper bound on the amount of the relief item needed at demand point j.

The constraints (7) and (8) give flexibility for a regulatory or coordinating body, since it is

not likely that the demand will be precisely known in a disaster situation. It is, however,

reasonable to assume that, as represented in these equations, estimates for needs assessment

for the relief items will be available at the local level.

We assume that
m∑

i=1

si ≥
n∑

j=1

dj. (9)

Hence, the total supply of the relief item of the NGOs is sufficient to meet the needs at all

the demand points.

We define the feasible set Ki for each NGO i as:

Ki ≡ {qi| (4) and (5) hold} (10)

and we let K ≡
m∏

i=1

Ki.

In addition, we define the feasible set S consisting of the shared constraints as:

S ≡ {q| (7) and (8) hold}. (11)

Observe that now not only does the utility of each NGO depend on the strategies, that

is, the relief item flows, of the other NGOs, but so does the feasible set because of the

common constraints (7) and (8). Hence, the above game theory model, in which the NGOs

compete noncooperatively is a Generalized Nash Equilibrium problem. Therefore, we have

the following definition.

Definition 1: Disaster Relief Generalized Nash Equilibrium

A relief item flow pattern q∗ ∈ K =
m∏

i=1

Ki, q∗ ∈ S, constitutes a disaster relief Generalized

Nash Equilibrium if for each NGO i; i = 1, . . . ,m:

Ui(q
∗
i , q̂

∗
i ) ≥ Ui(qi, q̂

∗
i ), ∀qi ∈ Ki,∀q ∈ S, (12)

where q̂∗i ≡ (q∗1, . . . , q
∗
i−1, q

∗
i+1, . . . , q

∗
m).

Hence, an equilibrium is established if no NGO can unilaterally improve upon its utility by

changing its relief item flows in the disaster relief network, given the relief item flow decisions
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of the other NGOs, and subject to the supply constraints, the nonnegativity constraints, and

the shared/coupling constraints. We remark that both K and S are convex sets.

If there are no coupling, that is, shared, constraints in the above model, then q and q∗

in Definition 1 need only lie in the set K, and, under the assumption of concavity of the

utility functions and that they are continuously differentiable, we know that (cf. Gabay and

Moulin (1980) and Nagurney (1999)) the solution to what would then be a Nash equilibrium

problem (see Nash (1950, 1951)) would coincide with the solution of the following variational

inequality problem: determine q∗ ∈ K, such that

−
m∑

i=1

〈∇qi
Ui(q

∗), qi − q∗i 〉 ≥ 0, ∀q ∈ K, (13)

where 〈·, ·〉 denotes the inner product in the corresponding Euclidean space and ∇qi
Ui(q)

denotes the gradient of Ui(q) with respect to qi.

As emphasized in Nagurney, Yu, and Besik (2017), a refinement of the Generalized Nash

Equilibrium is what is known as a variational equilibrium and it is a specific type of GNE (see

Kulkarni and Shabhang (2012)). Specifically, in a GNE defined by a variational equilibrium,

the Lagrange multipliers associated with the common/shared/coupling constraints are all

the same. This feature provides a fairness interpretation and is reasonable from an economic

standpoint. More precisely, we have the following definition:

Definition 2: Variational Equilibrium

A strategy vector q∗ is said to be a variational equilibrium of the above Generalized Nash

Equilibrium game if q∗ ∈ K, q∗ ∈ S is a solution of the variational inequality:

−
m∑

i=1

〈∇qi
Ui(q

∗), qi − q∗i 〉 ≥ 0, ∀q ∈ K, ∀q ∈ S. (14)

By utilizing a variational equilibrium, we can take advantage of the well-developed theory

of variational inequalities, including algorithms (cf. Nagurney (1999) and the references

therein), which are in a more advanced state of development and application than algorithms

for quasivariational inequality problems.

We now expand the terms in variational inequality (14).

Specifically, we have that (14) is equivalent to the variational inequality: determine q∗ ∈

12



K, q∗ ∈ S, such that

m∑
i=1

n∑
j=1

[
n∑

k=1

∂cik(q
∗)

∂qij

−
n∑

k=1

∂Pik(q
∗)

∂qij

− ωi
∂Bi(q

∗)

∂qij

]
×
[
qij − q∗ij

]
≥ 0, ∀q ∈ K, ∀q ∈ S.

(15)

We now put variational inequality (15) into standard variational inequality form (see

Nagurney (1999)), that is: determine X∗ ∈ K ⊂ RN , such that

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (16)

where F is a given continuous function from K to RN , K is a closed and convex set, with

both the vectors F (X) and X being column vectors, and N = mn.

We define X ≡ q and F (X) where component (i, j); i = 1, . . . ,m; j = 1, . . . , n, of F (X),

Fij(X), is given by

Fij(X) ≡

[
n∑

k=1

∂cik(q)

∂qij

−
n∑

k=1

∂Pik(q)

∂qij

− ωi
∂Bi(q)

∂qij

]
(17)

and K ≡ K ∩ S. Then, clearly, (14) takes on the standard form (16).

Remark: Existence and Uniqueness of an Equilibrium Solution

A solution q∗ of disaster relief item flows to the variational inequality problem (15) is guar-

anteed to exist since the function F (X) in (16) is continuous under the imposed assumptions

and the feasible set K comprised of the constraints is compact. Furthermore, it follows from

the classical theory of variational inequalities (cf. Kinderlehrer and Stampacchia (1980) and

Nagurney (1999)) that if F (X) is strictly monotone, that is:

〈F (X1)− F (X2), X1 −X2〉 > 0, ∀X1, X2 ∈ K, X1 6= X2,

then the solution to the variational inequality (16) is unique, and we have a unique equilib-

rium product shipment pattern q∗ from the NGOs to the demand points.

3. Lagrange Theory and Analysis of the Marginal Utilities

In this section we explore the Lagrange theory associated with variational inequality

(15) and we provide an analysis of the marginal utilities at the equilibrium solution. For

an application of Lagrange theory to other models, see: Daniele (2001) (spatial economic

models), Barbagallo, Daniele, and Maugeri (2012) (financial networks), Toyasaki, Daniele,

and Wakolbinger (2014) (end-of-life products networks), Daniele and Giuffrè (2015) (random
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traffic networks), Caruso and Daniele (2018) (transplant networks), Nagurney and Dutta

(2017) (competition for blood donations).

By setting:

C(q) =
m∑

i=1

n∑
j=1

[
n∑

k=1

∂cik(q
∗)

∂qij

−
n∑

k=1

∂Pik(q
∗)

∂qij

− ωi
∂Bi(q

∗)

∂qij

]
(qij − q∗ij), (18)

variational inequality (15) can be rewritten as a minimization problem as follows:

min
K

C(q) = C(q∗) = 0. (19)

Under the previously imposed assumptions, we know that all the involved functions in

(19) are continuously differentiable and convex.

We set:
aij = −qij ≤ 0, ∀i, ∀j,

bi =
n∑

j=1

qij − si ≤ 0, ∀i,

cj = dj −
m∑

i=1

qij ≤ 0, ∀j,

ej =
m∑

i=1

qij − dj ≤ 0, ∀j,

(20)

and

Γ(q) = (aij, bi, cj, ej)i=1,...,m; j=1,...,n . (21)

As a consequence, we remark that K can be rewritten as

K = {q ∈ Rmn : Γ(q) ≤ 0}. (22)

We now consider the following Lagrange function:

L(q, α, δ, σ, ε) =
m∑

i=1

(
n∑

j=1

cij(q)−
n∑

j=1

Pij(q)− ωiBi(q))

+
m∑

i=1

n∑
j=1

αijaij +
m∑

i=1

δibi +
n∑

j=1

σjcj +
n∑

j=1

εjej,

(23)

∀q ∈ Rmn
+ , ∀α ∈ Rmn

+ , ∀δ ∈ Rm
+ , ∀σ ∈ Rn

+, ∀ε ∈ Rn
+,

where α is the vector with components: {α11, . . . , αmn}; δ is the vector with components

{δ1, . . . , δm}; σ is the vector with elements: {σ1, . . . , σn}, and ε is the vector with elements:

{ε1, . . . , εn}.
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It is easy to prove that the feasible set K is convex and that the Slater condition is

satisfied. Then, if q∗ is a minimal solution to problem (19), there exist α∗ ∈ Rmn
+ , δ∗ ∈ Rm

+ ,

σ∗ ∈ Rn
+, ε∗ ∈ Rn

+ such that the vector (q∗, α∗, δ∗, σ∗, ε∗) is a saddle point of the Lagrange

function (23); namely:

L(q∗, α, δ, σ, ε) ≤ L(q∗, α∗, δ∗, σ∗, ε∗) ≤ L(q, α∗, δ∗, σ∗, ε∗), (24)

∀q ∈ Rmn
+ , ∀α ∈ Rmn

+ , ∀δ ∈ Rm
+ , ∀σ ∈ Rn

+, ∀ε ∈ Rn
+,

and

α∗ija
∗
ij = 0, ∀i, ∀j,

δ∗i b
∗
i = 0, ∀i,

σ∗j c
∗
j = 0, ε∗je

∗
j = 0, ∀j. (25)

From the right-hand side of (24), it follows that q∗ ∈ Rmn
+ is a minimal point of L(q, α∗, δ∗, σ∗, ε∗)

in the whole space Rmn, and hence, for all i = 1, . . . ,m, and for all j = 1, . . . , n, we have

that:
∂L(q∗, α∗, δ∗, σ∗, ε∗)

∂qij

=
n∑

k=1

∂cik(q
∗)

∂qij

−
n∑

k=1

∂Pik(q
∗)

∂qij

− ωi
∂Bi(q

∗)

∂qij

− α∗ij + δ∗i − σ∗j + ε∗j = 0, (26)

together with conditions (25).

Conditions (25) and (26) represent an equivalent formulation of variational inequality

(15). Indeed, if we multiply (26) by (qij − q∗ij) and sum up with respect to i and j, we get:

m∑
i=1

n∑
j=1

[
n∑

k=1

∂cik(q
∗)

∂qij

−
n∑

k=1

∂Pik(q
∗)

∂qij

− ωi
∂Bi(q

∗)

∂qij

]
(qij − q∗ij)

=
m∑

i=1

n∑
j=1

α∗ijqij −
m∑

i=1

n∑
j=1

α∗ijq
∗
ij︸ ︷︷ ︸

=0

−
m∑

i=1

δ∗i

n∑
j=1

qij − δ∗i

n∑
j=1

q∗ij︸ ︷︷ ︸
=δ∗i si



+
n∑

j=1

σ∗j

m∑
i=1

qij − σ∗j

m∑
i=1

q∗ij︸ ︷︷ ︸
=σ∗j dj

−
n∑

j=1

ε∗j

m∑
i=1

qij − ε∗j

m∑
i=1

q∗ij︸ ︷︷ ︸
=ε∗j dj
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=
m∑

i=1

n∑
j=1

α∗ijqij︸ ︷︷ ︸
≥0

−
m∑

i=1

δ∗i


n∑

j=1

qij − si︸ ︷︷ ︸
≤0

+
n∑

j=1

σ∗j


m∑

i=1

qij − dj︸ ︷︷ ︸
≥0



−
n∑

j=1

ε∗j


m∑

i=1

qij − dj︸ ︷︷ ︸
≤0

 ≥ 0. (27)

We now discuss the meaning of some of the Lagrange multipliers. We focus on the case

where q∗ij > 0; namely, the relief item flow from NGO i to demand point j is positive;

otherwise, if q∗ij = 0, the problem is not interesting. Then, from the first line in (25), we

have that α∗ij = 0.

Let us consider the situation when the constraints are not active, that is, b∗i < 0 and

dj <
m∑

i=1

q∗ij < dj.

Specifically, b∗i < 0 means that
n∑

j=1

q∗ij < si; that is, the sum of relief items sent by the

i-th NGO to all demand points is strictly less than the total amount si at its disposal. Then,

from the second line in (25), we get: δ∗i = 0.

At the same time, from the last line in (25), dj <
m∑

i=1

q∗ij < dj, leads to: σ∗j = ε∗j = 0.

Hence, (26) yields:

n∑
k=1

∂cik(q
∗)

∂qij

−
n∑

k=1

∂Pik(q
∗)

∂qij

− ωi
∂Bi(q

∗)

∂qij

= α∗ij − δ∗i + σ∗j − ε∗j = 0

⇐⇒
n∑

k=1

∂Pik(q
∗)

∂qij

+ ωi
∂Bi(q

∗)

∂qij

=
n∑

k=1

∂cik(q
∗)

∂qij

. (28)

In this case, the marginal utility associated with the financial donations plus altruism is

equal to the marginal costs.

If, on the other hand,
m∑

i=1

q∗ij = dj, then σ∗j > 0. Hence, we get:

n∑
k=1

∂Pik(q
∗)

∂qij

+ ωi
∂Bi(q

∗)

∂qij

+ σ∗j =
n∑

k=1

∂cik(q
∗)

∂qij

, with σ∗j > 0, (29)
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and, therefore,
n∑

k=1

∂cik(q
∗)

∂qij

>

n∑
k=1

∂Pik(q
∗)

∂qij

+ ωi
∂Bi(q

∗)

∂qij

, (30)

which means that the marginal costs are greater than the marginal utility associated with

the financial donations plus altruism and this is a very bad situation.

Finally, if
m∑

i=1

q∗ij = dj, then ε∗j > 0, we have that:

n∑
k=1

∂Pik(q
∗)

∂qij

+ ωi
∂Bi(q

∗)

∂qij

=
n∑

k=1

∂cik(q
∗)

∂qij

+ ε∗j , with ε∗j > 0. (31)

Therefore,
n∑

k=1

∂cik(q
∗)

∂qij

<

n∑
k=1

∂Pik(q
∗)

∂qij

+ ωi
∂Bi(q

∗)

∂qij

. (32)

In this situation, the relevant marginal utility exceeds the marginal cost and this is a desirable

situation.

Analogously, if we assume that the conservation of flow equation is active; that is, if
n∑

j=1

q∗ij = si, then δ∗i > 0. As a consequence, we obtain:

n∑
k=1

∂Pik(q
∗)

∂qij

+ ωi
∂Bi(q

∗)

∂qij

=
n∑

k=1

∂cik(q
∗)

∂qij

+ δ∗i , with δ∗i > 0, (33)

which means that, once again, the marginal utility associated with the financial donations

plus altruism exceeds the marginal cost and this is the desirable situation.

From the above analysis of the Lagrange multipliers and marginal utilities at the equilib-

rium solution, we can conclude that the most convenient situation, in terms of the marginal

utilities, is the one when
m∑
i=i

q∗ij = dj and
n∑

j=1

q∗ij = si.

Taking into account the Lagrange multipliers, an equivalent variational formulation of

problem (6) under constraints (4), (5), (7), and (8) is the following one:

Find (q∗, δ∗, σ∗, ε∗) ∈ Rmn+m+2n
+ :

m∑
i=1

n∑
j=1

[
n∑

k=1

∂cik(q
∗)

∂qij

−
n∑

k=1

∂Pik(q
∗)

∂qij

− ωi
∂Bi(q

∗)

∂qij

+ δ∗i − σ∗j + ε∗j

]
(qij − q∗ij)

+
m∑

i=1

(
si −

n∑
j=1

q∗ij

)
(δi − δ∗i )

+
n∑

j=1

(
m∑

i=1

q∗ij − dj

)(
σj − σ∗j

)
+

n∑
j=1

(
dj −

m∑
i=1

q∗ij

)(
εj − ε∗j

)
≥ 0,

(34)

17



∀q ∈ Rmn
+ , ∀δ ∈ Rm

+ , ∀σ ∈ Rn
+, ∀ε ∈ Rn

+.

4. The Algorithm and Case Study

Before we present the case study, we outline the algorithm that we utilize for the computa-

tions, notably, the Euler method of Dupuis and Nagurney (1993), since it nicely exploits the

feasible set underlying variational inequality (34), which is simply the nonnegative orthant.

Recall that, as established in Dupuis and Nagurney (1993), for convergence of the general

iterative scheme, which induces the Euler method, the sequence {aτ}must satisfy:
∑∞

τ=0 aτ =

∞, aτ > 0, aτ → 0, as τ → ∞. Conditions for convergence for a variety of network-based

problems can be found in Nagurney and Zhang (1996) and Nagurney (2006).

Specifically, at iteration τ , the Euler method yields the following closed form expressions

for the relief item flows and the Lagrange multipliers.

Explicit Formulae for the Euler Method Applied to the Game Theory Model

In particular, we have the following closed form expression for the relief item flows i =

1, . . . ,m; j = 1, . . . , n, at each iteration τ + 1:

qτ+1
ij = max{0, qτ

ij + aτ (
n∑

k=1

∂Pik(q
τ )

∂qij

+ ωi
∂Bi(q

τ )

∂qij

−
n∑

k=1

∂cik(q
τ )

∂qij

− δτ
i + στ

j − ετ
j )}; (35)

the following closed form expressions for the Lagrange multipliers associated with the supply

constraints (4), respectively, for i = 1, . . . ,m:

δτ+1
i = max{0, δτ

i + aτ (−si +
n∑

j=1

qτ
ij)}; (36)

the following closed form expressions for the Lagrange multipliers associated with the lower

bound demand constraints (7), respectively, for j = 1, . . . , n:

στ+1
j = max{0, στ

j + aτ (−
m∑

i=1

qτ
ij + dj)}, (37)

and the following closed form expressions for the Lagrange multipliers associated with the

upper bound demand constraints (8), respectively, for j = 1, . . . , n:

ετ+1
j = max{0, ετ

j + aτ (−d̄j +
m∑

i=1

qτ
ij)}. (38)
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Our case study is inspired by a disaster consisting of a series of tornados that hit western

Massachusetts on June 1, 2011 in the late afternoon. The largest tornado was measured at

EF3. It was the worst tornado outbreak in the area in a century (see Flynn (2011)). A

wide swath from western to central Massachusetts was impacted. According to the Western

Massachusetts Regional Homeland Security Advisory Council report (2012): “The tornado

caused extensive damage, killed 4 persons, injured more than 200 persons, damaged or

destroyed 1,500 homes, left over 350 people homeless in Springfield’s MassMutual Center

arena, left 50,000 customers without power, and brought down thousands of trees.” The

same report notes that: FEMA estimated that 1,435 residences were impacted with the

following breakdowns: 319 destroyed, 593 sustaining major damage, 273 sustaining minor

damage, and 250 otherwise affected. FEMA estimated that the primary impact was damage

to buildings and equipment with a cost estimate of $24,782,299. Total damage estimates from

the storm exceeded $140 million, the majority from the destruction of homes and businesses.

Especially impacted were the city of Springfield and the towns of Monson and Brimfield.

It has been estimated that in the aftermath, the Red Cross served about 11,800 meals and

the Salvation Army about 20,000 meals (cf. Western Massachusetts Regional Homeland

Security Advisory Council (2012)).

The network topology for our case study, Example 1, is depicted in Figure 2. The NGO

nodes consist of the American Red Cross and the Salvation Army, respectively. The demand

points correspond to Springfield, Monson, and Brimfield, respectively.
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Figure 2: The Network Topology for the Case Study, Example 1

Example 1

The data for our case study, Example 1, are given below. The supplies of meals available for
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delivery to the victims are:

s1 = 25, 000, s2 = 25, 000,

with the weights associated with the altruism benefit functions of the NGOs given by:

ω1 = 1, ω2 = 1.

The financial funds functions are:

P11(q) = 1000
√

(3q11 + q21), P12(q) = 600
√

(2q12 + q22), P13(q) = 400
√

(2q13 + q23),

P21(q) = 800
√

(4q21 + q11), P22(q) = 400
√

(2q22 + q12), P23(q) = 200
√

(2q23 + q13).

The altruism functions are:

B1(q) = 300q11 + 200q12 + 100q13, B2(q) = 400q21 + 300q22 + 200q23.

The cost functions, which capture distance from the main storage depots in Springfield,

are:

c11(q) = .15q2
11 + 2q11, c12(q) = .15q2

12 + 5q12, c13(q) = .15q2
13 + 7q13,

c21(q) = .1q2
21 + 2q21, c22(q) = .1q2

22 + 5q22, c23(q) = .1q2
23 + 7q23.

The demand lower and upper bounds at the three demand points are:

d1 = 10000, d̄1 = 20000,

d2 = 1000, d̄2 = 10000,

d3 = 1000, d̄3 = 10000.

The Euler method was implemented in FORTRAN and a Linux system at the University

of Massachusetts Amherst was used for the computations. The algorithm was initialized as

follows: all Lagrange multipliers were set to 0.00 and the initial relief item flows to a given

demand point were set to the lower bound divided by the number of NGOs, which here is

two.

The Euler method yielded the following Generalized Nash Equilibrium solution:

The equilibrium relief item flows are:

q∗11 = 3800.24, q∗12 = 668.64, q∗13 = 326.66,
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q∗21 = 6199.59, q∗22 = 1490.52, q∗23 = 974.97.

Since none of the supplies are exhausted, the computed Lagrange multipliers associated

with the supply constraints are:

δ∗1 = 0.00, δ∗2 = 0.00.

Since the demand at the first demand point, which is the city of Springfield, is essentially at

its lower bound, we have that:

σ∗1 = 835.22,

with

σ∗2 = 0.00, σ∗3 = 0.00.

All the Lagrange multipliers associated with the demand upper bound constraints are

equal to zero, that is:

ε∗1 = ε∗2 = ε∗3 = 0.00.

In terms of the gain in financial donations, the NGOs receive the following amounts:

3∑
j=1

P1j(q
∗) = 180, 713.23,

3∑
j=1

P2j(q
∗) = 168, 996.78.

This is reasonable since the American Red Cross tends to have greater visibility post dis-

asters than the Salvation Army through the media and that was the case post the Springfield

tornadoes.

We then proceeded to solve the Nash equilibrium counterpart of the above Generalized

Nash Equilibrium problem formulated as a variational equilibrium. The variational inequal-

ity for the Nash equilibrium is given in (13) and does not include the upper and lower bound

demand constraints. We solved it using the Euler method but over the feasible set K as in

(13).

The computed equilibrium relief item flows for the Nash equilibrium are:

q∗11 = 1040.22, q∗12 = 668.64, q∗13 = 326.66,

q∗21 = 2054.51, q∗22 = 1490.52, q∗23 = 974.97.

The Lagrange multipliers associated with the supply constraints are:

δ∗1 = 0.00, δ∗2 = 0.00.
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Observe that, without the imposition of the bounds on the demands, Springfield, which is

demand point 1 and is a big city, receives only about one third of the volume of supplies (in

this case, meals) as needed, and as determined by the Generalized Nash equilibrium solution.

The American Red Cross now garners financial donations of: 119,985.66, whereas the

Salvation Army stands to receive financial donations equal to: 110,683.60. These values

are significantly lower than the analogous ones for the Generalized Nash equilibrium model

above. Hence, NGOs, by coordinating their deliveries of needed supplies, such as meals, can

gain in terms of financial donations and attend to the victims’ needs better by delivering in

the amounts that have been estimated to be needed in terms of lower and upper bounds. This

more general model, for which an optimization reformulation does not exist, in contrast to the

model of Nagurney, Alvarez Flores, and Soylu (2016), nevertheless, supports the numerical

result findings in the case study for Katrina therein.

Example 2

We now investigate the possible impact of the addition of a new disaster relief organization,

such as a church-based one, or the Springfield Partners for Community Action, which also

assisted in disaster relief, providing meals post the tornadoes. Hence, the network topology

for case study, Example 2, is as in Figure 3. We refer to the added NGO as “Other.” It is

based in Springfield.
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Figure 3: The Network Topology for the Case Study, Example 2

The data are as in Example 1 but with the original Pij(q) functions for the America Red

Cross and the Salvation Army expanded as per below and the added data for the “Other”

NGO also as given below.
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The financial funds functions for are now:

P11(q) = 1000
√

(3q11 + q21 + q31), P12(q) = 600
√

(2q12 + q22 + q32), P13(q) = 400
√

(2q13 + q23 + q33),

P21(q) = 800
√

(4q21 + q11 + q31), P22(q) = 400
√

(2q22 + q12 + q32), P23(q) = 200
√

(2q23 + q13 + q33),

with those for the new NGO:

P31(q) = 400
√

(2q31 + q11 + q21), P32(q) = 200
√

(2q32 + q12 + q22), P33(q) = 100
√

(2q33 + q13 + q23).

The weight ω3 = 1 and the altruism/benefit function for the new NGO is:

B3(q) = 200q31 + 100q32 + 100q33.

The cost functions associated with the added NGO are:

c31(q) = .1q2
31 + q31, c32(q) = .2q2

32 + 5q32, c33(q) = .2q2
33 + 7q33.

The Euler method converged to the following Generalized Nash Equilibrium solution:

The equilibrium relief item flows are:

q∗11 = 2506.97, q∗12 = 667.85, q∗13 = 325.59,

q∗21 = 4259.59, q∗22 = 1489.98, q∗23 = 974.45,

q∗31 = 3233.35, q∗32 = 242.42, q∗33 = 235.52.

Since none of the supplies are exhausted, the computed Lagrange multipliers associated

with the supply constraints are:

δ∗1 = 0.00, δ∗2 = 0.00, δ∗3 = 0.00.

The demand at the first demand point, which is the city of Springfield, is at the lower bound

of 10000.00. Hence, we have that:

σ∗1 = 446.70,

with

σ∗2 = 0.00, σ∗3 = 0.00.

All the Lagrange multipliers associated with the demand upper bound constraints are

equal to zero, that is:

ε∗1 = ε∗2 = ε∗3 = 0.00.
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In terms of the gain in financial donations, the NGOs receive the following amounts:

3∑
j=1

P1j(q
∗) = 173, 021.70,

3∑
j=1

P2j(q
∗) = 155, 709.50,

3∑
j=1

P3j(q
∗) = 60, 504.14.

The volumes of relief items from the American Red Cross and the Salvation Army to

Springfield are greatly reduced, as compared to the respective volumes in Example 1 and

both original NGOs in Example 1 now experience a reduction in financial donations because

of the increased competition for financial donations.

For completeness, we also solved the Nash equilibrium counterpart for Example 2.

The Nash equilibrium relief item flows are:

q∗11 = 1036.27, q∗12 = 667.85, q∗13 = 325.59,

q∗21 = 2051.17, q∗22 = 1489.98, q∗23 = 974.45,

q∗31 = 1009.61, q∗32 = 242.42, q∗33 = 235.52.

The financial donations of the NGOs are now the following:

3∑
j=1

P1j(q
∗) = 129, 037.42,

3∑
j=1

P2j(q
∗) = 115, 964.80,

3∑
j=1

P3j(q
∗) = 43, 07.16.

In Example 2 of our case study, we, again, see that the NGOs garner greater financial

funds through the Generalized Nash Equilibrium solution, rather than the Nash equilibrium

one. Moreover, the needs of the victims are met under the Generalized Nash Equilibrium

solution. Hence, both the NGOs, as well as the victims, gain from enhanced coordination,

as provided by the relief item demand upper and lower bounds at the demand points.

5. Summary and Conclusions

In this paper, we constructed a new Generalized Nash Equilibrium (GNE) model for

disaster relief, which contains both logistical as well as financial funds aspects. The NGOs

compete for financial funds through their visibility in the response to a disaster and pro-

vide needed supplies to the victims. A coordinating body imposes upper bounds and lower

bounds for the supplies at the various demand points to guarantee that the victims receive

the amounts at the points of demand that are needed, and without excesses that can add

to the congestion and materiel convergence. The model is more general than the one pro-

posed earlier by Nagurney, Alvarez Flores, and Soylu (2016) and no longer is it possible to

reformulate the governing equilibrium conditions as an optimization problem.
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Here we use a variational equilibrium formulation of the Generalized Nash Equilibrium,

which is then amenable to solution via variational inequality algorithms. We provide quali-

tative properties of the equilibrium pattern and also utilize Lagrange theory for the analysis

of the NGOs’ marginal utilities.

The proposed computational scheme yields closed form expressions, at each iteration,

for the product flows and the Lagrange multipliers. The algorithm is then applied to a

case study, inspired by rare tornadoes that caused devastation in parts of western and cen-

tral Massachusetts in 2011. For completeness, we also compute the solution to the Nash

equilibrium counterparts of the two examples making up the case study, in which the com-

mon demand bound constraints are removed. The case study reveals that victims may not

receive the required amounts of supplies, without the imposition of the demand bounds.

These results provide further support for the need for greater coordination in disaster relief.

Moreover, by delivering the required amounts of supplies the NGOs can also garner greater

financial donations.

The framework constructed here presents many opportunities for developing extensions

and enhancements such as:

1. Allowing for the purchase of additional relief supplies, which we have assumed to be

prepositioned and to be sufficient to meet the minimal demands, with associated costs;

2. Expanding the logistical side to include detailed transportation networks with mode

options;

3. Constructing a multiperiod version of the model in which the financial flows that are not

earmarked for a specific disaster can be transferred for use in other disasters as well as for

the day to day operations of the NGOs;

4. Including stochastic components associated with costs, financial donations, and/or the

demands for relief items at the demand points, and, finally,

5. Capturing the potential for cooperation, rather than noncooperative behavior, espe-

cially in terms of sharing resources for relief item deliveries to demand points.

We leave the above for future research. Furthermore, we emphasize that disseminating

the results to practitioners is also essential and that includes emphasizing what game theory

can offer in terms of disaster relief as done in Nagurney (2017).
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