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Abstract: In this paper, we developed a supply chain network game theory model with

differentiated products and transportation costs in the case of time-based oligopolistic com-

petition. The firms are profit-maximizers and have, as their strategic variables, the product

shipments and the guaranteed delivery times to the consumers at the demand markets with

the guaranteed delivery times never exceeding the sum of the production time and the trans-

portation time. The demand price functions are functions of the demands for the products at

the different demand markets as well as their guaranteed delivery times. The governing Nash

equilibrium conditions are formulated as alternative variational inequalities. An algorithm is

proposed, which yields closed form expressions, at each iteration, for the product shipments,

the guaranteed delivery times, as well as the associated Lagrange multipliers. Supply chain

network numerical examples are given to illustrate the modeling and the computational

approach.
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1. Introduction

Supply chains today span the globe and provide the infrastructure for the production

and delivery of goods and services, with more knowledgeable consumers demanding timely

deliveries, despite, paradoxically, the great distances that may be involved. Indeed, delivery

times are becoming a strategy, as important as productivity, quality, and even innovation

(see, e.g., Gunasekaran, Patel, and McGaughey (2004), Christopher (2005), Nagurney (2006),

Nagurney and Li (2012), and Yu (2012)). As noted by Ray and Jewkes (2004), practitioners

have realized that speed of product delivery is a competitive advantage (Stalk, Jr. and Hout

(1990), Blackburn et al. (1992)).

It is now well-recognized (cf. Hum and Sim (1996), Geary and Zonnenberg (2000), and

Boyaci and Ray (2003)) that, whether in manufacturing (especially in build-to-order and

made-on-demand industries such as certain computers, electronic equipment, specific cars,

airplanes, furniture, etc.) or in digitally-based production and delivery (DVDs, online shop-

ping, online content distribution, etc.) speed and consistency of delivery time are two es-

sential components of customer satisfaction, along with price (cf. Handfield and Pannesi

(1995), Ballou (1998)). Stalk, Jr., in his seminal Harvard Business Review 1988 article,

“Time - The next source of competitive advantage,” utilized the term time-based competi-

tion, to single out time as the major factor for sustained competitive advantage. Today,

time-based competition has emerged as a paradigm for strategizing about and operational-

izing supply chain networks in which efficiency and timeliness matter (see Carter, Melnyk,

and Handfield (1995), Vickery et al (1995), Ceglarek et al. (2004), Li et al. (2006), and

Nagurney (2006)).

Advances in production and operations management thought and practice, including such

revolutionary concepts as time-based competition, have, in turn, provided a rich platform

for the accompanying research investigations. The extensive literature review of Hum and

Sim (1996) of time-based competition emphasized both its intellectual history as well as

the associated mathematical modeling, thereby, constructing a bridge between practice and

scholarship on this important topic. They, nevertheless, concluded that much of the time-

based focus in modeling was limited to the areas of transportation modeling, leadtime and

inventory modeling, and set-up time reduction analysis. Moreover, they argued that the

literature emphasized cost minimization but what was needed was the explicit incorporation

of time as a significant variable in modeling. The complexity of the production and oper-

ations management landscape in the real world could not be adequately captured through

an objective function representing simply cost minimization. Gunasekaran and Ngai (2005)
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further emphasized this shortcoming and the relevance of analyzing the trade-offs between

operational costs and delivery time in supply chain management.

Hence, in order to rigorously capture time-based competition within an analytical, com-

putable supply chain framework, one needs to utilize game theory and the appropriate strate-

gic variables with the explicit recognition of time.

Li and Whang (2001) developed an elegant game theory model for time-based competition

in which firms choose, as their strategic variables, both prices and production rates and

discussed several special cases. Their approach was a generalization of the contributions of

Lederer and Li (1997), who, in turn, built on some of the prior research in queuing and

delays. However, since the focus in those papers was on operations management, and not

on supply chain management, Li and Whang (2001) did not consider the time component

associated with the transportation of the products, which is a central issue in increasingly

globalized supply chains (cf. Nagurney (2006)). In addition, the underlying functions were

assumed to have an explicit structure. Moreover, they assumed that the firms were price-

takers. In various industries, as noted above, in which made-to-order and build-to-order

strategies are relevant, the underlying industrial organization is that of oligopolies and,

imperfect, rather than perfect competition (cf. Tirole (1988) and Vives (1999)). Shang

and Liu (2011), in turn, investigated the impacts of promised delivery time and on-time

delivery rates under oligopolistic competition. Blackburn (2012) discussed some of the limits

of time-based competition quantitatively through the introduction of the marginal value

of time derived from a total cost objective function. However, he exclusively focused on

inventory costs and did not include transportation costs which are fundamental to global

supply chains. Moreover, a single cost-minimizing decision-maker was assumed, whereas

in order to appropriately address time-based competition, a framework that captures the

interactions among decision-makers, that is, firms, in a supply chains, along with the reality

of product differentiation, is needed.

In this paper, hence, we develop a game theoretical framework for supply chain network

time-based competition, which has the following major, novel features:

(1). firms are assumed to be spatially separated and can compete both on the production

side and on the demand side;

(2). firms compete in an oligopolistic manner and, hence, influence the prices;

(3). the time consumption of both production and transportation/shipment supply chain

activities is made explicit;
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(4). the strategic variables of the firms are quantity variables and guaranteed delivery time

variables;

(5). consumers at the demand markets for the substitutable, but differentiated, products

respond to both the quantities of the products and to their guaranteed delivery times, as

reflected in the prices of the products.

In addition, by capturing the total cost associated with delivery times of each firm,

along with their production costs and their transportation costs in their respective objective

functions, the marginal cost of time can be quantified in this more general competitive

network framework.

The intellectual platform upon which our model is based has several foundational sup-

ports. First, it builds upon the existing literature on oligopolistic competition and network

equilibria (cf. Dafermos and Nagurney (1987) and Nagurney (1999, 2006)), coupled with the

recent modeling advances that incorporate brand/product differentiation and supply chain

network competition (see Nagurney and Yu (2011, 2012), Masoumi, Yu, and Nagurney

(2012), and Nagurney and Li (2012)). However, unlike Nagurney and Yu (2011), where the

goal was to minimize total cost and total time in the supply chain network for a time-sensitive

product, which, in that case, was fast fashion apparel, here we focus on the delivery times to

the consumers at the demand market. In addition, in contrast to work noted above, in this

paper, the consumers reflect their preferences for the different products through both the

prices and the guaranteed delivery times, where the guaranteed delivery time here includes

the time required for production and for transportation/shipment, with the understanding

that different products will be distributed in an appropriate manner (digital products, for

example, are distributed via the web).

It is also important to recognize the literature on time-sensitive products from food to

the, already noted, fashion apparel, to even perishable products in healthcare, as well as crit-

ical needs products in humanitarian operations; see Nagurney, Yu, Masoumi, and Nagurney

(2013) for such a survey. Finally, we note that although the book by Nagurney (2006) con-

tains a spectrum of dynamic supply chain network models the dynamics therein are modeled

using projected dynamical systems (cf. Nagurney and Zhang (1996)) without delivery times

being explicit strategic variables.

To the best of our knowledge, this is the first paper to synthesize oligopolistic competi-

tion, product differentiation, and time-based competition, with guaranteed delivery times as

strategic variables, in a computable supply chain network game theoretic model under Nash

(1950, 1951) equilibrium.
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For the reader, we also highlight the paper by Geunes and Pardalos (2003) and the edited

volume of theirs – Geunes and Pardalos (2005), which provide excellent literature overviews

of supply chain optimization with the latter also focusing on networks.

This paper is organized as follows. In Section 2 we develop the supply chain network game

theoretic model with differentiated products and time-based competition by describing each

firm’s individual profit-maximizing behavior and the underlying cost functions and demand

price functions, with an emphasis on the time element and the network structure. We then

define the governing supply chain Nash equilibrium and establish alternative variational

inequality formulations. We emphasize that variational inequalities for supply chain network

equilibrium problems were first utilized by Nagurney, Dong, and Zhang (2002) and initiated a

rich literature. Recent applications have included also supply chain disruptions; see Nagurney

and Qiang (2009), Qiang, Nagurney, and Dong (2009), and Wakolbinger and Cruz (2011).

In Section 3, we focus on the variational inequality formulation that has elegant features

for computations for which we propose an algorithm that yields, at each iteration, closed

form expressions for the product shipments, the delivery times, and the associated Lagrange

multipliers with the constraints for the latter. In Section 4, we illustrate the model through a

series of numerical examples, which are solved using the algorithm. In Section 5, we conclude

the paper with a summary of results and discussion.
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Figure 1: The Network Structure of the Supply Chain Problem

2. The Supply Chain Network Game Theoretic Model with Product Differenti-

ation and Guaranteed Delivery Times

In this Section, we develop a supply chain network model with product differentiation in

which the firms have as strategic variables their product shipments to the demand markets

and the guaranteed times of the deliveries of the products. The firms compete under the

Cournot-Nash equilibrium concept of non-cooperative behavior. The consumers, in turn,

signal their preferences for the products through the demand price functions associated with

the demand markets, which are, in general, functions of the demands for the products at

all the demand markets as well as the guaranteed delivery times of the products, from the

manufacturing/production stage to demand market delivery. We assume that there are m

firms and n demand markets that can be located in different physical locations. There is a

distinct (but substitutable) product produced by each of the m firms and is consumed at the

n demand markets. Please refer to Figure 1 for the underlying structure of the supply chain

network problem under consideration here. The notation for the model is given in Table 1.

The vectors are assumed to be column vectors. The equilibrium solution is denoted by “∗”.

The model is a strategic model rather than an operational=level model. Hence, we do

not consider possible sequencing of jobs for specific demand markets. Such an extension may

be considered in future research.
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Table 1: Notation for the Game Theoretic Supply Chain Network Model with Product
Differentiation and Guaranteed Delivery Times

Notation Definition
Qij the nonnegative shipment of firm i’s product to demand market j; i =

1, . . . ,m; j = 1, . . . , n. We group the {Qij} elements for firm i into the
vector Qi ∈ Rn

+ and all the firms’ product shipments into the vector
Q ∈ Rmn

+ .
si the nonnegative output produced by firm i; i = 1, . . . ,m. We group

the firm production outputs into the vector s ∈ Rm
+ .

dij the demand for the product produced by firm i at demand market j;
i = 1, . . . ,m; j = 1, . . . , n. We group the demands into the vector
d ∈ Rmn

+ .
Tij the guaranteed delivery time of product i, which is produced by firm i,

at demand market j; i = 1, . . . ,m; j = 1, . . . , n. We group the delivery
times of firm i into the vector Ti ∈ Rn

+ and then group all these vectors
of all firms into the vector T ∈ Rmn

+ .
fi(s) the production cost of firm i; i = 1, . . . ,m.
gi(Ti) the total cost associated with the delivery time of firm i; i = 1, . . . ,m.

pij(d, T ) the demand price of the product produced by firm i at demand market
j; i = 1, . . . ,m; j = 1, . . . , n.

ĉij(Q) the total transportation cost associated with shipping firm i’s product
to demand market j; i = 1, . . . ,m; j = 1, . . . , n.
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The following conservation of flow equations must hold:

si =
n∑

j=1

Qij, i = 1, . . . ,m, (1)

dij = Qij, i = 1, . . . ,m; j = 1, . . . , n, (2)

Qij ≥ 0, i = 1, . . . ,m; j = 1, . . . , n. (3)

Consequently, the quantity of the product produced by each firm is equal to the sum of

the amounts shipped to all the demand markets; the quantity of a firm’s product consumed

at a demand market is equal to the amount shipped from the firm to that demand market,

and the product shipments must be nonnegative.

As noted in the Introduction, the firms are also competing with time, that is, the guar-

anteed delivery times are strategic variables. Since each product must be manufactured and

then delivered, as depicted in Figure 1, we need to account for the time consumption as-

sociated with these supply chain network activities. Hence, associated with each firm and

demand market pair, we also have the following constraint:

tisi + hi + tijQij + hij ≤ Tij, i = 1, . . . ,m; j = 1, . . . , n, (4a)

where ti, hi, tij, and hij are all positive parameters. The first two terms in (4a) reflect the

actual time consumption associated with producing product i and the second two terms

reflect the actual time consumption associated with delivering product i to demand market

j. Constraint (4a), thus, guarantees that the product of each firm i will be produced and

shipped to demand market j within the guaranteed delivery time Tij determined by firm i.

Note that, according to (4a), the supply chain network activities of production / man-

ufacturing and transportation are functions, respectively, of how much is produced and of

how much is transported. Indeed, it may take longer to produce a larger quantity of product

and also (since the product may need to be loaded/unloaded) to deliver a larger volume of

product to a demand point. The fixed terms hi and hij denote the physical lower bounds

of the time needed to produce and to transport product i to demand market j, respectively.

Even in the case of digital products there will be a lower bound, albeit, small, in size. In light

of (1), (4a) also ensures that the guaranteed delivery time strategic variables will be non-

negative. Furthermore, the total transportation cost functions ĉij; i = 1, . . . ,m; j = 1, . . . , n

since they, for the sake of generality, are functions of the product shipment pattern, capture

possible congestion or competition for shipment resources (see also Nagurney (2006) and the

references therein). Of course, a special case of (4a) and (4b) is when some (or all) of the
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parameters ti; i = 1, . . . ,m and tij; i = 1, . . . ,m; j = 1, . . . , n are identically equal to zero.

The transportation costs that we consider, as a special case, capture the possibility of fixed

transportation costs between firm and demand market pairs.

In view of (1), we may rewrite (4a) in product shipment variables only, that is,

ti

n∑
j=1

Qij + hi + tijQij + hij ≤ Tij, i = 1, . . . ,m; j = 1, . . . , n. (4b)

In our numerical examples, we illustrate different realizations of constraint (4b) in which

we show that sometimes there may be a slack associated with (4b) in the equilibrium solution

and sometimes not.

A firm’s production cost may depend not only on its production output but also on

that of the other firms. This is reasonable since firms which produce substitutable products

may compete for the resources needed to produce their products. Also, in lieu of the time

consumption (cf. (4a, b)) associated with producing a product the production costs fi(s);

i = 1, . . . ,m, also capture the cost associated with the timely production of different levels

of output. Due to the conservation of flow equation (1), we can define the production cost

functions f̂i; i = 1, . . . ,m, in quantity shipments only, that is

f̂i = f̂i(Q) ≡ fi(s), i = 1, . . . ,m. (5)

The production cost functions (5) are assumed to be convex and continuously differentiable.

It is important to emphasize that faster guaranteed delivery may be more costly, since it

may require additional capacity and may be dependent on the operational efficiency (cf. So

(2000), Boyaci and Ray (2003), Ray and Jewkes (2004), Cachon and Zhang (2006), Nagurney

and Yu (2011), and Yu (2012)). For example, shipping costs of Amazon.com were doubled

when the guaranteed delivery time was decreased from one week to two days (So and Song

(1998)). This is captured in our functions gi; i = 1 . . . , m, which are also assumed to be

convex and continuously differentiable.

In view of (2), we may define demand price functions, p̂ij, for all (i, j), in terms of the

product shipments, that is:

p̂ij = p̂ij(Q, T ) ≡ pij(d, T ), i = 1, . . . ,m; j = 1, . . . , n. (6)

We note that including both product quantities as well as guaranteed delivery time into

demand functions has a tradition in economics as well as in operations research and marketing

(cf. Hill and Khosla (1992), Lederer and Li (1997), So and Song (1998), Boyaci and Ray
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(2003, 2006), Ray and Jewkes (2004), Shang and Liu (2011), and the references therein).

The demand price functions (6) and the total transportation cost functions ĉij; i = 1, . . . ,m

and j = 1, . . . , n, are assumed to be continuous and continuously differentiable.

Representing both the production cost (5) and the demand price functions (6) as functions

of the product shipments, along with the time delivery constraints (4b) and the total cost

function associated with the guaranteed delivery times, yields an elegant formulation of the

supply chain network game with strategic variables being the product shipments and the

delivery times, as we shall establish in Theorem 1.

The strategic variables of firm i are its product shipments {Qi} where Qi = (Qi1, . . . , Qin)

and its guaranteed delivery times {Ti}, note that Ti = (Ti1, . . . , Tin).

The profit or utility Ui of firm i; i = 1, . . . ,m, is, hence, given by the expression

Ui =
n∑

j=1

p̂ijQij − f̂i − gi −
n∑

j=1

ĉij, (7)

which is the difference between its total revenue and its total costs.

In view of (1)-(7), one may write the profit as a function solely of the shipment pattern

and delivery times, that is,

U = U(Q, T ), (8)

where U is the m-dimensional vector with components: {U1, . . . , Um}.

Let Ki denote the feasible set corresponding to firm i, where Ki ≡ {(Qi, Ti)|Qi ≥
0, and (4b) is satisfied for i} and K ≡

∏m
i=1 Ki.

In the oligopolistic market mechanism, the m firms supply their products in a non-

cooperative fashion, each one trying to maximize its own profit. We seek to determine an

equilibrium product shipment and delivery time pattern (Q∗, T ∗), according to the definition

below (see also Cournot (1838) and Nash (1950, 1951)).

Definition 1: A Supply Chain Network Equilibrium with Product Differentiation

and Delivery Times

A product shipment and delivery time pattern (Q∗, T ∗) ∈ K is said to constitute a network

equilibrium if for each firm i; i = 1, . . . ,m,

Ui(Q
∗
i , T

∗
i , Q̂∗

i , T̂
∗
i ) ≥ Ui(Qi, Ti, Q̂∗

i , T̂
∗
i ), ∀(Qi, Ti) ∈ Ki, (9)

where

Q̂∗
i ≡ (Q∗

1, . . . , Q
∗
i−1, Q

∗
i+1, . . . , Q

∗
m); and T̂ ∗i ≡ (T ∗1 , . . . , T ∗i−1, T

∗
i+1, . . . , T

∗
m). (10)
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According to (9), an equilibrium is established if no firm can unilaterally improve its

profits by selecting an alternative vector of product shipments and delivery times of its

product, given the decisions of the other firms.

Variational Inequality Formulations

We now derive alternative variational inequality formulations of the above supply chain

network equilibrium with product differentiation in the following theorem.

Theorem 1

Assume that for each firm i the profit function Ui(Q, T ) is concave with respect to the variables

{Qi1, . . . , Qin}, and {Ti1, . . . , Tin}, and is continuous and continuously differentiable. Then

(Q∗, T ∗) ∈ K is a supply chain network equilibrium according to Definition 1 if and only if

it satisfies the variational inequality

−
m∑

i=1

n∑
j=1

∂Ui(Q
∗, T ∗)

∂Qij

× (Qij −Q∗
ij)−

m∑
i=1

n∑
j=1

∂Ui(Q
∗, T ∗)

∂Tij

× (Tij − T ∗ij) ≥ 0, ∀(Q, T ) ∈ K,

(11)

or, equivalently, (Q∗, T ∗, γ∗) ∈ K1 is an equilibrium product shipment and guaranteed delivery

time pattern if and only if it satisfies the variational inequality

m∑
i=1

n∑
j=1

[
∂f̂i(Q

∗)

∂Qij

+
n∑

l=1

∂ĉil(Q
∗)

∂Qij

−
n∑

l=1

∂p̂il(Q
∗, T ∗)

∂Qij

×Q∗
il − p̂ij(Q

∗, T ∗) +
n∑

l=1

γ∗ilti + γ∗ijtij

]

×(Qij −Q∗
ij) +

m∑
i=1

n∑
j=1

[
∂gi(T

∗
i )

∂Tij

−
n∑

l=1

∂p̂il(Q
∗, T ∗)

∂Tij

×Q∗
il − γ∗ij

]
× (Tij − T ∗ij)

+
m∑

i=1

n∑
j=1

[
T ∗ij − ti

n∑
l=1

Q∗
il − tijQ

∗
ij − hi − hij

]
×

[
γij − γ∗ij

]
≥ 0, ∀(Q, T, γ) ∈ K1, (12)

where K1 ≡ {(Q, T, γ)|Q ≥ 0, T ≥ 0, γ ≥ 0} with γ being the mn-dimensional vector

with component (i, j) consisting of the element γij corresponding to the Lagrange multiplier

associated with the (i, j)-th constraint (4b).

Proof: (11) follows directly from Gabay and Moulin (1980) and Dafermos and Nagurney

(1987).

In order to obtain variational inequality (12), we note that, for a given firm i, under the

imposed assumptions, (11) holds if and only if (see, e.g., Bertsekas and Tsitsiklis (1989)) the
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following holds:

n∑
j=1

[
∂f̂i(Q

∗
i )

∂Qij

+
n∑

l=1

∂ĉil(Q
∗)

∂Qij

−
n∑

l=1

∂p̂il(Q
∗, T ∗)

∂Qij

×Q∗
il − p̂ij(Q

∗, T ∗) +
n∑

l=1

γ∗ilti + γ∗ijtij

]

×(Qij −Q∗
ij) +

n∑
j=1

[
∂gi(T

∗
i )

∂Tij

−
n∑

l=1

∂p̂il(Q
∗, T ∗)

∂Tij

×Q∗
il − γ∗ij

]
× (Tij − T ∗ij)

+
n∑

j=1

[
T ∗ij − ti

n∑
l=1

Q∗
il − tijQ

∗
ij − hi − hij

]
×

[
γij − γ∗ij

]
≥ 0, ∀(Qi, Ti, γi) ∈ K1

i , (13)

where K1
i ≡{(Qi, Ti, γi)|(Qi, Ti, γi) ∈ R3n

+ }, with {γi}=(γi1, . . . , γin).

But (13) holds for each firm i; i = 1, . . . ,m, and, hence, the summation of (13) yields

variational inequality (12). The conclusion follows.�

We now put variational inequality (12) into standard form (cf. Nagurney (1999)): deter-

mine X∗ ∈ K ⊂ RN , such that

〈F (X∗)T , X −X∗〉 ≥ 0, ∀X ∈ K, (14)

where F is a given continuous function from K to RN , and K is a closed and convex set.

We define the 3mn-dimensional vector X ≡ (Q, T, γ) and the 3mn-dimensional row vector

F (X) = (F 1(X), F 2(X), F 3(X)) with the (i, j)-th component, F 1
ij, of F 1(X) given by

F 1
ij(X) ≡ ∂f̂i(Q)

∂Qij

+
n∑

l=1

∂ĉil(Q)

∂Qij

−
n∑

l=1

∂p̂il(Q, T )

∂Qij

×Qil − p̂ij(Q, T ) +
n∑

l=1

γilti + γijtij, (15)

the (i, j)-th component, F 2
ij, of F 2(X) given by

F 2
ij(X) ≡ ∂gi(Ti)

∂Tij

−
n∑

l=1

∂p̂il(Q, T )

∂Tij

×Qil − γij, (16)

and the (i, j)-th component, F 3
ij, of F 3(X) given by

F 3
ij(X) = Tij − ti

n∑
l=1

Qil − tijQij − hi − hij, (17)

and with the feasible set K ≡ K. Then, clearly, variational inequality (12) can be put into

standard form (14).

We now present two examples in order to illustrate some of the above concepts and results.
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Figure 2: The Network Structure for the Illustrative Examples

Illustrative Examples

Consider a supply chain network oligopoly problem consisting of two firms and one demand

market, as depicted in Figure 2.

Example 1

We assume that these two firms are located in the same area. Both of them adopt similar

technologies for the production and delivery of their highly substitutable products. There-

fore, the production and transportation cost functions of Firms 1 and 2 are identical. Mean-

while, consumers at the demand market are indifferent between the products of Firms 1 and

2. The production cost functions are:

f1(s) = 2s2
1 + 3s1, f2(s) = 2s2

2 + 3s2,

so that (cf. (5)):

f̂1(Q) = 2Q2
11 + 3Q11. f̂2(Q) = 2Q2

21 + 3Q21.

The total transportation cost functions are:

ĉ11(Q11) = Q2
11 + Q11, ĉ21(Q21) = Q2

21 + Q21,

the total cost functions associated with delivery times are:

g1(T1) = T 2
11 − 30T11 + 400, g2(T2) = T 2

21 − 40T21 + 450,

and the demand price functions are assumed to be:

p11(d, T ) = 300− 2d11− 0.5d21− T11 + 0.2T21, p21(d, T ) = 300− 2d21− 0.5d11− T21 + .2T11
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so that (cf. 6)):

p̂11(Q, T ) = 300−2Q11−0.5Q21−T11+0.2T21, p̂21(Q, T ) = 300−2Q21−0.5Q11−T21+.2T11.

The above nonlinear cost functions, although hypothetical, were constructed to capture

the potential resource competition and congestion in the production and delivery activities.

Moreover, the total cost associated with delivery times decreases if the delivery time is

increased in a certain range. However, the slower delivery may also be costly since resources

could be used elsewhere.

The parameters associated with the production time consumption are:

t1 = 0, h1 = 1, t2 = 0, h2 = 1,

and the parameters associated with the transportation time consumption are:

t11 = 0, h11 = 1, t21 = 0, h21 = 1,

which means that the actual production times and the actual transportation times of these

two firms are fixed.

Hence, for Firm 1, the following guaranteed delivery time constraint must be satisfied:

1 + 1 ≤ T11,

and for Firm 2, the corresponding guaranteed delivery time constraint is:

1 + 1 ≤ T21.

The equilibrium product shipment and guaranteed delivery time pattern is:

Q∗
11 = 28.14, Q∗

21 = 27.61, T ∗11 = 2.00, T ∗21 = 6.19,

and the corresponding Lagrange multipliers are:

γ∗11 = 2.14, γ∗21 = 0.00.

Furthermore, the equilibrium prices associated with these two products are:

p11 = 229.15, p21 = 224.91,

and the profits of the two firms are:

U1 = 3, 616.20, U2 = 3, 571.90.
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In this example, Firm 2’s guaranteed delivery time, which is 6.19, is longer than the

actual delivery time, which is 2, mainly because the total cost associated with delivery time

would increase notably if Firm 2 were to reduce its guaranteed delivery time.

Example 2

Example 2 has the same data as Example 1 except that now the actual production times

and the actual transportation times of Firms 1 and 2 depend on how much is produced and

how much is shipped, respectively, that is,

t1 = 0.2, t2 = 0.3, t11 = 0.1, t21 = 0.2.

The new equilibrium product shipment and guaranteed delivery time pattern is:

Q∗
11 = 27.06, Q∗

21 = 26.13, T ∗11 = 10.12, T ∗21 = 15.07,

and the corresponding Lagrange multipliers are:

γ∗11 = 17.30, γ∗21 = 16.26.

The equilibrium prices associated with these two products are:

p11 = 225.70, p21 = 221.17,

and the profits of the two firms are:

U1 = 3, 603.89, U2 = 3, 551.89.

This example shows that Firm 1 attracts more consumers with a notably shorter guaran-

teed delivery time, although the price of its product is higher than that of Firm 2’s product.

Due to its competitive advantage in delivery time performance, Firm 1 achieves a relatively

higher profit.

Example 3

Example 3 has the same data as Example 2 except that now Firm 2 has reduced its production

cost by improving its operational efficiency. The production cost function of Firm 2 is now

given by:

f2(s) = s2
2 + 2s2,

so that (cf. (5)):

f̂2(Q21) = Q2
21 + 2Q21.
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The equilibrium product shipment and guaranteed delivery time pattern is:

Q∗
11 = 26.86, Q∗

21 = 31.75, T ∗11 = 10.06, T ∗21 = 17.87,

and the corresponding Lagrange multipliers are:

γ∗11 = 16.97, γ∗21 = 27.49.

The equilibrium prices associated with these two products are:

p11 = 223.93, p21 = 207.22,

and the profits of the two firms are:

U1 = 3, 543.33, U2 = 4, 413.00.

As a result of its lower production cost, Firm 2 is able to provide consumers with its

product at an appealing price. Hence, the demand for Firm 2’s product increases remarkably,

even with a longer guaranteed delivery time, while there is a slight decrease in the demand

for Firm 1’s product. Therefore, in this example, Firm 2’s profit improves significantly.

3. The Algorithm

The feasible set underlying variational inequality (12) is the nonnegative orthant, a feature

that we will exploit for computational purposes. Specifically, we will apply the Euler-type

method, which is induced by the general iterative scheme of Dupuis and Nagurney (1993),

where, at iteration τ of the Euler method (see also Nagurney and Zhang (1996)) one must

solve the following problem:

Xτ+1 = PK(Xτ − aτF (Xτ )), (18)

where PK is the projection on the feasible set K and F is the function that enters the

variational inequality problem (12).

As demonstrated in Dupuis and Nagurney (1993) and in Nagurney and Zhang (1996),

for convergence of the general iterative scheme, which induces this algorithmic scheme, the

sequence {aτ} must satisfy:
∑∞

τ=0 aτ = ∞, aτ > 0, aτ → 0, as τ → ∞. Specific conditions

for convergence of this scheme as well as various applications to the solutions of other supply

chain and network oligopoly models can be found in Nagurney and Zhang (1996), Nagurney,

Dupuis, and Zhang (1994), Nagurney (2010), Nagurney and Yu (2012), and in Nagurney,

Yu, and Qiang (2011).
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Explicit Formulae for the Euler Method Applied to the Supply Chain Network

Model

The elegance of this procedure for the computation of solutions to our model with product

differentiation and time deliveries can be seen in the following explicit formulae. In particular,

we have the following closed form expression for all the product shipments i = 1, . . . ,m; j =

1, . . . , n:

Qτ+1
ij = max{0, Qτ

ij + aτ (−F 1
ij(X

τ ))}, (19)

and the following closed form expression for all the guaranteed delivery time values i =

1, . . . ,m; j = 1, . . . , n:

T τ+1
ij = max{0, T τ

ij + aτ (−F 2
ij(X

τ ))} (20)

with the Lagrange multipliers being computed for all i = 1, . . . ,m; j = 1, . . . , n according

to:

γτ+1
ij = max{0, γτ

ij + aτ (−F 3
ij(X

τ ))}}; i = 1, . . . ,m; j = 1, . . . , n. (21)

In the next Section, we apply the Euler method to compute solutions to additional nu-

merical supply chain network problems.

4. Numerical Examples

We implemented the Euler method, as described in Section 3, using Matlab. The conver-

gence criterion was ε = 10−6; that is, the Euler method was considered to have converged if,

at a given iteration, the absolute value of the difference of each product shipment, each guar-

anteed delivery time value, and each Lagrange multiplier differed from its respective value at

the preceding iteration by no more than ε. We set the sequence aτ = .1(1, 1
2
, 1

2
, 1

3
, 1

3
, 1

3
, · · · ).

In this Section, we considered a supply chain network consisting of three firms and two

demand markets, which are geographically separated (as depicted in Figure 3). Consumers

at Demand Market 2 are more sensitive with respect to guaranteed delivery times than

consumers at Demand Market 1.

17



����
Demand Market 1

����
Demand Market 2

@
@

@
@

@
@
@R

PPPPPPPPPPPPPPPPPPPPq

�
�

�
�

�
�

�	

@
@

@
@

@
@
@R

��������������������)

�
�

�
�

�
�

�	

���� ���� ����? ? ?

���� ���� ����Firm 1 Firm 2 Firm 3

Figure 3: The Network Structure for the Numerical Examples

Example 4

The cost functions, demand price functions, and parameters associated with time consump-

tion are as follows:

Firm 1:

f1(s) = s2
1 + 0.5s1s2 + 0.5s1s3, g1(T1) = T 2

11 + T 2
12 − 30T11 − 40T12 + 650,

ĉ11(Q11) = Q2
11 + 0.5Q11, ĉ12(Q12) = Q2

12 + Q12,

p11(d, T ) = 400− 2d11 − d21 − 0.8d31 − 1.2T11 + 0.3T21 + 0.2T31,

p12(d, T ) = 400− 1.5d12 − 0.5d22 − 0.8d32 − 2T12 + 0.2T22 + 0.3T32,

t1 = 0.8, h1 = 1.5, t11 = 0.4, h11 = 1.5, t12 = 0.5, h12 = 1.5;

Firm 2:

f2(s) = 1.5s2
2 + 0.8s1s2 + 0.8s2s3, g2(T2) = T 2

21 + T 2
22 − 30T21 − 30T22 + 480,

ĉ21(Q21) = Q2
21 + Q21, ĉ22(Q22) = Q2

22 + Q22,

p21(d, T ) = 400− 2d21 − d11 − d31 − 1.2T21 + 0.2T11 + 0.2T31,

p22(d, T ) = 400− 1.5d22 − 0.5d12 − 0.5d32 − 2T22 + 0.3T12 + 0.3T32,

t2 = 0.6, h2 = 1.5, t21 = 0.4, h21 = 1.3, t22 = 0.4, h22 = 1.3;
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Firm 3:

f3(s) = 2s2
3 + 0.8s1s3 + 0.8s2s3, g3(T3) = 0.8T 2

31 + 0.8T 2
32 − 25T31 − 20T32 + 400,

ĉ31(Q31) = 1.5Q2
31 + Q31, ĉ32(Q32) = Q2

32 + 1.5Q32,

p31(d, T ) = 400− 2d31 − 0.8d11 − d21 − 1.2T31 + 0.2T11 + 0.3T21,

p32(d, T ) = 400− 1.5d32 − 0.8d12 − 0.5d22 − 2T32 + 0.3T12 + 0.2T22,

t3 = 0.3, h3 = 1, t31 = 0.2, h31 = 1, t32 = 0.1, h32 = 1.

We utilized (5) and (6) to construct the production cost functions and the demand price

functions, respectively, in shipment variables, for all examples in this Section.

The equilibrium product shipment and guaranteed delivery time pattern, the Lagrange

multipliers, and the prices are reported in Tables 1 and 2.

Note that, in Example 4, Firm 1 has a slight advantage over its competitors in Demand

Market 1, despite the longer guaranteed delivery time, perhaps as a consequence of the

lower price. Firm 3 captures the majority of the market share at Demand Market 2, due

to consumers’ preference for timely delivery. However, Firm 2 attains the lowest profit, as

compared to its rivals, since Firm 2 is neither cost-effective enough nor sufficiently time-

efficient.

Example 5

Example 5 has the identical data to that in Example 4, except that consumers at Demand

Market 2 are becoming even more time-sensitive. The new demand price functions are now

given by:

p12(d, T ) = 400− 1.5d12 − 0.5d22 − 0.8d32 − 3T12 + 0.2T22 + 0.3T32,

p22(d, T ) = 400− 1.5d22 − 0.5d12 − 0.5d32 − 3T22 + 0.3T12 + 0.3T32,

p32(d, T ) = 400− 1.5d32 − 0.8d12 − 0.5d22 − 3T32 + 0.3T12 + 0.2T22.

We also provided the solutions to Example 5 in Tables 2 and 3.

In Example 5, Firm 1 and Firm 3 still dominate Demand Markets 1 and 2, respectively.

Consumers’ increasing time sensitivity at Demand Market 2 has forced all these three firms

to shorten their guaranteed delivery times. The decrease in Firm 3’s profit is negligible,

while the profits of Firms 1 and 2 shrink notably. The results in Examples 4 and 5 suggest

that delivery times, as a strategy, are particularly influential in time-based competition.
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Table 2: The Equilibrium Product Shipment and Guaranteed Delivery Time Patterns, the
Lagrange Multipliers, and the Prices for Examples 4 and 5

Example 4 Example 5
Firm Demand

Market
Q∗ T ∗ γ∗ p Q∗ T ∗ γ∗ p

1
1 18.05 36.44 64.54 302.76 19.30 35.34 63.84 299.96
2 14.73 36.59 62.65 288.15 11.48 33.36 61.15 268.47

2
1 15.96 29.10 47.36 308.78 17.01 28.32 47.04 305.76
2 17.23 29.61 63.67 311.74 14.19 27.19 66.94 295.34

3
1 17.14 17.63 23.78 330.18 17.47 17.24 23.55 327.49
2 23.55 16.56 53.60 328.05 21.69 15.91 70.54 318.91

Table 3: The Profits of Firms 1, 2, and 3 in Examples 4 and 5

Firm 1 Firm 2 Firm 3
Example 4 6, 097.14 5, 669.63 6, 782.11
Example 5 5, 697.97 5, 3072.64 6, 560.58

5. Summary and Conclusions

In this paper, we developed a rigorous modeling and computational framework for time-

based competition in supply chain networks using game theory and variational inequality

theory.

Specifically, the firms are assumed to compete in an oligopolistic manner using as strategic

variables not only their product shipments to the various demand markets, under brand

differentiation, but also their guaranteed delivery times. Here the guaranteed delivery times

provide upper bounds on the sum of the production time and the transportation time between

the firm and demand market pairs. All firms are assumed to be profit-maximizers and subject

to production and transportation costs. The consumers, in turn, reflect their preferences for

the firms’ brands or products through the demand price functions which are functions of

not only the demands for the firms’ products at the different demand markets but also their

guaranteed delivery times.

Numerical supply chain network examples were presented to illustrate the generality of

the proposed model with a complete reporting of the input data and the computed equilib-

rium product shipments and guaranteed delivery times, along with the Lagrange multipliers

associated with the delivery time constraints.
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The modeling and analytical framework can be used as the foundation for the investiga-

tion of supply chain networks in the case of build to order and made on demand products. It

can also be extended in several directions through the inclusion of multiple options of trans-

portation and multiple technologies for production. One may also incorporate additional

tiers of suppliers. Nevertheless, we have laid out the foundations for time-based competition

in supply chain networks with this study that enables numerous explorations both theoretical

and empirical with a focus on particular industrial sectors.
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